05刚体的定轴转动习题解答

合集下载

第五章刚体定轴转动典型题型

第五章刚体定轴转动典型题型

• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。


质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt


钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩

质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。


• 5)角动量守恒定律和机械能守恒定律的综 合应用

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

第05章 角动量 角动量守恒定律(参考答案)

第05章 角动量 角动量守恒定律(参考答案)

m 1v 1 m 2v 2
v1 v2
9
爬与不爬,两小孩同时到达滑轮! 5.19 由一根长为 l,质量为 M 的静止的细长棒,可绕其一 端在竖直面内转动。若以质量为 m,速率 v0 的子弹沿与棒 垂直的方向射向棒的另一端。 (1)若子弹穿棒而过,速度为 v,求棒的旋转角速度 (2)若子弹嵌入棒中,求棒的最大旋转角 答案: (1)以 m , M 为系统,以 O 为参考点。
O
M
l
v m
碰撞时刻,角动量守恒
1 mlv0 J mlv Ml 2 mlv 3
解得:

3m(v0 v) Ml
(2)碰撞时刻,角动量守恒
得:
1 mlv0 J ml 2 M m l 2 3 3mv0 M 3m l
1 2 1 2 1 J mv Mg l 1 cos mgl 1 cos 2 2 2
(3)设碰后角速度为 ω’
' L ' 2mv 1
a a ' a mv 2 3 2 6

2m 1 a a 2 a ' a m '( )2 ma 2 ' 3 3 2 6 3
1 2 L' L ma2 ma 2 ' 2 3 根据角动量守恒,有
解得
'
3 4
5.17 质量为 m 的小球, 以速度 v0 在水平冰面 上滑动,撞在与小球运动方向垂直的一根细木棍 的一端,并粘附在木棍上。设木棍的质量为 M , 长度为 l。试求: (1 )忽略冰的摩擦,定量地描述 小球附在木棍上后,系统的运动情况。 (2 )刚刚 发生碰撞之后,木棍上有一点 p 是瞬时静止的, 问该点在何处?

5 刚体转动定律

5 刚体转动定律

F
16
三.转动惯量J 转动惯量J •分立J = ∑∆m r ri质点到转轴的垂直距离 分立 • n→∞ J = →∞
n i =1 2 i i
r dm 质元 dm = σds 面分布 ∫ ρdv 体分布 J的单位 •m2 的单位:kg 的单位 转动中的惯性大小 物理意义:表示刚体在转动中的惯性大小. J物理意义:表示刚体在转动中的惯性大小.
•求力矩 乘 ri Fri sinϕi + firi sinθi = ∆miri2α 求力矩,乘 求力矩 i •求力 求力 矩和: 矩和:
∑ Fr sinϕ + ∑ f r sinθ = ∑ ∆mr α
i =1 i i i i =1 i i i i =1 2 i i
10
n
n
n
∑ Fr sinϕ + ∑ f r sinθ = ∑ ∆mr α
o
y
二、匀变速转动方程
θ = θ0 + ωt ω = ω0 + αt
θ − θ0 = ω0t + αt
1 2
2 2 0
2
ω − ω = 2α (θ − θ0)
4
三、角量与线量关系
z
o' ⋅ R
r r r r r r r = xi + yj + zk ω = ωk
r r r v = ω× r
v = Rω at = Rα
8
M = Fd = Fr sinθ r r r M = r×F r
O. dr
F θ
空间力需分解
刚体内作用力和反 刚体内作用力和反作用力 抵消. 的力矩互相抵消 的力矩互相抵消.
v F
z
v k

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。

解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。

解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。

解:转动惯性大小,刚体的形状、质量分布及转轴的位置。

4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。

解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。

解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。

刚体的定轴转动习题

刚体的定轴转动习题
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
刚体的定轴转动习
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 刚体定轴转动的基本概念 • 刚体定轴转动的力学分析 • 刚体定轴转动的运动分析 • 刚体定轴转动的习题解析 • 刚体定轴转动的实际应用案例
PART 03
刚体定轴转动的运动分析
刚体的角速度与角加速度
角速度
描述刚体转动快慢的物理量,用ω表 示。单位是弧度/秒(rad/s)。
角加速度
描述刚体转动角速度变化快慢的物理 量,用α表示。单
转动轨迹
刚体转动的路径是一个圆或椭圆,其形 状取决于刚体的质量和转动轴的位置。
PART 04
刚体定轴转动的习题解析
简单习题解析
题目
一个质量为m,半径为R的 圆盘,以边缘某点为轴, 以角速度ω做定轴转动, 求圆盘的动量。
解析
根据动量的定义,圆盘的 动量P=mv=mrω,其中r 是质点到转动轴的距离, m是质量,v是线速度,ω 是角速度。
题目
一质量为m的杆,长度为l, 一端固定,绕另一端点做 定轴转动,求杆的转动惯 量。
航空航天器姿态调整中的应用
01
02
03
卫星轨道调整
卫星在轨道调整过程中, 通过刚体定轴转动实现姿 态的调整,从而改变推进 力的方向。
飞机飞行控制
飞机飞行过程中,通过刚 体定轴转动实现舵面的操 纵,从而调整飞行姿态和 方向。
火箭发射
火箭发射过程中,通过刚 体定轴转动实现发动机的 转向和稳定。

