第3章 刚体的定轴转动 习题答案PPT课件

合集下载

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 3­10 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]

大学物理第三章刚体力学基础习题答案培训课件

大学物理第三章刚体力学基础习题答案培训课件

1 )
t2
下次上课内容:
§5-1 简谐运动 §5-2 旋转矢量表示法 §5-3 单摆和复摆 §5-4 振动的能量
角动量定理
t2 Mdt
t1
J2
J1
角动量守恒 M 0, J 恒矢量
力的功
W
r F
drr
力矩的功 W Md
动 能 1 mv2
2
动能定理
W
1 2
mv22
1 2
mv12
转动动能 1 J 2
2
转动动能定理W
1 2
J22
1 2
J12
习 题 课 (三)
3-1 一轻绳绕在有水平轴的定滑轮上,绳下端挂一
的角加速度 =
。从开始制动到 =1/3 0所经过
的时间t = 。
M k2 J
k 2 k02
J 9J
k2 J d
dt
t k dt
0J
1 3
0
d
0
2
t 2J
k0
3-6 一长为L的轻质细杆,两端分别固定有质量为
m 和2m 的小球,此系统在铅直平面内可绕过中心点
O且与杆垂直的水平固定轴转动。开始时杆与水平成
方向上,正对着杆的一端以相同的速率v相向运动,
如图所示。当两小球同时与杆的两端发生完全非弹性
碰撞后,就与杆粘在一起转动,则这一系统碰撞后的
转动角速度为
m
(A) 2v
4v (B)
v
3L
✓(C)
6v 7L
5L (D) 8v
9L
(E) 12v v m
o
7L
2mvL 1 mL2 2mL2
3
6v
7L

第3章刚体的定轴转动习题解答..

第3章刚体的定轴转动习题解答..

习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200 转匀加快地增添到每分钟 2700 转,求:( 1)角加快度;( 2)在此时间内,曲轴转了多少转?解:(1)40 ( / )1rad s 2 90 (rad / s)2t 1 901240 25 (rad / s 2 ) 13 .1( rad / s 2 )6匀变速转动2 2(2)2 12 780 (rad ) n3 9 0(圈)23-2 一飞轮的转动惯量为J ,在 t 0 时角速度为0 ,今后飞轮经历制动过程。

阻力矩M 的大小与角速度的平方成正比,比率系数K 0 。

求:( 1)当0 3时 ,飞轮的角加快度;( 2)从开始制动到0 3 所需要的时间。

解:(1)依题意M JK 2 K 2 K 02 (rad / s2 )J 9Jd K 2 t 0 3 Jd 2J( 2)由dt J 得dt0 K2tK 03-3 如下图,发电机的轮 A 由蒸汽机的轮 B 经过皮带带动。

两轮半径 R A=30cm, R B75cm。

当蒸汽机开动后,其角加快度B0.8πrad/s2,设轮与皮带之间没有滑动。

求( 1 )经过多少秒后发电机的转速达到n A=600rev/min?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加快度。

解:(1) AA t BB t因为轮和皮带之间没有滑动,所以A 、B 两轮边沿的线速度同样,即ARA BRB2600 (rad / s) 联立得 tARA10(s)又 A20BRB60(2) A2 300 10 (rad / s) A AA( rad / s 2 )60t63-4 一个半径为R1.0m 的圆盘,能够绕过其盘心且垂直于盘面的转轴转动。

一根轻绳绕在圆盘的边沿, 其自由端悬挂一物体。

若该物体从静止开始匀加快降落,在t = 2.0s 内降落的距离 h = 0.4m 。

求物体开始降落后第 3 秒末,盘边沿上任一点的切向加快度与法向加快度。

胡盘新主编《普通物理学简明教程》-03刚体的定轴转动ppt课件

胡盘新主编《普通物理学简明教程》-03刚体的定轴转动ppt课件

(2) 开始上升后,5 秒末滑轮的角速度

(3) 在这5 秒内滑轮转过的圈数。

(4) 开始上升后,1 秒末滑轮边缘上
一点的加速度(不打滑) 。

r致

解: (1) 轮缘上一点的切向加速度与
物体的加速度相等
a
r
0.8rads2
a
海南大学
第第三三章章 刚刚体体的的定转轴动转动
§3-1 刚体的平动、转动和定轴转动
+ ➢ 刚体的一般运动 质心的平动 绕质心的转动
儋 海
大宝
纳州
道岛
百 立 川
致 生



