单项式乘以多项式练习题

合集下载

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--.例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+---- 例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x24433412x x x -+-=(2)ab ab b a ab m m 3232)1353(11+⋅++--.322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=--说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++ n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x (2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式. 例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

单项式乘多项式练习题(含答案)

单项式乘多项式练习题(含答案)

单项式乘多项式练习题参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣a+26.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣b a+)a•a(﹣(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaa+a aba ab10.2ab(5ab+3a2b)11.计算:.(﹣xx x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.①∴有方程组.,得到方程组。

单项式乘多项式练习题(含答案)

单项式乘多项式练习题(含答案)

2014—2015年武汉重点中学单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣(﹣a+a b(﹣a(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaba aba+10.2ab(5ab+3a2b)11.计算:.(﹣x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.,得①有方程组.,得到方程组。

(完整版)单项式乘多项式练习题(含答案)

(完整版)单项式乘多项式练习题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1. 先化简,再求值:2 (a 2b+ab 2)- 2 (a 2b - 1)- ab 2 - 2,其中 a=-2, b=2.2. 计算:2 (1) 6x ?3xy 23. (3x 2y - 2x+1 ) (- 2xy )4. 计算:2 2 1 2 2(1) (- 12a b c ) ? (- pabc ) = ________________ ;(2) (3a 2b - 4ab 2- 5ab - 1) ? (- 2ab 2) =_____________________ .1^-1 25. 计算:-6a?(-专耳-£a+2)6. - 3x? (2x - x+4)2 27.先化简,再求值 3a ( 2a 2- 4a+3)- 2a 2 (3a+4),其中 a=- 29.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽(a+2b )米,坝高米.(1)求防洪堤坝的横断面积; 2(2) ( 4a - b ) (- 2b )(2)如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?16.计算: (-2a 2b ) 3 (3b 2- 4a+6)17.某同学在计算一个多项式乘以-3x 2时,因抄错运算符号,算成了加上- 3x 2,得到的结果是x 2- 4x+1,那么正确的计算结果是多少? 18.对任意有理数 x 、y 定义运算如下:x △ y=ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及 乘法运算,如当 a=1, b=2, c=3时,I △ 3=1 X +2 X 3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求a 、b 、c 、d 的值. 210. 2ab (5ab+3a b ) 11•计算:(一斗瓷/)° (3砂-4,+1)212 .计算:2x (x - x+3) 13. (- 4a 3+12a 2b - 7a 3b 3) (- 4a 2) = ________________14 .计算:xy 2 (3x 2y - xy 2+y )15 . (- 2ab ) (3a 2- 2ab - 4b 2)参考答案与试题解析一.解答题(共18小题)1. 先化简,再求值:2 (a2b+ab2)- 2 (a2b- 1)- ab2- 2,其中a=-2, b=2.考点:整式的加减一化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并冋类项,最后将字母的值代入求出原代数式的值. 解答:解:原式=2a2b+2ab2- 2a?b+2 - ab2- 22 2 2 2=(2a b- 2a b) + (2ab - ab ) + (2 - 2)2=0+ab=ab2当a=- 2, b=2 时,原式=(-2)疋2= - 2^4O点评:一 8.本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并冋类项的法则和方法.2. 计算:(1)6x2?3xy(2)(4a- b2) (- 2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1) 6x ?3xy=18x y;2 3(2) (4a- b2) (- 2b) = - 8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23. (3x y - 2x+1 ) (- 2xy)考点:单项式乘多项式.分析:解答:点评:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.2 32 2解:(3x y- 2x+1 ) (- 2xy) =- 6x y +4x y - 2xy .本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4. 计算:2 2 2、2 '445(1) (- 12a b c) ? (—abc ) = -— a b e4 4(2) (3a2b - 4ab2- 5ab- 1) ? (- 2ab2) = - 6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幕相乘;单项式乘单项式,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解: (1) (- 12a2b2e) ? (- gabc2) 2,4=(-12a2b2c) ?舄廿|16=—3 J 4 5.故答案为:-上a4b4c5;42 2 2(2) (3a2b —4ab2—5ab—1) ? (—2ab2),=3a2b? (—2ab2)—4ab2? (—2ab2)—5ab? (—2ab2)—1? (—2ab2),=—6a3b3+8a2b4+10a2b3+2ab2.故答案为:-6a b +8a b +10a b +2ab .点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5. 