形式语言与自动机理论FormalLanguagesandAutomataTheory

合集下载

形式语言与自动机理论第二版教学大纲

形式语言与自动机理论第二版教学大纲

形式语言与自动机理论第二版教学大纲课程简介该课程主要介绍形式语言、自动机和计算复杂性理论的基本知识。

通过学习这些理论,学生将能够理解计算机语言和计算的本质,以及计算机处理问题时的优劣势和限制。

本课程将重点介绍自动机的概念、使用和应用。

学习目标•理解形式语言和自动机的基本概念和术语,如有限状态自动机、正则语言、上下文无关文法等。

•学习计算复杂性理论的基本知识,理解P、NP等复杂度概念。

•掌握自动机模型的使用和应用,能够构造和证明特定自动机模型的特性和性质。

课程内容第一章:形式语言与自动机•形式语言和自动机的基本概念和术语•正则语言和正则表达式•上下文无关文法和上下文无关语言•上下文有关文法和上下文有关语言第二章:有限状态自动机•有限状态自动机的定义和运作原理•正则语言和有限状态自动机的等价性•正则表达式到有限状态自动机的转换•有限状态自动机的最小化问题第三章:上下文无关文法和语言•上下文无关文法的定义和特点•文法的基本组成部分:终结符、非终结符和产生式•上下文无关语言和上下文无关文法之间的关系•Chomsky范式和柯尔莫戈洛夫复杂度下限第四章:推导树和语法分析器•推导树的概念和用途•自下而上(LR分析器)和自上而下分析器(LL分析器)的概念和区别•LR、LL分析器的构造算法第五章:上下文有关文法和语言•上下文有关文法的定义和特点•上下文有关语言和上下文有关文法之间的关系•推导和语言识别•非概率上下文有关文法和语言第六章:计算复杂性理论•P、NP问题的定义和区别•NP问题的证明方法:证书、多项式可验证和非确定图灵机•NP完全问题和可还原性的概念•NP问题的P约简和相对问题第七章:图灵机及其变体•图灵机的概念和基本结构•图灵机的相对能力•图灵机的变体:可计数和带计数的图灵机•智能计算和互模拟教学方法本课程将采用讲授、课堂互动、案例分析等多种教学方法,以帮助学生更好地理解理论和应用。

在每章节结束时,还将提供一些简单的练习题和课后作业,以帮助掌握相关的理论和算法。

电子科技大学电子信息科学与技术 培养方案

电子科技大学电子信息科学与技术 培养方案

五、专业特色
本专业的特色在于:紧密结合国防建设需要,充分发挥电子科技大学在电子
信息领域内的学科优势,体现了计算机软、硬件、通信、电子工程和数学等多学 科融合的特点。以科研促教学,用教学助科研,积极引导学生参与科学研究, 为 学生创造实践环境和平台,增强学生工程应用能力,培养学生创新精神。锻炼学 生的获取知识能力、 应用知识能力和创新能力,使之成为能从事计算机科学技术 基础理论、应用基础理论和新技术的研究与开发,从事计算机软、硬件系统的设 计与实现的高级技术人才。
综合课程设计、毕业设计(论文) 。
八、课程体系及最低毕业要求
最低毕业要求 课程类别 Course Type 必修 公共基础课 Basic Courses 课程教学 (含实验) Lecture (including Experiments) 专业课 Courses in Specialty 学科基础课 Basic Courses in Discipline 专业核心课 Core Courses in Specialty 专业选修课 Elective Specialty 实习实训 Practice and Training 创新学分 Creative Credits 合计 Total 2472+42 周 2472+42W 42 周/42W 21 4 181 11.6% 2.2% 100% Courses in 256 16 8.8% 272 17 9.4% 856 53.5 29.6% Required 素 质 教 育 课 Courses of Quality Education 992 63.5 35.1% Minimum Credits for Graduation 学时/时间 Hrs 学分 Crs 学分比例 Percentage