华海南热南带大农业学大学
第第三三章章 刚刚体体的的定转轴动转动
三、刚体的定轴转动
§3-1 刚体的平动、转动和定轴转动
•定轴转动:
儋 海
刚体上各点都绕同一转轴作不同半径的圆 大宝
纳州 周运动,且在相同时间内转过相同的角度。 道岛
第第三三章章 刚刚体体的的定转轴动转动
§3-1 刚体的平动、转动和定轴转动
§3-1 转动动能 转动惯量
一、刚体
儋 刚体:在外力作用下,形状和大小都不发生变 海 化的物体 . (任意两质点间距离保持不变的特殊质点
大宝
纳州 组)
道岛
百 立
刚体最简单的运动形式:平动、转动 .

致 生



工s03-平动
§3-1 刚体的平动、转动和定轴转动
➢ 转动:刚体中所有的点都绕同一直线做圆周运
动. 转动又分定轴转动和非定轴转动 .
儋 海
大宝
纳州
道岛
百 立 川
致 生

高二物理竞赛第3章第3讲定轴转动刚体的角动量转动惯量PPT(课件)

高二物理竞赛第3章第3讲定轴转动刚体的角动量转动惯量PPT(课件)

i
i
转动惯量
IZ mi Ri2 i
LZ ( mi Ri2 ) IZ i
转动惯量的计算: I mi Ri2 m R2dm i
平行轴定理
Iz Izc md 2
正交轴定理
Iz Ix Iy
l
1 12
ml
2
细圆棒 轴通过中心
l
1 3
ml
2
细圆棒 轴通过一端
I 1 mR2 2
圆盘 轴垂直盘面通过中心
2 23
故细棒摆下角时的角速度为: 3g sin
重力的功 : A E mg l sin
l
p
பைடு நூலகம்
2
法二: 细棒摆动(即转
动)时,重力对0轴的
o
力矩为: 求:物体的加速度和定滑轮的角加速度,以及两边绳子中的张力。
一质量为m,速度为v的子弹射入距支点为a的棒内。 刚体对定轴的角动量定理
l 若它与桌面间的滑动摩擦系数为μ,在t=0时,使圆柱体获得一个绕轴旋转的角速度ω。
一、刚体定轴转动的角动量定理
能包括所有的动能和势能.
对质点系而言角动量定理为: 由系统角动量守恒(设向外为正方向)
注意:该定律不但适用于刚体,同样也适用于绕定轴转动的任意物体系统。 处理刚体定轴转动问题与圆周运动角量描述类似 例 计算钟摆的转动惯量。 (1)分别隔离 和
dL dt
M外
2 质点系角动量守恒定律
角加速度:
lim
t 0
t
d
dt
处理刚体定轴转动问题与圆周运动角量描述类似
角量相同(角位移、角速度、角加速度)
线量不同
vi Ri ri
vi Ri
ai ai ainn

大学物理上册《刚体定轴转动》PPT课件

刚体性质
刚体是一个理想化的物理模型,实际物体在受到力的作用时, 都或多或少地会变形,但如果变形很小,对研究问题的影响可 以忽略不计时,就可以把这个物体看成刚体。
定轴转动描述
定轴转动
刚体上所有质点都绕同一直线作圆周运动,这种运 动叫做刚体的定轴转动。这条直线叫做刚体的转轴。
转动的快慢
用角速度ω来描述刚体转动的快慢,单位时间内转 过的角度θ越大,角速度ω就越大。
转动能定理
刚体定轴转动时,合外力矩对刚体所做的功等于刚体转动动能的增 量。
转动动能的计算
转动动能Ek等于刚体的转动惯量I与角速度ω平方的一半的乘积,即 Ek=1/2Iω²。
应用举例
通过计算合外力矩对刚体所做的功,可以求解刚体在某个过程中的角 速度、角加速度等物理量。
动力学普遍定理在转动中应用
动力学普遍定理
VS
误差分析
分析实验过程中可能产生的误差来源,如 测量误差、仪器误差等,并提出减小误差 的方法。
实验结果讨论和改进建议
实验结果讨论
根据实验数据和分析结果,讨论刚体定轴转动的基本规律以及实验过程中存在的问题和不足之处。
改进建议
提出改进实验方法和提高实验精度的建议,如优化实验器材、改进测量方法等。
05
动能定理揭示了力对刚体所做 的功与刚体动能变化之间的关 系;机械能守恒定律则指出在 只有重力或弹力做功的情况下, 刚体的机械能保持不变。
常见题型解题技巧分享
选择题答题技巧
注意审清题意,明确题目要求;对于概念性选择题,要准确理解相关概念;对于计算性选择题,要善于运用 物理规律和公式进行推理和计算。
填空题答题技巧
未来发展趋势预测
高效能源利用
随着能源问题的日益突出,未来旋转机构将更加注重高效能 源利用,如采用新型材料、优化结构等降低能耗。

