函数与方程(零点)

合集下载

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

函数与方程零点

函数与方程零点

函数与方程一、考点聚焦1.函数零点的概念对于函数))((D x x f y ,我们把使0)(x f 的实数x 叫做函数)(x f y 的零点,注意以下几点:(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。

(2)函数的零点也就是函数)(x f y 的图象与x 轴的交点的横坐标。

(3)一般我们只讨论函数的实数零点。

(4)求零点就是求方程0)(x f 的实数根。

2、函数零点的判断如果函数)(x f y 在区间],[b a 上的图象是连续不断的曲线,并且有0)()(b f a f ,那么,函数)(x f y 在区间),(b a 内有零点,即存在),(0b a x ,使得0)(0x f ,这个0x 也就是方程0)(x f 的根。

但要注意:如果函数)(x f y 在],[b a 上的图象是连续不断的曲线,且0x 是函数在这个区间上的一个零点,却不一定有.0)()(b f a f 3.函数零点与方程的根的关系根据函数零点的定义可知:函数)(x f 的零点,就是方程0)(x f 的根,因此判断一个函数是否有零点,有几个零点,就是判断方程0)(x f 是否有实数根,有几个实数根。

函数零点的求法:解方程0)(x f ,所得实数根就是)(x f 的零点。

4.函数零点具有的性质注意:①函数是否有零点是针对方程是否有实数根而言的,若方程0)(x f 没有实数根,则函数)(x f 没有零点。

5、二分法,就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步副近零点,进而得到零点近似值的方法。

用二分法求函数零点近似值时,最好是将计算过程中所得到的各个区间、中点坐标、区间中点的函数值等列在一个表格中,这样可以更清楚地发现零点所在的区间。

6.用二分法求函数零点的近似值的探究在应用二分法求函数的变号零点的近似值0x 时,从精确度出发,确定需经过多次取区间],[b a 的中点找到零点的近似值,使其达到精确度的要求。

方程的与函数的零点

方程的与函数的零点
零点定理
如果函数$f(x)$在区间$[a, b]$上连续,且$f(a) cdot f(b) < 0$,则存在至少一个$c in (a, b)$,使得$f(c) = 0$。
证明
考虑函数$f(x)$在区间$[a, b]$上的值域,由于$f(a) cdot f(b) < 0$,函数值在区间两 端异号。根据连续函数的性质,函数值在区间内必有变号点,即存在至少一个$c in (a,
总结词
一元二次方程的解即为 零点。
详细描述
一元二次方程是形如 ax^2 + bx + c = 0 的 方程,其中 a ≠ 0。解 这个方程,可以得到 x = [-b ± sqrt(b^2 4ac)] / (2a),这个解就 是零点。
举例
对于方程 x^2 - 2x + 1 = 0,解得 x = 1,所以 零点为 1。
切线法
在函数图像上取一点,作切线,切线与x轴交点即为零点。
数值法求解零点
二分法
对于连续函数在区间[a,b]上,如果函数值在a、b两端异号,则在此区间内至少存在一个零点,通过不 断缩小区间范围,逼近零点。
迭代法
基于一定的初值,通过迭代公式逐步逼近零点,例如变步长迭代法。
06
零点定理及其应用
零点定理的证明
零点定理在数学分析中的应用
函数的单调性
函数的极值
利用零点定理可以判断函数的单调性。例如, 对于函数$f(x) = x^3 - x$,可以证明其在 区间$(-infty, +infty)$上单调递增。
利用零点定理可以判断函数的极值点。例如, 对于函数$f(x) = x^4 - x^2$,可以证明其 在区间$(-infty, +infty)$上有极小值点。

一轮复习课件--函数与方程-零点

一轮复习课件--函数与方程-零点

海丰县实验中 学
对于在区间[a,b]上连续不断且 f(a)·f(b)<0 的 函数y=f(x),通过不断地把函数f(x)的零点所在 的区间 一分为二 ,使区间的两个端点逐步逼
近 零点 ,进而得到零点近似值的方法叫做
二分法.
海丰县实验中 学
1.函数的零点是函数y=f(x)的图象与x轴的交点 吗?
【提示】 不是.函数的零点是一个实数,是函 数y=f(x)的图象与x轴交点的横坐标.
(3)零点存在的判定方法:如果函数y=f(x)在区间[a,b]上的图象是
连续不断的一条曲线,并且有f(a)·f(b)<0
,那么函数y=f(x)在区
间 (a,b) 内有零点,即存在x0∈(a,b),使得 f(x0)=0 .
海丰县实验中 学
2.二次函数y=ax2+bx+c(a>0)的图象与零点0,∴m>2或m<-2.
【答案】 C
海丰县实验中
3.(2011·课标全国卷)在下列区间中,函数 f(x)=学ex+4x-3 的零
点所在的区间为( )
A.(-14,0)
B.(0,14)
C.(14,12)
D.(12,34)
【解析】 显然 f(x)=ex+4x-3 的图象连续不间断,又 f(12)= e
海丰县实验中
2. 若函数 y=ln x 与 y=2x的图象的交点为(x0,y学0),则 x0 所在的
区间为( )
A.(1,2) B.(2,3) C.(e,3) D.(e,+∞) 【解析】 令 f(x)=ln x-2x(x>0), 因为 f(2)=ln 2-1<0,f(3)=ln 3-23>0, ∴f(2)·f(3)<0, 又函数 f(x)在(0,+∞)上是增函数, ∴函数 y=f(x)的唯一零点 x0∈(2,3).

