形式语言与自动机理论蒋宗礼
形式语言与自动机理论-蒋宗礼-第四章参考答案

1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
形式语言与自动机 形式语言与自动机理论-蒋宗礼-第三章参考答案

形式语言与自动机形式语言与自动机理论-蒋宗礼-第三章参考答案导读:就爱阅读网友为您分享以下“形式语言与自动机理论-蒋宗礼-第三章参考答案”的资讯,希望对您有所帮助,感谢您对的支持!因此我们只需要证明对任何的2NFA M1?(Q1,?,?1,F1,q0),都存在FAM2?(Q2,?,?2,F2,q0)与之等价。
对于任何的2NFA M1?(Q1,?,?1,F1,q0),构造FA M2?(Q2,?,?2,F2,q0),按三个方式构造?2:1.如果q?Q1,a??,?1(q,a)?{p,R},则?2(q,a)?p;2.如果q?Q1,a??,?1(q,a)?{p,S},则如果??1(p,a)?{o,R},则?2(q,a)?o;如果??1(p,a)?{o,S},则重复第二步;如果??1(p,a)?{o,L},则对于集合A = {r|b?Q1,?1(r,b)?(o,R)},?2(q,a)?r,r?A。
3.如果q?Q1,a??,?1(q,a)?{p,L},则设集合 A = {r|b?Q1,?1(r,b)?(p,R)},?2(q,a)?r,r?A*************************************************** ****************************28.证明定理3-8:Moore机与Mealy机等价(郭会02282015)证明:不妨设Moore机M1=(Q1,?,?,?1,?1,q01),Mealy机M2=(Q2,?,?,?2,?2,q02),则根据Moore机和Mealy机等价的定义知,必须证明:T1(x)??1(q0)T2(x),其中T1(x)和T2(x)分别表示M1和M2关于x的输出。
??Moore机M1,?Mealy机M2,使M2与M1等价(1)构造M2,?2??1,q02?q01,Q2?Q1?q?Q1?{q01},?1(q)?a,?q'?Q1且?b??,?1(q',b)=q,就构造?2(q',b)=a(2)证明?x??*,?1(q0)T2(x)?T1(x)不妨设x?x1x2……xn,则?i?N,(i?1,2……n)则M1的输出为:T1(x)??1(q0)?1(?1(q0,x1))……?1(?1((…?1(q0,x1),x2)…),xn)由题意可知?1(q0,x1),?1(?1(q0,x1),x2),…,?1(……?1 (?1(q0,x1),x2) xn) 均为Moore机中的状态,由(1)中的构造假设知,M2的输出为:T2(x)??2(q0,x1)?2(?2(q0,x1),x2)…?2(……?2(?2(q0,x1),x2) ? ?1(q0,x1)?1(?1(q0,x1),x2)…?1(……?1(?1(q0,x1),x2) xn) xn) ?T1(x)??1(q0)T2(x)??Mealy机M2,?Moore机M1,使M1与M2等价(1)构造M1,q01?q02Q1?Q2?{qij|??2(qi,a)?qj,其中qi,qj?Q2,a??}?1?{?|?(qi,a)?qij,?(qij,?)?qj其中?2(qi,a)?qj}?1?{?|?1(qi,a)?qij,?1(qij,?)?qj,?(qij)??2(qi,a) }(2)证明?x??*,T1(x)=?1(q0)T2(x)不妨设x?x1x2……xn,则?i?N,(i?1,2……n)则M1的输出为:T2(x)??2(?2(q0,x1))……?2(?2((…?2(q0,x1),x2)…),xn) 由题意可知?2(q0,x1),?2(?2(q0,x1),x2),…,?2(……?2 (?2(q0,x1),x2) xn) 均为Mealy机中的状态,由(1)中的构造假设知,M1的输出为:T1(x)??1(q0)?1(?2(q0,x1))?1(?1(q0,x1),x2)…?1(……?1(?1(q 0,x1),x2) xn)??1(q0)?2(?2(q0,x1))……?2(?2((…?2(q0,x1),x2)…),xn) ?T1(x)??1(q0)T2(x)综上所述,Moore机与Mealy机等价第三章作业答案1.已知DFA M1与M2如图3-18所示。
形式语言与自动机理论--第一章(蒋宗礼)

差(difference)
• 属于A,但不属于B的所有元素组成的集合叫做A 与B的差,记作A-B。
A-B={a|a∈A且aB}
• “-”为减(差)运算符,A-B读作A减B。
• ⑴ A-A=Φ。
⑵ A-Φ=A。 ⑶ A-B ≠ B-A。 ⑷ A-B=A iff A∩B=Φ。 ⑸ A∩(B-C)=(A∩B)-(A∩C)。 ⑹ |A-B|≤|A|。