计算:—6a? (― 2^2 —ga+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:—6a? ( —2 '—丄a+2) =3a3+2a2—12a.2 3点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.26. —3x? (2x —x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:-3x? (2x2—x+4),=—3x?2x2—3x? (—x)—3x?4, =-6x3+3x2—12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7•先化简,再求值3a ( 2a2—4a+3)—2a2(3a+4),其中a=—2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并冋类项,最后代入已知的数值计算即可.解答:解:3a (2a2- 4a+3)—2a2(3a+4)3 2 3 2 2=6a —12a +9a - 6a —8a = - 20a +9a, 当a=—2 时,原式=—20 >4 —9 >2= —98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并冋类项,这是各地中考的常考点.8 计算:(-=a2b)(二b2-二a+二)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.31 2.3 3. 1 2. =——a b +—a b — — a b. 3 战本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a+2b )米,坝高米.(1) 求防洪堤坝的横断面积; (2) 如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积 >坝长.解答:解:(1)防洪堤坝的横断面积 S=_[a+ (a+2b ) ] J a2 2=^a (2a+2b ) 4= ^a 2+」ab .2 2故防洪堤坝的横断面积为(ga 2+gab )平方米;(2)堤坝的体积 V=Sh= (ga 2』ab ) J 00=50a 2+50ab .故这段防洪堤坝的体积是(50a 2+50ab )立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积 >长度,熟练掌握单项式乘多项式的运算法则是解题的关键.2 10. 2ab (5ab+3a b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab ( 5ab+3a 2b ) =10a 2b 2+6a 3b 2;故答案为:10a 2b 2+6a 3b 2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:(.一 2〔3勒- + l )考点: 单项式乘多项式.分析: 先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(—丄xy 2) 2 ( 3xy — 4xy 2+1)」x 2y 4 (3xy — 4xy 2+1)4解答: 解:「甕)嚕飞叫),(-丄 a2b )匕, 点评: =(- 驴(—护)(4a )3 6 124 y +才 y • 点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.212 .计算:2x (x 2- x+3) 考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:2x (x 2- x+3)=2x?x 2 - 2x?x+2x?33 2=2x - 2x +6x .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理. 13. (- 4a 3+12a 2b -7a 3b 3) (- 4a 2) = 16a 5- Ag/b+ZBa 'b 3考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-4a 3+i2a 2b -7a 3b 3) (- 4a 2) =16a 5- 48a 4b+28a 5b 3.故答案为:16a 5- 48a 4b+28a 5b 3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14 .计算:xy 2 (3x 2y - xy 2+y )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:原式=xy 2 (3x 2y )- xy 2?xy 2+xy 2?y33 v 2 4 3=3x y - x y +xy .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215. (- 2ab ) (3a - 2ab - 4b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-2ab ) (3a 2- 2ab - 4b 2)2 2=(-2ab ) ? (3a 2)- (- 2ab ) ? (2ab )- (- 2ab ) ? (4b 2)c 3’ ,2’ 2 c ’ 3=-6a b+4a b +8ab .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16 .计算:(-2a 2b ) 3 (3b 2- 4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(- 2a 2b ) 3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式 的每一项,再把所得的积相加计算即可.解答:解:(-2 a 2 b ) 3 (3b 2- 4a+6) = - 8a 6b 3? (3b 2- 4a+6) =-24a 6b 5+32a 7b 3 - 48a 6b 3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的 处理.Jx 3y 5- x417.某同学在计算一个多项式乘以- 3x2时,因抄错运算符号,算成了加上- 3x2,得到的结果是x2- 4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以- 3x2得出正确结果.解答:解:这个多项式是(x2- 4x+1) -( - 3x2) =4x2- 4x+1 , (3 分)正确的计算结果是:(4x2-4x+1) ? (- 3x2) = - 12x4+12x3- 3x2. (3 分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△ y=ax+by+cxy ,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2, c=3时,I△ 3=1 X+2 X3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 , 并且有一个不为零的数d使得对任意有理数x△ d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:—1 —ij由*△ d=x,得ax+bd+cdx=x,即(a+cd - 1)x+bd=0,得J ①,由2=3,得a+2b+2c=3②,[bd=O2△ 3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:T %△ d=x, /• ax+bd+cdx=x ,(a+cd - 1) x+bd=0 ,•/有一个不为零的数d使得对任意有理数x △ d=x,则有Lbd=O•••〔△ 2=3 , ••• a+2b+2c=3 ②, •/ 2^ 3=4 , • 2a+3b+6c=4 ③,1=0•有方程组a+2c=3詔亦址二4护5解得_1卫二4故a的值为5、b的值为0、c的值为-1、d的值为4.点评: 本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x △ d=x ,得出方程(a+cd - 1)x+bd=0,得到方程组fa+cd- 1=0\bd=0,求出b的值.。

单项式乘多项式练习试题(含答案)

单项式乘多项式练习试题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

单项式乘多项式试题精选附答案(供参考)

单项式乘多项式试题精选附答案(供参考)