数学中的函数零点与方程求解技巧

数学中的函数零点与方程求解技巧

数学中的函数零点与方程求解技巧在数学中,函数零点以及方程的求解是重要的概念和技巧。

它们在代数、几何和应用数学中都扮演着关键的角色。

本文将探讨函数零点和方程求解的相关概念以及解题技巧。

一、函数零点函数零点指的是函数取零值的点,即函数的输入使函数的输出等于零。

函数零点也叫做函数的根,表示为f(x) = 0。

要找到函数的零点,我们需要使用一些特定的方法和技巧。

1. 解析法解析法是找到函数零点的一种常用方法。

对于一些特殊的函数,我们可以通过运用代数技巧来求解零点。

例如,对于一次函数f(x) = ax + b,其零点可以通过令ax + b = 0来求解,解得x = -b/a。

对于二次函数f(x) = ax^2 + bx + c,我们可以使用求根公式来求解零点,即x = (-b±√(b^2-4ac))/(2a)。

2. 图像法图像法是另一个找到函数零点的常用方法。

我们可以绘制函数的图像,在坐标系中观察函数与x轴的交点,那些交点就是函数的零点。

这种方法在直观上帮助我们理解函数的性质,并且可以在一定程度上验证我们通过解析法得到的结果。

二、方程的求解技巧方程的求解是数学中的重要课题之一,也是解决实际问题的关键。

不同类型的方程有不同的求解技巧,下面我们将介绍一些常见的方程求解技巧。

1. 一元一次方程的求解一元一次方程指的是只有一个未知数,并且未知数的最高次数为一的方程。

例如,2x + 3 = 5就是一个一元一次方程。

解这种方程的常用方法是移项和消项。

我们可以通过移动所有含有未知数的项到一边,并消除方程中的常数项,最终得到未知数的值。

2. 一元二次方程的求解一元二次方程是一个最高次数为二的方程,一般形式为ax^2 + bx +c = 0。

解一元二次方程的常用方法是使用求根公式或配方法。

我们可以使用求根公式来直接求解方程的根。

如果使用配方法,我们要将方程变形为完全平方的形式,然后求解方程。

3. 线性方程组的求解线性方程组是多个含有多个未知数的方程组成的系统。

函数与方程中的根与零点的概念与计算

函数与方程中的根与零点的概念与计算

函数与方程中的根与零点的概念与计算根据数学的定义,函数是一种将一个集合的元素映射到另一个集合的规则。

方程则是描述了两个表达式之间相等的关系。

在函数和方程的应用中,我们经常会遇到根与零点的概念。

本文将详细介绍根与零点的含义以及它们在函数与方程中的计算方法。

一、根与零点的概念1. 根的定义在函数中,根是指使得函数的值等于零的输入值。

简而言之,根是函数的解,它使得函数的取值为零。

2. 零点的定义在方程中,零点是指使得方程两边相等的解。

换句话说,零点是使得方程取值为零的横坐标值。

在函数与方程中,根与零点可以说是同义词,它们描述了使得函数值或方程两边等式成立的输入值。

二、根与零点的计算方法1. 函数中的根与零点计算对于函数而言,计算根或零点的方法取决于函数的形式。

下面以一次函数和二次函数为例,介绍它们的计算方法。

(1)一次函数的根与零点计算一次函数的一般形式为 f(x) = ax + b,其中 a 和 b 是已知常数。

要计算一次函数的根,令 f(x) = 0,然后解方程 ax + b = 0,可以得到 x 的值。

这个 x 就是一次函数的根或零点。

(2)二次函数的根与零点计算二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b 和 c 是已知常数。

要计算二次函数的根,可以使用求根公式或配方法。

- 求根公式:对于二次函数 f(x) = ax^2 + bx + c,根的计算公式为 x= (-b ± √(b^2 - 4ac)) / (2a)。

将方程 f(x) = 0 代入公式中,可以得到二次函数的根。

- 配方法:对于二次函数 f(x) = ax^2 + bx + c,可以通过配方法将其转化为完全平方的形式。

然后再通过提取平方根的方式得到根。

2. 方程中的根与零点计算方程中的根与零点计算依然是解方程。

根据方程的形式,选择适当的方法进行计算。

例如,对于线性方程 ax + b = 0,可以直接通过移项和除以系数 a 得到根。

函数与方程之零点定理应用

函数与方程之零点定理应用
易错点:对零点的概念不清楚,易错写成 ( 0,0 ), 1,0). (-
.
解析: 因为函数f ( x )=ax-b(b ≠ 0)的零点是3, 将它代入函数g ( x )=bx 2+3ax中,
则此零点所在区间是 ( C. 2 ) (1, A. 4 ) ( 3,
2.已知函数f ( x )=x3-x-1仅有一个正零点, B. ) ( 2,3 D. ) ( 0,1
因为 |1.375-1.3125 | =0.0625 < 0.1,所以函数的 故函数零点的近似值为1.3125.
零点落在区间长度小于0.1的区间[1.3125,1.375]内,
评析:1.求函数零点的近似值的关键是判断二 分法求值过程中,区间长度是否小于精确度ξ, 当区间长度小于精确度ξ时,运算结束,而此 时取的中点值即为所求,当然也可取区间端点 的另一个值. 2.“精确度”与“精确到”是两个不同的概念, 精确度最后的结果不能四舍五入,而精确到只 需区间两个端点的函数值满足条件,即取近似 值之后相同,则此时四舍五入的值即为零点的 近似解.