蒋宗礼送形式语言与自动机理论-资料

蒋宗礼送形式语言与自动机理论-资料

2019/10/15
19
补集(Complementary Set)
A是论域U上的一个集合,A补集是由U中的、 不在A中的所有元素组成的集合
AUA
U
U
9/10/15
20
补集(Complementary Set)
如果AB,则 B A
AAU
AA
B A A B U & A B
2019/10/15
8
1.1.2 集合之间的关系
•集合相等
– 如果集合A,B含有的元素完全相同,则称集 合A与集合B相等(Equivalence),记作A=B。
•对任意集合A、B、C: ⑴ A=B iff AB且BA。 ⑵ 如果AB,则|A|≤|B| ⑶ 如果AB,则|A|≤|B|。 ⑷ 如果A是有穷集,且AB,则|B|>|A|。
2019/10/15
12
交(Intersection)
• ⑷ A∩B=A iff A B • ⑸ Φ∩A=Φ • ⑹ |A∩B|≤min{|A|,|B|} • ⑺ A∩(B∪C)=(A∩B)∪(A∩C) • ⑻ A∪(B∩C)=(A∪B)∩(A∪C) • ⑼ A∩(A∪B)=A • ⑽ A∪(A∩B)=A
2019/10/15
30
1.2.3递归定义与归纳证明
• 归纳证明
– 与递归定义相对应
– 归纳证明方法包括三大步
• 基础(Basis):证明最基本元素具有相应性质
• 归纳(Induction):证明如果某些元素具有相 应性质,则根据这些元素用所规定的方法得 到的新元素也具有相应的性质。
• 根据归纳法原理,所有的元素具有相应的性 质
形式语言与自动机理论

《形式语言与自动机》(王柏、杨娟编著)课后习题答案

《形式语言与自动机》(王柏、杨娟编著)课后习题答案

形式语言与自动机课后习题答案第二章4.找出右线性文法,能构成长度为1至5个字符且以字母为首的字符串。

答:G={N,T,P,S}其中N={S,A,B,C,D} T={x,y} 其中x∈{所有字母} y∈{所有的字符} P如下: S→x S→xA A→y A→yBB→y B→yC C→y C→yD D→y6.构造上下文无关文法能够产生L={ω/ω∈{a,b}*且ω中a的个数是b的两倍}答:G={N,T,P,S}其中N={S} T={a,b} P如下:S→aab S→aba S→baaS→aabS S→aaSb S→aSab S→SaabS→abaS S→abSa S→aSba S→SabaS→baaS S→baSa S→bSaa S→Sbaa7.找出由下列各组生成式产生的语言(起始符为S)(1)S→SaS S→b(2)S→aSb S→c(3)S→a S→aE E→aS答:(1)b(ab)n /n≥0}或者L={(ba)n b/n≥0}(2) L={a n cb n /n≥0}(3)L={a2n+1 /n≥0}第三章1.下列集合是否为正则集,若是正则集写出其正则式。

(1)含有偶数个a和奇数个b的{a,b}*上的字符串集合(2)含有相同个数a和b的字符串集合(3)不含子串aba的{a,b}*上的字符串集合答:(1)是正则集,自动机如下(2) 不是正则集,用泵浦引理可以证明,具体见17题(2)。