达式; ⑵ 归纳:如果E1、E2是表达式,则 +E1、-E1、
E1+E2、 E1-E2 、E1*E2 、E1/E2、E1**E2、 Fun(E1)是算术表达式。其中Fun为函数名。 ⑶ 只有满足(1)和(2)的才是算术表达式。
1.2.4 递归定义与归纳证明
立; ⑷ 对任意的i,j,i≠j,Si中的任意元素a和Sj中的任
意元素b,aRb恒不成立
1.2.1 二元关系(binary relation)
• 指数(index)
– 把R将S分成的等价类的个数称为是R在S上的 指数。如果R将S分成有穷多个等价类,则称R 具有有穷指数;如果R将S分成无穷多个等价类, 则称R具有无穷指数。
1.2.1 二元关系(binary relation)
⑴ R1R2≠R2R1。 ⑵ (R1R2)R3=R1(R2R3)。 ⑶ (R1∪R2)R3=R1R3∪R2R3。 ⑷ R3(R1∪R2)=R3R1∪R3R2。 ⑸ (R1∩R2)R3R1R3∩R2R3。 ⑹ R3(R1∩R2)R3R1∩R3R2。
形式语言与自动机理论--第一章 (蒋宗礼)
课程目的和基本要求
• 课程性质
–技术基础
• 基础知识要求
–数学分析(或者高等数学),离散数学
• 主要特点
蒋宗礼送形式语言与自动机理论-资料

2019/10/15
19
补集(Complementary Set)
A是论域U上的一个集合,A补集是由U中的、 不在A中的所有元素组成的集合
AUA
U
U
9/10/15
20
补集(Complementary Set)
如果AB,则 B A
AAU
AA
B A A B U & A B
2019/10/15
8
1.1.2 集合之间的关系
•集合相等
– 如果集合A,B含有的元素完全相同,则称集 合A与集合B相等(Equivalence),记作A=B。
•对任意集合A、B、C: ⑴ A=B iff AB且BA。 ⑵ 如果AB,则|A|≤|B| ⑶ 如果AB,则|A|≤|B|。 ⑷ 如果A是有穷集,且AB,则|B|>|A|。
2019/10/15
12
交(Intersection)
• ⑷ A∩B=A iff A B • ⑸ Φ∩A=Φ • ⑹ |A∩B|≤min{|A|,|B|} • ⑺ A∩(B∪C)=(A∩B)∪(A∩C) • ⑻ A∪(B∩C)=(A∪B)∩(A∪C) • ⑼ A∩(A∪B)=A • ⑽ A∪(A∩B)=A
2019/10/15
30
1.2.3递归定义与归纳证明
• 归纳证明
– 与递归定义相对应
– 归纳证明方法包括三大步
• 基础(Basis):证明最基本元素具有相应性质
• 归纳(Induction):证明如果某些元素具有相 应性质,则根据这些元素用所规定的方法得 到的新元素也具有相应的性质。
• 根据归纳法原理,所有的元素具有相应的性 质
形式语言与自动机理论
形式语言与自动机答案蒋宗礼

形式语言与自动机答案蒋宗礼【篇一:形式语言第四章参考答案(蒋宗礼)】p> 解:所求正则表达式为:(0+1)*。
+⑵ {0, 1}。
解:所求正则表达式为:(0+1)+。
⑶ { x│x∈{0,1}且x中不含形如00的子串 }。
解:根据第三章构造的fa,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷ { x│x∈{0,1}*且x中不含形如00的子串 }。
++ +q1为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)* q2为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*q3为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)* q4为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
由题设,x=0时,│x│=1,模5是1,不符合条件,所以不必增加关于它的状态。
下面对每一个状态考虑输入0和1时的状态转移。
q: 输入1,模5是1,进入q1。
+q0: 设x=5n。
输入0,x=5n*2=10n,模5是0,故进入q0输入1,x=5n*2+1=10n+1,模5是1,故进入q1q1:设x=5n+1。
输入0,x=(5n+1)*2=10n+2,模5是2,故进入q2输入1,x=(5n+1)*2+1=10n+3,模5是3,故进入q3 q2:设x=5n+2。
形式语言与自动机理论-蒋宗礼-第四章参考答案

1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
形式语言与自动机理论(一)

定理:L 是 RL 的充分必要条件是存在一 个文法,该文法产生语言L,并且产生式 的形式是: A→aB,A→a or A→Ba,A→a 其中 A,B∈V, a∈T.
