最新反函数常用知识点总结

合集下载

反函数常用知识点总结2页

反函数常用知识点总结2页

反函数常用知识点总结2页反函数常用知识点总结:1.反函数的定义:对于函数f的定义域D和值域R,如果对于任意的x∈D,有f(f^(-1)(x))=x成立,即f^(-1)(f(x))=x成立,则称函数f^(-1)为函数f 的反函数。

2.反函数的唯一性:如果函数f有反函数,则反函数是唯一的。

3.反函数的存在性:函数f有反函数的充分必要条件是,函数f是一对一的和映射的。

4.一对一函数:如果对于定义域D中的不同元素x1≠x2,函数f(x1)≠f(x2),则称函数f是一对一的。

5.映射函数:对于函数f的定义域D中的任意元素x1、x2,如果x1≠x2,则f(x1)≠f(x2)。

如果定义域D中的任意元素都有这个性质,那么函数f是映射函数。

6.判断反函数的方法:可以使用水平线切割法来判断函数是否有反函数。

对于函数y=f(x),在其图象上作一水平线y=k,如果这条水平线与函数y=f(x)的图象有且仅有一个交点,则函数f(x)是一对一的,从而有反函数。

7.反函数的求解:反函数的求解可以通过以下步骤进行:① 将函数y=f(x)表示为x关于y的函数形式;② 交换x和y,并对y求导得到dy/dx,并解y关于x的表达式;③ 将所得表达式表示为y=f^(-1)(x),即得到反函数。

8.反函数的性质:① 若函数f有反函数,则有f^(-1)^(-1)(x)=f(x);②若函数f有反函数,则有f(f^(-1)(x))=x,f^(-1)(f(x))=x成立;③ 若函数f和g均有反函数,则复合函数f(g(x))和g(f(x))分别有反函数g^(-1)(x)和f^(-1)(x)。

9.反函数与求导:如果函数f有反函数,则f'(f^(-1)(x))=(f^(-1))'(x),即反函数和原函数求导的结果互为倒数。

10.反函数的定义域和值域:如果函数f有反函数,则反函数的定义域等于原函数的值域,反函数的值域等于原函数的定义域。

11.反函数与基本初等函数的反函数:① 幂函数的反函数是指数函数;② 指数函数的反函数是对数函数;③ 三角函数的反函数分别是反三角函数。

反函数关于

反函数关于

反函数关于
(最新版)
目录
1.反函数的定义与性质
2.反函数的求法
3.反函数的应用
正文
一、反函数的定义与性质
反函数,又称逆函数,是指将函数的输出作为输入,将函数的输入作为输出的一种特殊关系。

设函数 f(x) 的定义域为 D,值域为 R,如果存在另一个函数 g(x),它的定义域为 R,值域为 D,并且对于所有的 x∈D,有 f(g(x))=x,g(f(x))=x,则称函数 g(x) 是函数 f(x) 的反函数,记作 f^-1(x)。

反函数具有以下性质:
1.反函数是单射的,即对于不同的 x1, x2,有 f(x1)≠f(x2) 时,f^-1(f(x1))=x1,f^-1(f(x2))=x2。

2.反函数是满射的,即对于所有的 y∈R,都有存在 x∈D,使得
f(x)=y。

3.反函数的定义域等于原函数的值域,反函数的值域等于原函数的定义域。

二、反函数的求法
求反函数的方法主要有以下两种:
1.换元法:设 y=f(x),则 x=f^-1(y),将 x 用 y 表示,然后解出y 关于 x 的表达式,即得到反函数的解析式。

2.反函数的图形法:根据原函数的图形,绘制出反函数的图形,然后通过观察反函数的图形,直接写出反函数的解析式。

三、反函数的应用
反函数在实际应用中有广泛的应用,例如:
1.在数学中,反函数可以用于求解方程,将方程中的未知数用反函数表示,将方程转化为关于反函数的方程,然后解出反函数的值,最后代入原函数中求得未知数的值。

2.在物理中,反函数常用于求解运动的逆过程,通过已知的运动轨迹,求解物体的初始速度和加速度。

反函数知识点

反函数知识点

反函数知识点、概念总结1.反比例函数:形如y=k/x,(k为常数,k≠0)的函数称为反比例函数。

其他形式xy=k,y=kx(-1)。

2.自变量的取值范围:(1)k≠0;(2)在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;(3)函数y的取值范围也是任意非零实数。