(3) 是正则集先看L’为包含子串aba的{a,b}*上的字符串集合显然这是正则集,可以写出表达式和画出自动机。

(略)则不包含子串aba的{a,b}*上的字符串集合L是L’的非。

根据正则集的性质,L也是正则集。

4.对下列文法的生成式,找出其正则式(1)G=({S,A,B,C,D},{a,b,c,d},P,S),生成式P如下:S→aA S→BA→abS A→bBB→b B→cCC→D D→bBD→d(2)G=({S,A,B,C,D},{a,b,c,d},P,S),生成式P如下:S→aA S→BA→cC A→bBB→bB B→aC→D C→abBD→d答:(1) 由生成式得:S=aA+B ①A=abS+bB ②B=b+cC ③C=D ④D=d+bB ⑤③④⑤式化简消去CD,得到B=b+c(d+bB)即B=cbB+cd+b =>B=(cb)*(cd+b) ⑥将②⑥代入①S=aabS+ab(cb)*(cd+b)+(cb)*(cd+b) =>S=(aab)*(ab+ε)(cb)*(cd+b) (2) 由生成式得:S=aA+B ①A=bB+cC ②B=a+bB ③C=D+abB ④D=dB ⑤由③得 B=b*a ⑥将⑤⑥代入④ C=d+abb*a=d+ab+a ⑦将⑥⑦代入② A=b+a+c(d+b+a) ⑧将⑥⑧代入① S=a(b+a+c(d+ab+a))+b*a=ab+a+acd+acab+a+b*a5.为下列正则集,构造右线性文法:(1){a,b}*(2)以abb结尾的由a和b组成的所有字符串的集合(3)以b为首后跟若干个a的字符串的集合(4)含有两个相继a和两个相继b的由a和b组成的所有字符串集合答:(1)右线性文法G=({S},{a,b},P,S)P: S→aS S→bS S→ε(2) 右线性文法G=({S},{a,b},P,S)P: S→aS S→bS S→abb(3) 此正则集为{ba*}右线性文法G=({S,A},{a,b},P,S)P: S→bA A→aA A→ε(4) 此正则集为{{a,b}*aa{a,b}*bb{a,b}*, {a,b}*bb{a,b}*aa{a,b}*}右线性文法G=({S,A,B,C},{a,b},P,S)P: S→aS/bS/aaA/bbBA→aA/bA/bbCB→aB/bB/aaCC→aC/bC/ε7.设正则集为a(ba)*(1)构造右线性文法(2)找出(1)中文法的有限自 b动机答:(1)右线性文法G=({S,A},{a,b},P,S)P: S→aA A→bS A→ε(2)自动机如下:(p2是终结状态)9.对应图(a)(b)的状态转换图写出正则式。

形式语言与自动机理论-蒋宗礼-参考答案

形式语言与自动机理论-蒋宗礼-参考答案

2.1回答下面的问题: (周期律 02282067) (1)在文法中,终极符号和非终极符号各起什么作用?✓ 终结符号是一个文法所产生的语言中句子的中出现的字符,他决定了一个文法的产生语言中字符的范围。

✓ 非终结符号又叫做一个语法变量,它表示一个语法范畴,文法中每一个产生式的左部至少要还有一个非终结符号,(二,三型文法要求更严,只允许左部为一个非终结符号)他是推导或归约的核心。

(2)文法的语法范畴有什么意义?开始符号所对应的语法范畴有什么特殊意义? ✓ 文法的非终结符号A 所对应的语法范畴代表着一个集合L (A ),此集合由文法产生式中关于A 的产生式推导实现的✓ 开始符号所对应的语法范畴则为文法G = {V ,T ,P ,S}所产生的语言L (G )={w S T w w **|⇒∈且}(3)在文法中,除了的变量可以对应一个终极符号行的集合外,按照类似的对应方法,一个字符串也可以对应一个终极符号行集合,这个集合表达什么意义?✓ 字符串对应的终极符号行集合表示这个字符串所能推导到的终极字符串集合,为某个句型的语言。

(4)文法中的归约和推导有什么不同?✓ 推导:文法G = {V ,T ,P ,S},如果,)(,,*T VP ∈∈→δγβα则称γαδ在G 中推导出了γβδ。

✓ 归约:文法G = {V ,T ,P ,S},如果,)(,,*T VP ∈∈→δγβα则称γβδ在G 中归约到γαδ。

✓ 这他们的定义,我个人理解两个概念从不同角度看待文法中的产生式,推导是自上而下(从产生式的左边到右边),而归约是自下而上(从产生式的右边到左边),体现到具体实际中,如编译中语法分析时语法树的建立,递归下降,LL (1)等分析法采用自开始符号向下推导识别输入代码生成语法树,对应的LR (1),LALR 等分析法则是采用自输入代码(相当于文法中语言的句子)自底向上归约到开始符号建立语法树,各有优劣。