第二章 文法
2.4 文法的类型 2.5 空语句 定义:假设G=(V,T,P,S)是一个文法。如 果 S 不出现在 G 的任何产生式的右部, 则P∪{S→ε}所形成的文法仍然是与G 等价的相应类型的文法,所产生的语言 是相应类型的语言。
第二章 文法
2.2 文法的形式定义 2.2.3 语言
定义:设文法 G = (V,T,P,S)。对 α∈(V∪T)*, 如果S(⇒)*α , 则α为文法G的一个句型; 若对w∈T*,如果 S(⇒)* w,则 w 称为由 G 产生的一个句子。 称 L(G)={w| w ∈T*, S(⇒)* w}为文法 G 产 生的语言。
第一章 绪论
1.4 语言
1.4.3 基本概念 (1)符号 (2)字母表 (3)字符串 (4)语言 Σ
①乘积运算 字母表的运算 ②幂运算 ③闭包运算
第二章 文法
2.1 文法的引入
例1 汉语中的句子:王平和李新是大学生。 它由两个短语组成: 〈主语〉 王平和李新 〈谓语〉 是大学生
该句子可以应用下列规则构成:
3.2 有限状态自动机的形式定义 (4)到达某状态的字符串集合 定义:设 FA M=(Q,∑,δ,q0,F), 对 ∀q∈Q 能从开始状态到达所输 入的字符串集合为: set(q)={x|x∈∑*,并且δ(q0,x)= q}
第三章 有限状态自动机
3.2 有限状态自动机的形式定义 (5)有限状态自动机等价 假设 M1,M2 是 FA, 如果 L(M1)=L(M2),则 M1 与 M2 等价。
形式语言与自动机理论--目录

形式语言与自动机理论(第2版)作者:蒋宗礼、姜守旭第1章绪论11.1集合的基础知识21.1.1集合及其表示21.1.2集合之间的关系51.1.3集合的运算61.2关系121.2.1二元关系121.2.2等价关系与等价类131.2.3关系的合成141.2.4递归定义与归纳证明151.2.5关系的闭包181.3图191.3.1无向图191.3.2有向图211.3.3树231.4语言241.4.1什么是语言241.4.2形式语言与自动机理论的产生与作用25 1.4.3基本概念281.5小结35习题35第2章文法422.1启示432.2形式定义482.3文法的构造582.4文法的乔姆斯基体系682.5空语句792.6小结82习题82第3章有穷状态自动机863.1语言的识别863.2有穷状态自动机893.3不确定的有穷状态自动机1023.3.1作为对DFA的修改1023.3.2NFA的形式定义1043.3.3NFA与DFA等价1063.4带空移动的有穷状态自动机1103.5FA是正则语言的识别器1153.5.1FA与右线性文法1153.5.2FA与左线性文法1203.6FA的一些变形1223.6.1双向有穷状态自动机1223.6.2带输出的FA1233.7小结125习题126第4章正则表达式1314.1启示1314.2正则表达式的形式定义1334.3正则表达式与FA等价1354.3.1正则表达式到FA的等价变换1354.3.2正则语言可以用正则表达式表示1444.4正则语言等价模型的总结1504.5小结152习题153第5章正则语言的性质1565.1正则语言的泵引理1565.2正则语言的封闭性1625.3Myhill Nerode 定理与DFA的极小化170 5.3.1Myhill Nerode 定理1705.3.2DFA的极小化1805.4关于正则语言的判定算法1895.5小结190习题191第6章上下文无关语言1946.1上下文无关文法1956.1.1上下文无关文法的派生树1956.1.2二义性2026.1.3自顶向下的分析和自底向上的分析2056.2上下文无关文法的化简2076.2.1去无用符号2086.2.2去ε 