3.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和y=-x。

对称中心是:原点。

4.反比例函数的几何意义|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

即:过反比例函数y=k/x(k不等于0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=(x的绝对值)*(y的绝对值)=(x*y)的绝对值=k的绝对值。

5. 反比例函数的性质:(1)(增减性)当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

(2)k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0.(3)因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

(4)在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K|(5)反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。

(6)若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A、B 两点关于原点对称。

(7)设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2+4k·m ≥(不小于)0.(8)反比例函数y=k/x的渐近线:x轴与y轴。

反函数知识点总结大全

反函数知识点总结大全

反函数知识点总结大全一、基本概念1. 反函数的定义:设函数f是定义在集合A上的函数,如果对于A中的每一个x都有唯一的一个y使得f(x) = y,那么就存在一个函数g,使得g(y) = x。

则称g为函数f的反函数,记作g = f^(-1)。

反函数是满足f(g(x))=x和g(f(x))=x的一对函数。

2. 反函数存在的条件:一个函数有反函数的充分必要条件是该函数是一一映射的。

即对于函数f,如果对于不同的x1和x2,有f(x1)≠f(x2),则称f是一一映射。

3. 反函数的表示:在一定条件下,函数的反函数可以表示为y=f^(-1)(x),转换为x=f(y)。

可以通过求解来得到。

4. 反函数的组合:当两个函数互为反函数时,它们的反函数构成一对互为互逆的函数,进行组合后恰好得到自变量x,即(f^(-1)◦f)(x) = x。

二、性质1. 函数和反函数的图像关系:函数和它的反函数的图像分别关于y=x对称。

这意味着反函数的图像是原函数图像沿着y=x轴做对称得到的。

2. 反函数的导数关系:如果函数f在点x处可导且f'(x)≠0,则它的反函数g也在点y=f(x)处可导,且g'(y) = 1 / f'(x)。

3. 反函数的定义域和值域:一个函数的定义域和值域可以通过反函数来确定。

函数f的定义域是它的值域的反函数的定义域,函数f的值域是它的定义域的反函数的值域。

4. 函数和反函数的性质:反函数的奇偶性、周期性和单调性与原函数相似。

如果原函数是奇函数,那么反函数也是奇函数。

如果原函数是周期性函数,那么反函数也是周期性函数。

如果原函数是单调函数,那么反函数也是单调函数。

三、图像1. 原函数和反函数的图像:原函数和反函数的图像关于y=x轴对称。

通过这种方法,可以很方便得到反函数的图像。

2. 举例:y = f(x),求f^(-1)(x)图像。

可以先画出原函数的图像,然后再对该图像进行关于y=x的对称处理。

初中反函数知识点总结

初中反函数知识点总结

初中反函数知识点总结一、反函数的定义1.1 函数的定义在讨论反函数之前,我们先来了解一下函数的概念。

函数是一个映射关系,它将一个自变量的取值映射到另一个因变量的取值。

函数通常用f(x)来表示,其中x是自变量,f(x)是因变量。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

1.2 反函数的定义若对于函数f(x),存在函数g(y),使得g(f(x))=x对于函数f(x)的定义域内的每一个x都成立,且f(g(y))=y对于函数f(x)的值域内的每一个y都成立,那么函数g(y)就是函数f(x)的反函数。

反函数通常用f^(-1)(y)来表示。

二、反函数的性质2.1 反函数的存在对于每一个函数f(x),如果它是一一对应的(即对于不同的x,f(x)的取值也是不同的),那么它必然存在反函数g(y)。

2.2 反函数的图像若函数f(x)的图像是一条曲线或者抛物线,那么它的反函数g(y)的图像通常是一条对称于y=x轴的曲线或者抛物线。

2.3 反函数的性质反函数的性质有以下几点:(1)f(x)和f^(-1)(x)是一一对应的;(2)f^(-1)(f(x))=x,f(f^(-1)(x))=x;(3)f(x)和f^(-1)(x)的定义域和值域互换。

三、反函数的求解3.1 求解反函数的方法对于给定的函数f(x),求解它的反函数g(y)的方法通常有两种:(1)利用代数方法,将y=f(x)转化成x=f^(-1)(y),然后解出f^(-1)(x);(2)利用图像,将函数f(x)的图像与y=x进行对称,然后求解出反函数g(y)的图像。