(5)为什么要求定义语言的字母表上的语言为一个非空有穷集合? ✓ 非空:根据字母表幂的定义:εε,}{0∑=为字母表中0个字符组成的。

形式语言与自动机

形式语言与自动机

例4:L(G(S))={| {0,1}* 其中 中至少包含一个1 且 每个1都有0紧跟其后} S 1A(A为0打头,1符合题意) S 0S A 0B (B为 0任意,1符合题意) B 0B B 1A( A为0打头,1符合题意)
例5:L={aR{a,b}*,其中R为的逆} S aaSa bSb Example 6:Construct a grammar over {a,b,c} whose language is {anb2ncm|n,m>0} Example 7: Construct a grammar over {a,b,c} whose language is {anbmc2n+m|n,m>0} S aScc aBcc B bBb bb Example 8: Construct a grammar over {a,b,c} whose language is {anbmci|0≤n+m≤i} S aSbcc B A A aAc C B bBc C C aC Example 9: Construct a grammar over {a,b} whose language is {anbm|0≤n≤m≤2n} S aSb aSbb
形式语言与自动机理论的应用
有限状态自动机是描述许多重要硬件和软件的有用模型。只有有限个 状态,使得可以用有限的资源来实现。 – 字符串匹配算法(KMP) – 词法分析器 – 设计和检验数字电路行为的软件 – 其它一些软件,如通信协议验证 • 与有限自动机有关的两种符号表示 – 文法:设计处理递归结构数据的软件的模型 – 正规表达式:与自动机描述的字符串模式等价 • 自动机是研究计算复杂性的必要基础 – 可判定性问题:可判定问题和不可判定问题 – 可处理性问题:一般问题和难解问题

形式语言与自动机理论-蒋宗礼-第一章参考答案

第一章参考答案1.1请用列举法给出下列集合。

(吴贤珺02282047)⑴你知道的各种颜色。

解:{红,橙,黄,绿,青,蓝,紫}⑵大学教师中的各种职称。

解:{助教,讲师,副教授,教授}⑶你所学过的课程。

解:{语文,数学,英语,物理,化学,生物,历史,地理,政治}⑷你的家庭成员。

解:{父亲,母亲,妹妹,我}⑸你知道的所有交通工具。

解:{汽车,火车,飞机,轮船,马车}⑹字母表{a , b}上长度小于4的串的集合。

解:{a,b,aa,bb,ab,ba,aaa,aab,aba,abb,baa,bab,bba,bbb}⑺集合{1,2,3,4}的幂集。

解:{Φ,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4} }⑻所有的非负奇数。

解:{1,3,5,7,…}⑼0~100的所有正整数。

解:{1,2,3, (100)(10) 1~10之间的和为10的整数集合的集合。

解:设所求的集合为A,集合A中的元素为A i(i=1,2,3,…),A i也是集合,A i中的元素在1~10之间,并且和为10。

根据集合元素的彼此可区分性,可以计算出A i中元素的最多个数,方法是:把1开始的正整数逐个相加,直到等于10(即10=1+2+3+4),这样,A i中最多有4个元素。