第5章 刚体的定轴转动 习题解答

第5章 刚体的定轴转动 习题解答

对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得

以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动

2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度

(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2

1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1

t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( )A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0 解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小 解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定 解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ 5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

简要提示:角动量守恒6. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( )A. 自转周期增加,转动动能增加;B. 自转周期减小,转动动能减小;C. 自转周期减小,转动动能增加;D. 自转周期增加,转动动能减小。

解:答案是C 。

简要提示: 由角动量守恒,ωω2025252Mr MR =,得转动角频率增大,所以转动周期减小。

转动动能为22k 2020k 5221,5221ωωMr E MR E ==可得E k > E k0。

7. 绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为乙猴的两倍,则 ( )A. 两猴同时爬到顶点B. 甲猴先到达顶点C. 乙猴先到达顶点D. 无法确定谁先谁后到达顶点解:答案是B 。

简要提示:考虑两个猴子和滑轮组成的系统,滑轮所受的外力(重力和支撑力)均通过滑轮质心,由于甲乙两猴的重量(质量)相等,因此在开始时系统对于通过滑轮质心并与轮面垂直的转轴的合外力矩为零,而在两猴攀绳过程中,系统受到的合外力矩始终保持为零,因此系统的角动量守恒。

设滑轮关于上述转轴的转动角速度为ω ,乙猴相对于绳子的向上速率为v 0,绳子向甲这一边运动的速率为v ,则甲相对绳子向上运动的速率为2v 0,因此甲和乙相对地面向上运动的速率分别为(2v 0 - v )和(v 0 + v )。

根据系统的角动量守恒定律,有0)2()(00=--++R m R m J v v v v ω 式中221mR J =,ω = v / R ,这样可解出052v v =。

故甲猴和乙猴相对于地面的速率分别为2 v 0 - v =8 v 0/5和v 0 + v =7 v 0/5,故甲猴先到达顶点。

二 填空题1. 半径为30cm 的飞轮,从静止开始以0.5rad ⋅ s –2的角加速度匀加速转动,则飞轮边缘上一点在转过2400时的切向加速度为 ;法向加速度为 。

解:答案是 0.15 m ⋅ s –2; 0.4π m ⋅ s –2。

简要提示:1τs m 15.0-⋅==αr a 。

由221t αθ=,t αω=,得:22n s m 4.0-⋅==πωr a2. 一质量为0.5 k g 、半径为0.4 m 的薄圆盘,以每分钟1500转的角速度绕过盘心且垂直盘面的轴的转动,今在盘缘施以0.98N 的切向力直至盘静止,则所需时间为 s 。

解:答案是 16 s 。

简要提示:由定轴转动定律,α221MR FR =,t αω=, 得: s 1698.024.05.0502=⨯⨯⨯==πωF mr t3 . 一长为l ,质量不计的细杆,两端附着小球m 1和m 2(m 1>m 2),细杆可绕通过杆中心并垂直杆的水平轴转动,先将杆置于水平然后放开,则刚开始转动的角加速度应为 。

解:答案是 l m m g m m )()(22121+-。

m 1 l m 2填空题3图简要提示:由定轴转动定律,α4)(2)(22121l m m l g m g m +=- 得: lm m g m m )()(22121+-=α 4. 如图所示,质量为M ,半径为r 的绕有细线的圆柱可绕固定水平对称轴无摩擦转动,若质量为m 的物体缚在线索的一端并在重力作用下,由静止开始向下运动,当m 下降h 的距离时,m 的动能与M 的动能之比为 。

解:答案是 Mm 2。

简要提示:由r ω=v ,22k 2k 2121,21ωMr E m E M m ==v , 得:M m E E M m 2k k =5. 如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上静止,杆身与竖直方向成θ 角,则A 端对墙壁的压力为 。

解:答案是 θtan 21mg 。

简要提示: 受力分析如图所示,由刚体平衡条件得: θθsin 2cos 1l mg l N = 所以: θtan 211mg N =6. 一位转动惯量为J 0的花样滑冰运动员以角速度ω 0自转,其角动量为 ;转动动能为 。