3.2 求解反函数的实例例如,对于函数f(x)=2x+3,我们要求解它的反函数。

首先,我们将y=2x+3转化成x=1/2(y-3),然后我们得到f^(-1)(x)=1/2(x-3)。

这样,我们就求解出了函数f(x)的反函数f^(-1)(x)。

四、反函数的应用4.1 反函数的应用范围反函数在代数、几何和物理中有着广泛的应用。

反函数基本公式大全

反函数基本公式大全

反函数基本公式大全反函数基本公式大全:一、反三角函数公式:1、arcsin(-x)=-arcsinx2、arccos(-x)=π-arccosx3、arctan(-x)=-arctanx4、arccot(-x)=π-arccotx5、arcsinx+arccosx=π/2=arctanx+arccotx6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x8、当x∈〔0,π〕,arccos(cosx)=x9、x∈(—π/2,π/2),arctan(tanx)=x10、x∈(0,π),arccot(cotx)=x11、x〉0,arctanx=arctan1/x,12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)二、高中数学反函数:1、反正弦函数:正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。

记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。

定义域[-1,1] ,值域[-π/2,π/2]。

2、反余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。

记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。

定义域[-1,1] ,值域[0,π]3、反正切函数:正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。

记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。

定义域R,值域(-π/2,π/2)。

4、反余切函数:余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。

记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。

定义域R,值域(0,π)。

反函数关于

反函数关于

反函数关于一、反函数的概念与基本性质1.反函数的定义在数学中,如果两个函数互为反函数,那么我们就称这两个函数互为反函数。

具体来说,如果函数f(x)和函数g(x)满足以下条件:(1)对于任意的x,有f(g(x))=x;(2)对于任意的x,有g(f(x))=x。

那么我们就说函数f(x)和函数g(x)互为反函数。

2.反函数的基本性质(1)互为反函数的两个函数的定义域和值域恰好相反。

(2)互为反函数的两个函数的复合函数为恒等函数。

(3)互为反函数的两个函数的导数互为负倒数。

二、反函数的求法1.直接求法如果已知函数f(x)的反函数,我们可以直接写出反函数的表达式。

例如,如果已知f(x)=2x+1,那么我们可以通过求解以下方程得到反函数:f(x) = 2x + 1解得:x = (y - 1) / 2所以,反函数为:y = (x - 1) * 22.间接求法如果已知函数f(x)的导数,我们可以通过求解微分方程得到反函数。

例如,如果已知f(x)的导数为f"(x)=3x^2+2x+1,那么我们可以通过求解以下微分方程得到反函数:dy/dx = 3x^2 + 2x + 1解得:y" = 3x^2 + 2x + 1对两边积分,得:y = x^3 + x^2 + C所以,反函数为:f(x) = x^3 + x^2 + C三、反函数的应用1.函数与反函数的关系反函数是原函数的镜像,通过反函数可以更好地理解原函数的性质和特点。

例如,对于函数f(x)=ax+b(a≠0),其反函数为f^-1(x)=(x-b)/a,通过反函数我们可以看出原函数的增减性和单调性。

2.反函数在实际问题中的应用反函数在实际问题中有很多应用,如密码学、计算机科学中的排序算法、数学中的微积分等。

以密码学为例,加密算法可以看作是一个函数,将明文映射为密文。

要解密密文,我们需要找到一个与加密函数互为反函数的解密函数。

这样,通过解密函数,我们可以将密文还原为明文。

反函数知识点总结中考

反函数知识点总结中考

反函数知识点总结中考一、概念1. 定义反函数是指对于给定的函数f(x),若存在一个函数g(y)使得对任意的x∈X,有y=f(x),且对任意的y∈Y,有x=g(y),则称g(y)是f(x)的反函数,记作g(x)=f^(-1)(x)。