原因是:从最小的1开始,每次加入新的元素都只依次增加1,这样相加的和最小,要加到10,元素个数就最多。

求出最大的∣A i∣=4后,再求出元素个数为3,2,1的集合就可以了。

故A={{10},{1,9},{2,8},{3,7},{4,6},{1,2,7},{1,3,6},{1,4,5},{2,3,5},{1,2,3,4}}1.2 请用命题法给出下列集合1.3 给出下列集合的幂集.(02282075 冯蕊)(1)Φ(2){Φ}(3){Φ,{Φ}}(4){ε,0,00}(5){0,1}解答:(1){Φ}(2){Φ,{Φ}}(3){Φ,{Φ},{{Φ}},{Φ,{Φ}}}(4){Φ,{ε},{0},{00},{ε,0},{ε,00},{0,00},{ε,0,00}}(5){Φ,{0},{1},{0,1}}1.4.列出集合{0,1,2,3,4}中(褚颖娜02282072)(1)所有基数为3的子集{0,1,2},{0,1,3},{0,1,4},{0,2,3,},{0,2,4},.{1,2,3},{1,2,4},{1,3,4},{0,3,4},{2,3,4}(2)所有基数不大于3的子集Ф,{0},{1},{2},{3},{4},{3,4},{2,4},{2,3},{1,4},{1,3},{0,4},{0,3},{0,2},{1,2},{0,1},{0,1,2},{0,1,3}{0,1,4},{0,2,3,},{0,2,4},.{1,2,3},{1,2,4},{1,3,4},{0,3,4},{2,3,4}1.5解答:1、3、8、10、11、12、16正确1.6证明下列各题目(02282081 刘秋雯)1)A=B,iff A是B的子集且B是A的子集证明:充分条件:∵A=B则由集合相等的定义知对于任何x∈A,有x∈B∴A为B的子集同理,B为A的子集必要条件:∵A为B的子集∴对于任何x∈A,都有x∈B又∵B为A的子集,∴对于任何x∈B有,x∈A由集合相等的定义知,A=B2)如果A为B的子集,则|A|〈=|B|证明:A为B的子集,则对于任何x∈A有x∈B,∴存在一个集合C 使B=A∪C 且A∩C为空集则|B|=|A|+|C||C|〉=0∴|A|〈=|B|3)如果A为B的真子集,则|A|〈=|B|证明:(1)当A为有穷集合时,因为A为B的真子集,且则对于任何x∈A有x∈B,且存在∈B的x,此x不∈A∴存在一个非空集合C ,使B=A∪C 且A∩C为空集则|B|=|A|+|C| 且|C|〉=1∴|A|〈|B|(2)当A为无穷集合,因为A为B的真子集,则B一定也为无穷集合,|A|=∞,|B|=∞∴|A|=|B|综合(1),(2)所述,|A|<=|B|4)如果A是有穷集且A为B的真子集则|A|〈|B|证明:见上题证明(1)5)如果A为B的子集,则对于任何x∈A,有x∈B证明:若A为B的子集,则由子集定义可知,对于任何x∈A,有x∈B6)如果A是B的真子集,则对于任何x∈A,有x∈B,并且存在x∈B,但x不∈A 证明:由真子集的定义可证7)如果A为B的子集,B为C的子集,则A为C的子集证明:A为B的子集,B为C的子集则对于任何x∈A,则x都∈B,且,又对于任何y∈B,则y∈C,∴对于任何x∈A,x∈C∴A为C的子集8)如果A为B的真子集,B为C的真子集,则A为C的真子集证明:A为B的真子集,B为C的真子集则对于任何x∈A,则x都∈B,且,存在x∈B但次x不∈A,又对于任何y∈B,则y∈C,存在y∈C但此y不∈B,∴对于任何x∈A,x∈C,存在x∈C.x不∈A∴A为C的真子集9)如果A为B的子集,B为C的真子集,则A为C的真子集证明:因为A为B的子集,B为C的真子集则对于任何x∈A,x都∈B,且x都∈C又对于任何y∈B,则y∈C,存在y∈C但此y不∈B,则y不∈A∴对于任何x∈A,x∈C,存在x∈C.x不∈A∴A为C的真子集10)如果A为B的真子集,B为C的子集,则A为C的真子集证明:A为B的真子集,B为C的子集则对于任何x∈A,则x都∈B,且存在x∈B但次x不∈A,又对于任何y∈B,则y∈C∴对于任何x∈A,x∈C,存在x∈C.x不∈A∴A为C的真子集11)如果A=B,则|A|=|B|证明:A=B,则A与B所含元素相同∴|A|=|B|12)如果A为B的子集,B为C的真子集,或如果A为B的真子集,B为C的子集,则A为C的真子集证明:证明见9,101.7 A = {1,2,3,4,5,6} B = {1,3,5} C = {2,4,6} U = {0,1,2,3,4,5,6,7,8,9}A(1). B= {1,3,5} = B(2). C B A )(= {1,3,5} }6,4,2{={1,2,3,4,5,6} = A (3). )()(C U B A - = {1,3,5} }9,8,7,5,3,1,0{ ={0,1,3,5,7,8,9} = C(4).A-B-C= {2,4,6} – {2,4,6}=Φ(5).A × B × C ×Φ=ΦA ×Φ = Φ (6). A C AB A )(= {1,3,5} {0,7,8,9} {0,7,8,9}= {0,1,3,5,7,8,9} = C(7). C AB A ⨯⨯ =C B A ⨯⨯ =)},(),(),(|),{(C b B a C b B a C b B a b a A ∈∈∈∈∈∈⨯或或 =)},,(),,(),,(|),,{(C c B b A a C c B b A a C c B b A a c b a ∈∈∈∈∈∈∈∈∈或或 (8). C B A B A)( = C A A= C A= A={1,2,3,4,5,6}1.8 对论域U 上的集合A 、B 、C ,证明以下结论成立。