第3章刚体的定轴转动


绕通过质心 由合外力矩决定(应用
轴的转动
转动定律)
第3章 刚体的定轴转动
例3 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
量为 的圆mC柱形滑轮 C,并系在另一质量为 的物mB
体 B 上. 滑轮与绳索间没有滑动, 且滑轮与轴承间的摩
擦力可略去不计. 问:(1) 两物体的线加速度为多少?
dt
M
dL
作用于质点的合力对参考点 O 的力矩 ,等于质点对该点 O 的角
dt 动量随时间的变化率.
第3章 刚体的定轴转动
M
dL
dt
t2 t1
Mdt
L2
L1
冲量矩
t2
Mdt
t1
质点的角动量定理:对同一参考点 O ,质点所受
的冲量矩等于质点角动量的增量.
3 质点的角动量守恒定律
M 0, L 恒矢量
的大小与角速度的平方成正比,比例系数为 k
( k 为大于零的常数).当 1 30 时,飞轮的角
加速度为
,所经历的时间为
M k2
M J
k 2
J
k
2 0
9J
第3章 刚体的定轴转动
M k2
M J J d
k 2 J d
dt
dt
t dt J
1
3
0
1
d
0
k 0 2
2J t
M mr 2
2)刚体
质量元受外力 Fej,内力 Fij
Mej Mij mjrj2
外力矩
内力矩
第3章 刚体的定轴转动
z
M
F
F
O

普通物理学第三章PPT课件


2021
35
2021
36
2021
37
2021
38
3.2.3 刚体定轴转动的角动量守恒定律
1. 角动量( 动量矩 )
对于定点转动而言:
L
r
P
r
mv
在国际单位制(SI)中,角动量
的单位为
r
o
kg m2 s1 r sin
P mv
m
2021
39
对于绕固定轴oz的转动的质元m而i 言:
Li ri mivi
miri2k
对于绕固定轴oz 转动的整个刚体而言:
z
L N miri2 J
i
角动量的方向沿轴的正向或负向,所以可用代数量来描述.
2021
40
2021
41
2021
42
2021
43
2021
44பைடு நூலகம்
2021
45
2021
46
2021
47
2021
48
2021
49
2021
50
2021
51
2021
52
2021
53
2021
54
2021
55
2021
56
2021
57
1、M J与 地F=位ma相当,α与a对应,力矩是使 刚体转动状态发生改变而产生角加速度的原因。
2、力矩是矢量,方向沿转轴,对定轴转动只有 两个方向,所以用正负号表示方向。
3、m反映质点的平动惯性,J是对刚体转动惯性 大小的量度,其大小反映了改变刚体转动状态 的难易程度。
2021
33
2021
34

大学物理课课件第3章_刚体的定轴转动

G2 G1
(m1-m2)g R(m1+ m2+ m 2) (m1-m2)g R(m1+ m2+ m 2)
a
gt 2
(rad)
两匀直细杆
两者瞬时角加速度之比 转动定律例题五
θ
θ
根据
1 2 1 2
θ θ
1 3 1 3
地面 从等倾角 处静止释放
短杆的角加速度大 且与匀质直杆的质量无关
第3节 机械能守恒定律
用两个对 转的顶浆
(支奴干 CH47)
A、B两轮共轴 A以ωΑ作惯性转动
守恒例题一
两轮啮合后 一起作惯性转动的角速度
ωΑΒ
以A、B为系统,忽略轴摩擦,脱离驱动力矩后,系 统受合外力矩为零,角动量守恒。
初态角动量 末态角动量