当其收回手臂使转动惯量减为J 0 /3时,则其角动量变为 ;转动动能变为 。

解:答案是J 0ω 0; 2/200ωJ ; 3ω 0; 2/3200ωJ 简要提示:角动量守恒7.一圆形转台可绕中心轴无摩擦的转动,台上有一辆玩具小汽车相对台面填空题4图 计算题5图计算题5图由静止启动,当其绕轴作顺时针圆周运动时,转台将作 转动;当汽车突然刹车停止转动的过程中,系统的 守恒;而 和 不守恒。

解:答案是逆时针;角动量;动量;机械能三 计算题1. 一细杆绕其上端在竖直平面内摆动,杆与竖直方向的夹角t 2cos4ππθ=。

求:(1) 杆摆动的角速度和角加速度;(2) 距上端0.5m 处的一点的速度和加速度。

解:(1) t t 2sin 8d d 2ππθω-==; t t 2cos 16d d 3ππωα-== (2) t l 2sin 162ππω-==v ;t l a 2cos 323τππα-==;t l a 2sin 128242n ππω==2. 如图所示,半径r A = 0.1 m 的A 轮通过皮带B 与半径rC = 0.25 m 的C 轮连在一起。

已知A 轮以0.5π rad ⋅ s –2的角加速度由静止匀加速转动,皮带不滑动,求:(1) C 轮达到每分钟100转所需的时间;(2) 此时两轮边缘上一点的速度、加速度分别为多少?解:(1) 皮带不滑动,所以C C A A r r ωω=;1s rad 3/102-⋅==ππνωC得: 1s rad 3/25)/(-⋅==πωωC A C A r r ,s 7.16/==αωA t(2) 1s m 6.2-⋅===C A A A r v v ω;2ττs m 16.0-⋅===αA C A r a a ;22n s m 5.68-⋅==A A A r a ω;22n s m 4.27-⋅==C C C r a ω3. 一块匀质长方形薄板ABCD ,边长分别为a 、b ,质量为M ,建立如图所示的直角坐标系,求:(1) 薄板对x 和y 轴的转动惯量;(2) 薄板对边长AB 的转动惯量;(3) 薄板对z 轴的转动惯量。

解:薄板的质量面密度为ρS =M/ab(1) x b x J S x d d 2ρ= 所以:12/d 22/2/2Ma x b x J a a S x ==⎰-ρr A r C AC B计算题2图同理: y a y J S y d d 2ρ=所以: 12/d 22/2/2Mb y b y J b b S y ==⎰-ρ (2) 由平行轴定理: 3/)2(22Mb b M J J y AB =+= (3) 由薄板垂直轴定理: 12/)(22b a M J J J y x z +=+=4. 在质量为M ,半径为R 的均质圆盘上挖出两个半径为r 的圆孔,圆孔中心在半径R 的中点,如图所示,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

解:由补偿法: J MR J '-=22/2由平行轴定理: 22)2(21R m mr J +=' 其中: 222/R Mr r m S ==πρ得: 2222224222/))(2(/2/)(R r R r R M R Mr r R M J +-=--=5. 如图所示,半径为r ,转动惯量为J 的定滑轮A 可绕水平光滑轴o 转动,轮上缠绕有不能伸长的轻绳,绳一端系有质量为m 的物体B ,B 可在倾角为θ 的光滑斜面上滑动,求B 的加速度和绳中张力。

解:物体B 运动的动力学方程 ma T mg =-θsin 定滑轮A 的定轴转动方程 αJ Tr =及 αr a = 联立解得B 的加速度θsin 22g Jmr mr a +=方向沿斜面向下。

绳中张力为 θsin 2mg J mr JT +=R r r 计算题4图计算题3图 计算题5图 B A J , r oθ6. 如图所示,质量为m 1的物体可在倾角为的光滑斜面上滑动。

m 1的一边系有劲度系数为k 的弹簧,另一边系有不可伸长的轻绳,绳绕过转动惯量为J ,半径为r 的小滑轮与质量为m 2(>m 1)的物体相连。

开始时用外力托住m 2使弹簧保持原长,然后撤去外力,求m 2由静止下落h 距离时的速率及m 2下降的最大距离。

解:在m 2由静止下落h 距离的过程中机械能守恒,因此有 θωsin 2121)(211222212gh m kh J m m gh m ++++=v 式中r v =ω,解得m 2由静止下落h 距离时的速率 221212/)sin (2rJ m m kh gh m m ++--=θv 2m 下降到最低时,1m 、2m 速率为零,代入上式,得到m 2下降的最大距离g m m kh )sin (212max θ-=7. 质量为M 长为L 的均匀直杆可绕过端点o 的水平轴转动,一质量为m 的质点以水平速度v 与静止杆的下端发生碰撞,如图所示,若M = 6 m ,求质点与杆分别作完全非弹性碰撞和完全弹性碰撞后杆的角速度大小。

相关文档
最新文档