形式语言与自动机理论蒋宗礼第三章参考答案

第三章作业答案1.已知DFA M1与M2如图3-18所示。

(敖雪峰 02282068)(1) 请分别给出它们在处理字符串1011001的过程中经过的状态序列。

(2) 请给出它们的形式描述。

Sq q1图3-18 两个不同的DFA解答:(1)M1在处理1011001的过程中经过的状态序列为q 0q 3q 1q 3q 2q 3q 1q 3; M2在处理1011001的过程中经过的状态序列为q 0q 2q 3q 1q 3q 2q 3q 1;(2)考虑到用形式语言表示,用自然语言似乎不是那么容易,所以用图上作业法把它们用正则表达式来描述:M1: [01+(00+1)(11+0)][11+(10+0)(11+0)]*M2: (01+1+000){(01)*+[(001+11)(01+1+000)]*}******************************************************************************* 2.构造下列语言的DFA( 陶文婧 02282085 ) (1){0,1}*,1(2){0,1}+,1(3){x|x {0,1}+且x 中不含00的串}(设置一个陷阱状态,一旦发现有00的子串,就进入陷阱状态)(4){ x|x∈{0,1}*且x中不含00的串}(可接受空字符串,所以初始状态也是接受状态)(5){x|x∈{0,1}+且x中含形如10110的子串}(6){x|x∈{0,1}+且x中不含形如10110的子串}(设置一个陷阱状态,一旦发现有00的子串,就进入陷阱状态)(7){x|x∈{0,1}+且当把x看成二进制时,x模5和3同余,要求当x为0时,|x|=1,且x≠0时,x的首字符为1 }1.以0开头的串不被接受,故设置陷阱状态,当DFA在启动状态读入的符号为0,则进入陷阱状态2.设置7个状态:开始状态q s,q0:除以5余0的等价类,q1:除以5余1的等价类,q2:除以5余2的等价类,q3:除以5余3的等价类,q4:除以5余4的等价类,接受状态q t(8){x|x∈{0,1}+且x的第十个字符为1}(设置一个陷阱状态,一旦发现x的第十个字符为0,进入陷阱状态)(9){x|x∈{0,1}+且x以0开头以1结尾}(设置陷阱状态,当第一个字符为1时,进入陷阱状态)(10){x|x∈{0,1}+且x中至少含有两个1}(11){x|x∈{0,1}+且如果x以1结尾,则它的长度为偶数;如果x以0结尾,则它的长度为奇数}可将{0,1}+的字符串分为4个等价类。

形式语言自动机理论基础


Ch2 形式语言自动机理论基础
2.2 自动机基础
2.2.1 确定的FA(DFA)
例如, 1) 电梯的控制系统; 2) 人的大脑也是有限控制系统; (235) 3) 计算机自身也是有限控制系统。 注意: 1) DFA是具有离散输入、输出系统的一个纯数 学模型; 2) DFA的技巧在于状态的设置; 3) DFA映射的唯一性和初态的唯一性 。
NFA M=({q0, q1, q2, q3, q4},{0,1}, f , {q0}, { q2,q4}) S ∑ S0 Z 其中状态转换函数f为: f(q0,0)= q0 f(q0,1)= q0 f(q1,0)= Φ f(q2,0)= q2 f(q3,0)= q4 f(q4,0)= q4 f(q0,0)= q3 f(q0,1)= q1 f(q1,1)= q2 f(q2,1)= q2 f(q3,1)= Φ f(q4,1)= q4
Ch2 形式语言自动机理论基础
2.2 自动机基础
2.2.3 NFA确定化
子集法
对NFA M’ =(S, {∑1, ∑2, … , ∑n }, f, S0, Z) 设一矩阵形式的表:
I ε-closure(S0) I ∑1 I∑2 … I∑n
Step1:初始化
Ch2 形式语言自动机理论基础
2.2 自动机基础
40ch2形式语言自动机理论基础22自动机基础224dfa的化简41ch2形式语言自动机理论基础22自动机基础224dfa的化简所谓dfam的化简是指寻找一个状态数比较少的dfa使得lmlm?而且可以证明存在一个最少状态的dfadfam最小化的过程是把m的状态集q分割成一些互不相交的子集使得每个子集中任何两个状态是等价的而任何属于两个不同子集的状态都是可区别的