单项式乘多项式试题精选附答案(供参考)单项式乘多项式试题精选附答案(供参考)一、选择题1.将(x+2)(x-3)展开后的结果是:A. x^2 - x - 6B. x^2 - 6C. x^2 - 5D. x^2 + x - 62.将2x(3x^2 + 4x - 5)展开后的结果是:A. 6x^3 + 8x^2 - 10xB. 6x^3 + 8x^2 - 5xC. 6x^3 + 10x^2 - 5xD. 6x^3 + 10x^2 - 10x3.将3(4x^2 - 2x + 5)展开后的结果是:A. 12x^2 - 6x + 15B. 12x^2 - 6x - 15C. 12x^2 + 6x - 15D. 12x^2 + 6x + 15二、填空题1.将(a + 2b - c)(a - 2b + c)展开后的结果是________。

答案:a^2 - 4b^2 + c^22.将2(3x^2 - 4xy + 5y^2)展开后的结果是________。

答案:6x^2 - 8xy + 10y^23.将5(2x^2 - 3xy + 4y^2)展开后的结果是________。

答案:10x^2 - 15xy + 20y^2三、解答题1.将(x - 2)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是x^2 - 4x + 4。

展开后的单项式是x^2、-4x和4。

2.将(3a - 2b)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是9a^2 - 12ab + 4b^2。

展开后的单项式是9a^2、-12ab和4b^2。

3.将2(x + 3)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是2x^2 + 12x + 18。

展开后的单项式是2x^2、12x和18。

四、综合题将(x - 3)(x + 4)展开后的结果是什么?展开后的单项式是哪些?在展开中应用了什么运算法则?解答:展开后的结果是x^2 + x - 12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项式乘以多项式练习题
一、选择题
1.化简2(21)(2)x x x x ---的结果是( )
A .3x x --
B .3x x -
C .21x --
D .31x -
2.化简()()()a b c b c a c a b ---+-的结果是( )
A .222ab bc ac ++
B .22ab bc -
C .2ab
D .2bc -
3.如图14-2是L 形钢条截面,它的面积为( )
A .ac+bc
B .ac+(b-c)c
C .(a-c)c+(b-c)c
D .a+b+2c+(a-c)+(b-c)
4.下列各式中运算错误的是( )
A .3422(231)462x x x x x x -+-=+-
B .232(1)b b b b b b -+=-+
C .231(22)2x x x x --=--
D .342232(31)2323
x x x x x x -+=-+ 5.2211(6)(6)23
ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b +
C .2332223236a b a b a b -++
D .232236a b a b -+ 二、填空题
1.22(3)(21)x x x --+-= 。

2.321(248)()2
x x x ---⋅-= 。

3.222(1)3(1)a b ab ab ab -++-= 。

4.2232(3)(23)3(25)x x x x x x ---+--= 。

5.228(34)(3)m m m m m -+--= 。

6.7(21)3(41)2(3)1x x x x x x ----++= 。

7.22223(2)()a b ab a b a --+= 。

8.223263()(2)2(1)x x y x x y --⋅-+-= 。

9.当t =1时,代数式322[23(22)]t t t t t --+的值为 。

10.若20x y +=,则代数式3342()x xy x y y +++的值为 。

三、解答题
1.运算下列各题
(1)111()()(2)326
a a
b a b a b -++---
(2)32222211(2)(2)()342
x y xy x y xy x y z ⋅-+-⋅-⋅
(3)223121(3)()232
x y y xy +-⋅-
(4)3212[2()]43
ab a a b b --+
(5)32325431()(2)4(75)2
a a
b ab a b ab -⋅--⋅--
2.已知26ab =,求253()ab a b ab b --的值。

3.若12
x =,1y =,求2222()()3()x x xy y y x xy y xy y x ++-+++-的值。

4.某地有一块梯形实验田,它的上底为m m ,下底为n m ,高是h m 。

(1)写出这块梯形的面积公式;
(2)当8m =m ,14n =m ,7h =m 时,求它的面积。

5.已知:20a b +=,求证:332()40a ab a b b +++=。

四、探究题:
1.先化简,再求值
22(69)(815)2(3)x x x x x x x x -----+-,其中16
x =-。

2.已知225(2520)0m m n -+-+=,
求2(2)2(52)3(65)3(45)m m n m n m n n m n ---+---的值。

3.解方程:2
x x x x x
--+=-
(25)(2)6
4.已知:单项式M、N满足22
+=+,求M、N。

2(3)6
x M x x y N
五、应用题
1、某商家为了给新产品作宣传,向全社会征集广告用语及商标图案,结果下图
商标(图中阴影部分)中标,求此商标图案的面积。

2、爱因斯坦公式
伟大的科学家爱因斯坦在谈到成功的要领时写下了公式:W x y z
=++,并说明说,W代表成功,x代表困难的劳动,y代表正确的方法,z代表少说空话。

关于数学名言,你明白多少?。

相关文档
最新文档