f(1.5)=0.625 f(1.4375)=0.162
f(1.40625)=-0.054
解析: 由于f (1.4375 )=0.162 > 0, f (1.40625 )=-0.054 < 0, 且 |1.40625-1.4375 | =0.03125 < 0.1, 所以由二分法可知 其根在区间(1.40625,1.4375 ) 上,故选C.
1、结合二次函数的图象,了解函数的零点与方程 的根的联系,判断一元二次方程根的存在性及根 的个数. 2、结合具体函数的图象,能用二分法求近似解.
1.若函数f ( x )=ax-b(b ≠ 0)有一个零点3, 那么函数g ( x )=bx 2+3ax的零点是

函数与方程思想解决一元三次函数零点问题

函数与方程思想解决一元三次函数零点问题

函数与方程思想解决一元三次函数零点问题方程的根与函数的零点将方程与函数紧密联系在一起,他告诉我们求方程的根可以通过求函数的零点产生,当然,求函数的零点也可以通过求方程的根产生。

二分法是通过函数的零点求方程的近似解的一种方法,在用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”。

函数零点的概念是在分析了众多图像的基础上,由图像与x 轴的位置关系得到的一个形象的概念,准确认识零点的概念要注意以下几点:(1)函数的零点是实数,是函数的图像与x轴交点的横坐标,而不是一个点;(2)函数y=f(x)的零点也是方程f(x)=0的实数解;(3)并非所有的函数都有零点。

判断函数零点个数的方法:(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

令f(x)=0直接求出方程的解,有几个解函数就有几个零点,这里涉及到解方程的问题数零点就是函数的图像与x轴的交点的横坐标就是对应方程的根,函数有几个零点对应方程就有几个根。

对于二次函数的零点非常有研究的价值:它涉及判别式、韦达定理、二次函数的图像等重要知识点。

研究二次函数的零点有利于培养学生综合运用数形结合思想、函数与方程思想、分类讨论思想等多种数学思想方法(2)如果函数y=f(x)在[a,b]上图象是连续的,并且在闭区间的两个端点上的函数值互异即f(a)f(b)0,且是单调函数,那么,这个函数在(a,b)内必有惟一的一个零点。

利用零点存在定理结合函数图像与性质(如单调性、奇偶性)确定函数零点的个数;(3)通过函数图像与x轴的交点个数,或将其转化为两函数的图像交点的个数来确定函数零点的个数,体现数形结合思想的应用。

数形结合是一个重要的数学思想,就是使抽象思维和形象思维相互作用,实现数量关系与图形性质的相互转化,将抽象的数量关系和直观的图形结合起来研究数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1-10 函数的应用---根与零点及二分法
【课前预习】阅读教材P86-90完成下面填空
1.方程()0=x f 有实根 ⇔ ⇔
7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l
D .不确定
8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( ) A .一定没有零点 B .至少有一个零点C .只有一个零点 D .零点情况不确定 10.如果二次函数)3(2
+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞
11.方程22lg x x -=的实数根的个数是 ( ) A .1 B .2
C .3
D .无数个
12.二次函数()f x =ax 2
+bx+c 中,ac<0则函数的零点个数是
13.若()f x 的图像关于y 轴对称,且()f x =0有三个零点,则这三个零点之和等于
14.若()f x =⎩⎨⎧--≤≥--2
1,11
2,12 x x x x x 或则函数g(x)= ()f x -x 的零点为
15.已知()f x 是R 上最小正周期为2的周期函数,且当0≤x<2时,()f x =x 3
-x,则函数y=()f x 的图像在区间[0,6]上与x 轴的交点的个数为
16.已知函数()f x =4x
+m.2x
+1仅有一个零点,求m 的取值范围,并求出零点
17.若函数()f x =(m-2)x 2
+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则的取值范围是( ) A .(-21,41) B.(- 41,21) C.( 41,21) D.[ 41,2
1] 18.数()f x =ax+b(a ≠0)有一个零点是2,那么函数g(x)=bx 2
-ax 的零点是 19.数()f x =x 3
-3x+a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B. [-2,2] C.(-∞,1) D. (1,+∞) 20.=cosx 在(-∞,+∞)内 ( )
A .没有根 B.有且仅有一个根 C. 有且仅有两个根 D. 有无穷多个根 21.()ln 2f x x x =-+的零点个数为 。

[学后反思]____________________________________________________。

相关文档
最新文档