形式语言与自动机_课件_陈有祺第03章 有穷自动机

定义3.7 给出NFA M=(Q,∑,δ,q0 , F),若δ(q0,x)∩F非空( x∈∑*),则称字符串x被M接受。被NFA M接受的全体字符串称 为M接受的语言,记作L(M)。也就是 L(M)={x∣x∈∑*,且δ(q0,x)∩F非空}。
从定义3.7可知,在δ(q0,x)的众多状态中,只要有一个状态属于 终结状态集F,则x就被该NFA M接受。如对例3.4中的NFA,字 符串01001是被接受的,因为δ(q0 ,01001)={q0,q1,q4} ,而 q0∈F。但字符串010是不被接受的,因为δ(q0 ,010)={q0,q3} ,其中没有一个状态在F中。
从给定集合构造接受该集合的FA
实现上述思路的FA M1如图所示
初始状态标记为“1”,表示要么还没有读入符号,要么刚读过符号1。对 于“0”状态遇1,“01” 状态遇0,“010”状态再遇0或1的情况,上 面已经做了解释。其他情况是:“0”状态遇0,此时应当保持在“0”状 态,意味着刚读过的符号是0;再有“01”状态遇1,表示这次的期望“ 半途而废”,只能从头再来,所以转回到“1”状态。
形式语言与自动机
第三章 有穷自动机
非形式化描述 有穷自动机的基本定义 非确定的有穷自动机 具有ε转移的有穷自动机 有穷自动机的应用 具有输出的有穷自动机
有穷状态系统
指针式钟表共有12*60*60个状态
围棋共有3361个状态
电梯的控制结构
某些电子产品中的开关电路,具有n个门的开关网络有 2n种状态
分析:x∈L当且仅当把x看成二进制数时,x模5与0同余。换句话说,x 要能被5整除。例如,0,101,1010,1111等都能被5整除,而10, 11,100,110等都不能被5整除。
当二进制数x的位数向右不断增加时,它的值(换算成十进制)的增加很 有规律:x0的值等于2x,x1的值等于2x+1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/7/10
14
笛卡儿积(Cartesian product)
❖ A与B的笛卡儿积(Cartesian product)是一个集合, 该集合是由所有这样的有序对(a,b)组成的:其中 a∈A,b∈B ,记作A× B。
A× B={(a,b)|a∈A& b∈B }。
❖ “× ”为笛卡儿乘运算符。A× B读作A叉乘B。
❖ A与B的并(union)是一个集合,该集合中的元素要么 是A的元素,要么是B的元素,记作A∪B。
A∪B={a|a∈A或者a∈B}
A1∪A2∪…∪An={a|i,1≤i≤n,使得a∈Ai} A1∪A2∪…∪An ∪…={a|i,i∈N,使得a∈Ai}
Ai
i 1
A {a | A S, a A}
2020/7/10
7
1.1.2 集合之间的关系
❖集合相等
如果集合A,B含有的元素完全相同,则称集合 A与集合B相等(equivalence),记作A=B。
❖对任意集合A、B、C: ⑴ A=B iff AB且BA。 ⑵ 如果AB,则|A|≤|B|。 ⑶ 如果AB,则|A|≤|B|。 ⑷ 2020/7/10 如果A是有穷集,且AB,则|B|>|A|。 8
❖ 计算思维能力
逻辑思维能力和抽象思维能力
构造模型对问题进行形式化描述
理解和处理形式模型
2020/7/10
2
课程目的和基本要求
❖ 知识
掌握正则语言、下文无关语言的文法、识别模型 及其基本性质、图灵机的基本知识。
❖ 能力
培养学生的形式化描述和抽象思维能力。
使学生了解和初步掌握“问题、形式化描述、自 动化(计算机化)”这一最典型的计算机问题求 解思路。
2020/7/10
AS
10
交(intersection)
❖ 集合A和B中都有的所有元素放在一起构成的 集合为A与B的交 ,记作A∩B。
A∩B={a|a∈A且a∈B}
❖ “∩”为交运算符,A∩B读作A交B。
❖ 如果A∩B=Φ,则称A与B不相交。
❖ ⑴ A∩B= B∩A。
⑵ (A∩B)∩C=A∩(B∩C)。
1.1.2 集合之间的关系