守恒例题二
木棒 弹
以弹、棒为系统 击入阶段 子弹击入木棒瞬间,系统在
铅直位置,受合外力矩为零,角动量守恒。 该瞬间之始 该瞬间之末 棒 弹 棒
对 质点运动和刚体转动定律
m 1 m 2 和 m 分别应用

β
R
T2 T2
m
T1 T1 m1
m1 g – T1 = m1a T2 – m2 g = m2a ( T1 – T2 ) R = Iβ
得 故
a = Rβ
1 I = 2 mR2 常量
β
(m1-m2)g = R(m1+ m2+ m 2) 由
m2
a
定轴转动物理量
1. 角位置
描述刚体(上某点)的位置 刚体定轴转动 的运动方程 刚体
刚体中任 一点
(t+△t) (t) 参考 方向
2. 角位移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由转动惯量的定义容易知,n 1
由角动量守恒定理容易求出,收回双臂后的角速度 n0
初始角动能
Ek0 12J
2 0
收回双臂后的角动能 E k1 2J . 21 2 J n n02n 2J90 2
解: 由角动能定理得:
m ,l
m
O
E k1 2J 2mlg sin m1 2 g lsin
其中 J1m2l m2l 3
代入数据解得: 3
2
g s in
l
Ek
3m 2
gslin
.
4
3-5. 如图所示,一半径为R、质量为M的均匀圆盘水平放置,
可绕通过盘心的铅直轴作定轴转动,圆=50s后停止。试求:(1) 角加速度和从制动
开始到静止这段时间飞轮转过的转数N;(2) 制动开始后
t=25s时飞轮的角速度;(3) t=25s时飞轮边缘上一点的速度
和加速度。
(1) 解:初始角速度 0 15 r/m 00 i5n 0 ra /sd
0 00 50 3 .1r4a s 2 d
t
50
从制动开始到静止,
0 t 1 2t2 50 5 0 1 2 52 0 1250
N21225062. 5
6
3-11. 一飞轮半径 r=1m,以转速 n=1500 r/min 转动,受制 动均匀减速,经 t=50s后停止。试求:(1) 角加速度和从制动 开始到静止这段时间飞轮转过的转数N;(2) 制动开始后 t=25s时飞轮的角速度;(3) t=25s时飞轮边缘上一点的速度 和加速度。
第3章 刚体的定轴转动 习题答案
3-1. 某刚体绕定轴作匀变速转动,对刚体上距转轴 r处的任
一质元,
其法向加速度 an 2r 随时间变化;
切向加速度
a
dvr d
dt dt
恒定不变。
.
2
3-2. 一飞轮以300rad/min的角速度转动,转动惯量为 5kg·m²,现施加一恒定的制动力矩,使飞轮在2s内停止转动, 则该力矩的大小为?
MR2。当圆盘以角速度
0
转动时,有一质量为m的
橡皮泥铅直落在圆盘上,并粘在据转轴
1 2
R 处。那么橡皮泥
和盘的共同角速度为?
解: 由角动量守恒得:
0
m
1 2 M 2 0 R 1 2 M 2 m 1 2 R R 2
R R2
代入数据解得:
M
M
1 2
m0 .
5
3-11. 一飞轮半径 r=1m,以转速 n=1500 r/min 转动,受制
点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转动 惯量与棒对质心的转动惯量 之J O间的关系。(平行轴定理)
解:设该棒的质量为m,则其
线密度为 m l
O d O'
JO '01 2ldr2
d r1 2ldr2 0
dr
l
代 入
31 2l d331 2l d31 1m 22 m l 2 d
解: ω=300rad/min=5rad/s 根据角动量定理,
MtJ
代入数据解得:M1.2 5Nm
.
3
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在
一起。当该系统从水平位置由静止转过 角时,系统的角速
度、动能为?此过程中力矩所做的功?
JO 112m2l
JO' JOm2d
.
8
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n ,
(2) 解: 0 t 5 0 2 2 5 5 7 .5 r 8 a s 1
(3) 解:vr 7.5 8 1 7.5 8 m s 1
a n2 r 7.5 8 21 61 .2m 6 s 2 2
ar3.1m 4s2
.
7
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一
相关文档
最新文档