产生式2126.2.3去单一产生式组2166.3乔姆斯基范式2196.4格雷巴赫范式2236.5自嵌套文法2296.6小结230习题230第7章下推自动机2357.1基本定义2357.2PDA与CFG等价2427.2.1PDA用空栈接受和用终止状态接受等价243 7.2.2PDA与CFG等价2467.3小结257习题257第8章上下文无关语言的性质2608.1上下文无关语言的泵引理2608.2上下文无关语言的封闭性2678.3上下文无关语言的判定算法2738.3.1L空否的判定2738.3.2L是否有穷的判定2748.3.3x是否为L的句子的判定2768.4小结278习题278第9章图灵机2809.1基本概念2819.1.1基本图灵机2829.1.2图灵机作为非负整函数的计算模型2899.1.3图灵机的构造2939.2图灵机的变形3009.2.1双向无穷带图灵机3009.2.2多带图灵机3049.2.3不确定的图灵机3069.2.4多维图灵机3089.2.5其他图灵机3109.3通用图灵机3139.4几个相关的概念3159.4.1可计算性3159.4.2P与NP相关问题3169.5小结316习题317第10章上下文有关语言32010.1图灵机与短语结构文法的等价性32010.2线性有界自动机及其与上下文有关文法的等价性323 10.3小结325习题325附录A教学设计327附录B缩写符号338词汇索引340参考文献348。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– CSG、LBA。
教材及主要参考书目
1.蒋宗礼,姜守旭. 形式语言与自动机理论. 北京: 清华大学出ft, Rajeev Motwani, Jeffrey D Ullman. Introduction to Automata Theory, Languages, and Computation (2nd Edition). Addison-Wesley Publishing Company, 2001
• 能力
–培养学生的形式化描述和抽象思维能力。 –使学生了解和初步掌握“问题、形式化描述、
自动化(计算机化)”这一最典型的计算机问 题求解思路。
主要内容
• 语言的文法描述。 • RL
– RG、 FA、RE、RL的性质 。
• CFL
– CFG(CNF、GNF)、PDA、CFL的性质。
• TM
– 基本TM、构造技术、TM的修改。
是A的元素,要么是B的元素,记作A∪B。
A∪B={a|a∈A或者a∈B} A1∪A2∪…∪An={a|i,1≤i≤n,使得a∈Ai} A1∪A2∪…∪An ∪…={a|i,i∈N,使得a∈Ai}
Ai
i 1
A {a | A S, a A}
AS
交(intersection)
• 集合A和B中都有的所有元素放在一起构成 的集合为A与B的交 ,记作A∩B。
– 集合:一定范围内的、确定的、并且彼此可以区 分的对象汇集在一起形成的整体叫做集合(set), 简称为集(set)。
– 元素:集合的成员为该集合的元素(element)。 – 集合描述形式。 – 基数。 – 集合的分类。
1.1.2 集合之间的关系
• 子集
• 如果集合A中的每个元素都是集合B的元素, 则称集合A是集合B的子集(subset),集合B是 集合A的包集(container)。记作AB。也可记 作 BA 。 AB 读 作 集 合 A 包 含 在 集 合 B 中 ; BA读作集合B包含集合A。
⑷ A× Φ=Φ。
笛卡儿积(Cartesian product)
⑸ A× (B∪C)=(A× B)∪(A× C)。 ⑹ (B∪C)× A=(B× A)∪(A× C)。 ⑺ A× (B∩C)=(A× B)∩(A× C)。 ⑻ (B∩C)× A=(B× A)∩(C× A)。 ⑼ A× (B-C)=(A× B)-(A× C)。 ⑽ (B-C)× A=(B× A)-(C× A)。 ⑾ 当A、B为有穷集时,|A× B|=|A|*|B|。