⑸ 如果AB,则对x∈A,有x∈B。
⑹如果AB,则对x∈A,有x∈B并且x∈B, 但xA。
⑺ 如果AB且BC,则AC。
⑻ 如果AB且BC,或者AB且BC,或者 AB且BC,则AC。
⑼ 如果A=B,则|A|=|B|。
Байду номын сангаас
2020/7/10
9
1.1.3 集合的运算
❖ 并(union)
课程目的和基本要求
❖ 课程性质
技术基础
❖ 基础知识要求
数学分析(或者高等数学),离散数学
❖ 主要特点
抽象和形式化
理论证明和构造性
2020/7/10基本模型的建立与性质
1
课程目的和基本要求
❖ 本专业人员4种基本的专业能力
计算思维能力
算法的设计与分析能力
程序设计和实现能力
计算机软硬件系统的认知、分析、设计与应用能力
⑶ 2020/7/10 A∩A=A。
11
交(intersection)
⑷ A∩B=A iff AB。
⑸ Φ∩A=Φ。
⑹ |A∩B|≤min{|A|,|B|}。
⑺ A∩(B∪C)=(A∩B)∪(A∩C)。
⑻ A∪(B∩C)=(A∪B)∩(A∪C)。
⑼ A∩(A∪B)=A。
⑽ A∪(A∩B)=A。
2020/7/10
12
差(difference)
❖ 属于A,但不属于B的所有元素组成的集合叫做A与 B的差,记作A-B。
A-B={a|a∈A且aB}
❖ “-”为减(差)运算符,A-B读作A减B。
❖ ⑴ A-A=Φ。
⑵ A-Φ=A。
⑶ A-B ≠ B-A。
⑷ A-B=A iff A∩B=Φ。
⑸ A∩(B-C)=(A∩B)-(A∩C)。
2020/7/10
3
主要内容
❖ 语言的文法描述。
❖ RL
RG、 FA、RE、RL的性质 。
❖ CFL
CFG(CNF、GNF)、PDA、CFL的性质。
❖ TM
基本TM、构造技术、TM的修改。
❖ CSL
2020/7/10CSG、LBA。
4
教材及主要参考书目
1. 蒋宗礼,姜守旭. 形式语言与自动机理论. 北京:清 华大学出版社,2003年
3. John E Hopcroft, Jeffrey D Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, 1979
2020/7/10
5
第1章 绪论
❖ ⑴ A× B≠B× A。
⑵ (A× B)× C≠A× (B× C)。
⑶ A× A≠A。
⑷ A× 2020/7/10 Φ=Φ。
15
笛卡儿积(Cartesian product)
2020⑹/7/10|A-B|≤|A|。
13
对称差(symmetric difference)
❖ 属于A但不属于B,属于B但不属于A的所有元 素组成的集合叫A与B的对称差,记作A⊕B。
A⊕B={a|a∈A且aB或者aA且a∈B}
❖ “⊕”为对称差运算符。A⊕B读作A对称减B。
❖ A⊕B=(A∪B)-(A∩B)=(A-B)∪(B-A)。
❖ 子集
• 如果集合A中的每个元素都是集合B的元素,则 称集合A是集合B的子集(subset),集合B是集合 A的包集(container)。记作AB。也可记作BA。 AB读作集合A包含在集合B中;BA读作集合 B包含集合A。
• 如果AB,且x∈B,但xA,则称A是B的真 子集(proper subset),记作AB
2. John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman. Introduction to Automata Theory, Languages, and Computation (2nd Edition). Addison-Wesley Publishing Company, 2001
❖ 1.1 集合的基础知识 ❖ 1.1.1 集合及其表示
集合:一定范围内的、确定的、并且彼此可以区 分的对象汇集在一起形成的整体叫做集合(set), 简称为集(set)。
元素:集合的成员为该集合的元素(element)。 集合描述形式。
基数。
集合的分类。
2020/7/10
6
1.1.2 集合之间的关系
相关文档
最新文档