2. 注意事项(1)注意反函数是原来函数的逆运算,即f(g(x))=x。

(2)注意反函数的定义域和值域互换,即f:X→Y,g:Y→X。

(3)注意反函数只对满足水平线测试的函数有意义,即原函数为一一对应关系。

二、性质1. 反函数的性质(1)f(x)和f^(-1)(x)的图象关于y=x对称。

(2)f(x)和f^(-1)(x)的交点坐标为(x, x)。

(3)f^(-1)(f(x))=x,f(f^(-1)(x))=x。

(4)若f(X)=Y,则f^(-1)(Y)=X。

(5)如果f(x)有定义域和值域互换的性质,那么f^(-1)(x)也有值域和定义域互换的性质。

2. 复合函数的性质(1)f(x)和f^(-1)(x)是互为反函数的函数,则f(f^(-1)(x))=x,f^(-1)(f(x))=x。

(2)若f(x)和g(x)为互为反函数的函数,则(g∘f)^(-1)=(f^(-1)∘g^(-1))。

三、常见问题1. 反函数的存在性问题反函数的存在性需要满足原函数为一一对应关系,即每一个自变量对应唯一的因变量。

如果原函数不是一一对应关系,则反函数不存在。

2. 反函数的求法(1)如果f(x)已知,则可以通过交换自变量和因变量的位置来求得f^(-1)(x)。

(2)通过求导的方法也可以求得反函数。

3. 反函数的应用反函数在实际生活中有很多应用,比如温度的摄氏度和华氏度之间的转换、数学中的对数函数等都涉及到反函数的应用。

四、解题思路1. 根据反函数的性质来解题,如利用f(x)和f^(-1)(x)的对称性和交点坐标来求解问题。

2. 利用反函数的定义来解题,如根据f(x)和f^(-1)(x)之间的逆运算来解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
反函数
定义
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,-1 -1 (x)y=f (x) 。

y=f y=f(x)(x∈A)的反函数,记作反函数这样的函数x= g(y)(y∈C)叫做函数的定义域、值域分别是函数y=f(x)的值域、定义域。

(不求过深理解)
引申
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数-1为y=f (x)。

存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。

注意:上标╜???指的并不是幂。

(n)(x)是用来指f的f n次微分的。

在微积分里,若一函数有反函数,此函数便称为可逆的(invertible)。

性质
-1(x)图象关于直线fy=x对称;(1)函数f(x)与它的反函数
图1 函数及其反函数的图形关于直线y=x对称
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C}, 值域为{0} )。

奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。

若一个奇函数存在反函数,则它的反函数也是奇函数。

(5)严格增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性;
(7)定义域、值域相反,对应法则互逆(三反);
(8)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2));
(9)反函数的导数关系:如果x=f(y)在区间I上单调,可导,且f'(y)≠0,那么它的反函数
y=f'(x)在区间S={x|x=f(y),y属于I }内也可导,且[f'(x)]'=1\[f'(x)]'。

(10)y=x的反函数是它本身。

说明
精品文档.
精品文档
-1(y)中,y是自变量,x是函数,但习惯上,我们一般用⑴在函数x=f x表示自变量,用-1-1(x)y=f ,今后凡无中的字母x,yy 表示函数,为此我们常常对调函数x=f ,把它改写成(y)特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。

⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数-1-1(x)的反函数(x),那么函数y=f(x)来说,不一定有反函数;若函数y=f(x)有反函数y=f y=f
-1(x)互为反函数。

与y=f 就是y=f(x),这就是说,函数y=f(x)⑶互为反函数的两个函数在各自定义域内有相同的单调性。

单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数。

-1(x)y=f 的映射,而它的反函数y=f(x)函数是定义域A到值域C⑷从映射的定义可知,-1(x)的值域;的定义域正好是它的反函数y=f C到集合A的映射,因此,函数y=f(x)是集合-1(x)的定义域(如下表):函数y=f(x)的值域正好是它的反函数y=f
函数:y=f(x);
-1(x);反函数:y=f
定义域: A 、C;
值域:C、A;
上述定义用“逆”映射概念可叙述为:
若确定函数y=f(x)的映射f是函数的定义域到值域上的“一一映射”,那么由f的“逆”映射-1-1-1(x)的定义域、y=f 值域分别就叫做函数y=f(x)的反函数。

f 所确定的函数y=f 反函数(x)对应原函数y=f(x)的值域、定义域。

开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以-1 -1(x)=x/2-3。

,则它的反函数为:f 写为f f(x)=2x+6(t)=s/v,同样y=2x+6记为
有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的。

例题
求y=(x-2)/(2x-1)的反函数
解:去分母得2xy-y=x-2
移项合并含有x项得x(2y-1)=y-2
x=(y-2)/(2y-1)
-1(x)=(x-2)/(2x-1) f 即
精品文档.。

相关文档
最新文档