形式语言与自动机理论
Formal Languages and Automata Theory
蒋宗礼
课程目的和基本要求
• 课程性质
–技术基础
• 基础知识要求
–数学分析(或者高等数学),离散数学
• 主要特点
–抽象和形式化 –理论证明和构造性 –基本模型的建立与性质
课程目的和基本要求
• 本专业人员4种基本的专业能力
–计算思维能力 –算法的设计与分析能力 –程序设计和实现能力 –计算机软硬件系统的认知、分析、设计与应用能力
• 计算思维能力
–逻辑思维能力和抽象思维能力 –构造模型对问题进行形式化描述 –理解和处理形式模型
课程目的和基本要求
• 知识
–掌握正则语言、下文无关语言的文法、识别模 型及其基本性质、图灵机的基本知识。
1.1.2 集合之间的关系
⑸ 如果AB,则对x∈A,有x∈B。 ⑹ 如 果 AB , 则 对 x∈A , 有 x∈B 并 且
x∈B,但xA。 ⑺ 如果AB且BC,则AC。 ⑻ 如果AB且BC,或者AB且BC,或者
AB且BC,则AC。 ⑼ 如果A=B,则|A|=|B|。
1.1.3 集合的运算
• 并(union) • A与B的并(union)是一个集合,该集合中的元素要么
对称差(symmetric difference)
• 属于A但不属于B,属于B但不属于A的所有元 素组成的集合叫A与B的对称差,记作A⊕B。
A⊕B={a|a∈A且aB或者aA且a∈B}
• “⊕”为对称差运算符。A⊕B读作A对称减B。 • A⊕B=(A∪B)-(A∩B)=(A-B)∪(B-A)。
笛卡儿积(Cartesian product)
3. John E Hopcroft, Jeffrey D Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, 1979
第1章 绪论
• 1.1 集合的基础知识 • 1.1.1 集合及其表示
差(difference)
• 属于A,但不属于B的所有元素组成的集合叫做A 与B的差,记作A-B。
A-B={a|a∈A且aB}
• “-”为减(差)运算符,A-B读作A减B。
• ⑴ A-A=Φ。
⑵ A-Φ=A。 ⑶ A-B ≠ B-A。 ⑷ A-B=A iff A∩B=Φ。 ⑸ A∩(B-C)=(A∩B)-(A∩C)。 ⑹ |A-B|≤|A|。
• A与B的笛卡儿积(Cartesian product)是一个集合, 该集合是由所有这样的有序对(a,b)组成的:其 中a∈A,b∈B ,记作A× B。
A× B={(a,b)|a∈A& b∈B }。
• “× ”为笛卡儿乘运算符。A× B读作A叉乘B。 • ⑴ A× B≠B× A。
⑵ (A× B)× C≠A× (B× C)。 ⑶ A× A≠A。
• 如果AB,且x∈B,但xA,则称A是B的 真子集(proper subset),记作AB
1.1.2 集合之间的关系
•集合相等
–如果集合A,B含有的元素完全相同,则称集 合A与集合B相等(equivalence),记作A=B。
•对任意集合A、B、C: ⑴ A=B iff AB且BA。 ⑵ 如果AB,则|A|≤|B|。 ⑶ 如果AB,则|A|≤|B|。 ⑷ 如果A是有穷集,且AB,则|B|>|A|。
A∩B={a|a∈A且a∈B}
• “∩”为交运算符,A∩B读作A交B。
• 如果A∩B=Φ,则称A与B不相交。
• ⑴ A∩B= B∩A。 ⑵ (A∩B)∩C=A∩(B∩C)。 ⑶ A∩A=A。
交(intersection)
⑷ A∩B=A iff AB。 ⑸ Φ∩A=Φ。 ⑹ |A∩B|≤min{|A|,|B|}。 ⑺ A∩(B∪C)=(A∩B)∪(A∩C)。 ⑻ A∪(B∩C)=(A∪B)∩(A∪C)。 ⑼ A∩(A∪B)=A。 ⑽ A∪(A∩B)=A。