表面磁光克尔效应

合集下载

磁光克尔效应 知乎

磁光克尔效应 知乎

磁光克尔效应磁光克尔效应是一个物理学中的重要现象,涉及到光与物质的相互作用。

在深入了解这一效应之前,我们需要先理解一些基础概念。

首先,让我们了解一下什么是光。

光是电磁波的一种形式,它具有振荡的电场和磁场。

当光波与物质相互作用时,它的电场和磁场与物质的原子或分子的电子云相互作用,导致光波的偏振状态发生变化。

这种变化可以由所谓的“光学克尔效应”来描述。

光学克尔效应描述的是当光波通过某些物质时,其偏振状态如何发生变化的现象。

这种效应是由电磁波与物质中的电子相互作用引起的。

当光波通过某些特定的物质时,其偏振方向会发生旋转,这就是光学克尔效应的表现。

然而,磁光克尔效应则更进一步。

它涉及到磁场对光学克尔效应的影响。

当一个磁化的物质被光波通过时,磁场会对电子的轨道和自旋产生影响,从而影响光的偏振状态。

这种由于磁场存在而导致的偏振状态变化被称为磁光克尔效应。

磁光克尔效应在许多领域都有着广泛的应用,例如在光学通信、光学传感、光学存储以及磁学和光学器件等领域。

它可以被用来检测磁场和电流的变化,从而用于磁场和电流的测量和监控。

此外,磁光克尔效应还可以被用于实现光的逻辑门操作,从而实现光计算和光通信的更快速度和更高效率。

在深入研究磁光克尔效应的过程中,科学家们发现了一些有趣的现象。

例如,他们发现当一束线偏振光通过磁化的物质时,其偏振方向不仅会发生变化,还会出现椭圆化现象。

这种现象被称为“椭圆磁光克尔效应”,它为人们提供了一种测量磁场的新方法。

除了椭圆磁光克尔效应外,科学家们还发现了其他一些有趣的磁光克尔效应的现象,例如法拉第旋转、法拉第克尔效应等。

这些现象在物理学、光学和磁学等领域都有着广泛的应用。

总之,磁光克尔效应是一个非常有趣和重要的物理现象,它在许多领域都有着广泛的应用。

随着科技的不断发展,磁光克尔效应将会在更多的领域得到应用,为人们的生活和工作带来更多的便利和可能性。

表面磁光柯尔效应原

表面磁光柯尔效应原

實驗一 表面磁光柯爾效應原理與操作一、磁光柯爾效應原理在1845年,Michael Faraday首先發現了磁光效應,他發現外加磁場在玻璃樣品上,入射光的偏極化面有旋轉的現象,隨後他在金屬表面上外加磁場做光反射的實驗,但實驗結果不能使人信服,因為當時他的表面不夠平整。

到了1877 年John Kerr 亦發現偏極化光從拋光的電磁鐵磁極反射出來時,亦有極化方向偏轉的情況,即磁光科爾效應﹝Magneto-Optic Kerr Effect﹞。

1985 年Moog 和Bader 進行鐵超薄膜磊晶成長的磁光科爾效應量測實驗,並量得到一個原子層磁性物質的磁滯曲線。

由於此測量方法之靈敏度可達一原子層厚度,配合現在超高真空系統之技術,因此成為表面磁學研究重要的一環。

所謂磁光效應或法拉第效應之原理為:因自身磁化產生異向性的折射率導致了不同的相位,並且吸收了不同的振幅。

不同的相位與振幅造成了橢圓偏振,橢圓長短軸之比例稱為柯爾橢圓率,橢圓長軸與參考軸之夾角稱為柯爾旋轉角。

待測樣品若為透明且等向性的介質置於一強磁場內﹝見圖一﹞圖一則當線性偏極光沿磁場方向穿透此晶體時,其極化方向將旋轉一角度Δψ,此角度Δψ與所加的磁場強度B和介質長度L成正比,寫成:Δψ=B.L.V對於不透光材料﹝即表面磁光效應﹞,當光行進方向的任一分量與磁性材料的磁化量成平行時,其反射﹝或穿透﹞光的偏振方向將與原偏振光的方向產生一相對的旋轉角,即稱科爾旋轉角﹝Kerr rotation angle,θk﹞,如圖二所示﹝如為穿透光則稱為法拉第旋轉角﹞。

假設垂直於材料的磁化方向向上所產生的科爾旋轉角是“+θk",;則磁化方向向下的磁化量所產生的旋轉角將會是“-θk"。

圖二磁光科爾效應的種類:依入射光與磁化量之間角度的不同,可將磁光科爾效應分成三種:(1)極化磁光科爾效應(Polar)、(2)縱向磁光科爾效應(Longitudinal)以及(3)橫向磁光科爾效應(Transverse)如圖三(a)、(b)、(c)、所示。

磁光克尔效应及其测量

磁光克尔效应及其测量

磁光克尔效应及其测量磁光克尔效应是一种物理现象,它可以使光通过磁场发生变化,从而有助于研究光的特性。

磁光克尔效应的发现起源于二十世纪初,当时,埃尔森弗朗西斯阿伯特克尔(Ernst Franz Abbe)发现当在放射光照射磁场时,克尔指数发生变化,这种现象被称作磁光克尔效应。

磁光克尔效应可以被用来研究和测量光的特性,它主要会影响光的双折射,衍射和色散。

克尔效应有多种类型,其中重要的一种是非线性克尔效应,即通过磁场改变光的双折射。

磁光克尔效应也可以用来测量激光的分布、光的偏振状态和其他特性。

磁光克尔效应的测量主要使用磁光克尔效应测量仪,它可以测量光的显微结构和发送的量子数。

它们可以用来测量光的偏振状态、衍射图像、光的色散等,以及纳米结构的形状和光源。

测量仪也可以用来研究激光脉冲的信号。

在实验室中,磁光克尔效应测量仪可以用来研究光的特性,并发现新的效应。

磁光克尔效应测量仪是一个可以用来探索物理现象的重要工具。

它们可以用来探究激光脉冲的行为、激光腔的性质,以及光的色散和偏振性质。

另外,磁光克尔效应测量仪还可以用来研究复合材料的结构,以及支持纳米尺度结构的力学特性。

在研究光的性质时,磁光克尔效应的测量是一项重要的任务,它可以为研究者提供重要的信息和见解,帮助他们更好地理解光的特性。

磁光克尔效应测量仪也被用于科学和工程领域,为科研和应用提供了重要的研究数据和技术支持。

总之,磁光克尔效应是一种非常重要的物理现象,它可以用来研究光的物理性质和量子特性。

磁光克尔效应测量仪可以用来测量和研究光的衍射图像、偏振状态和其他特性,也可以用于研究复合材料和纳米结构的形状和光源。

另外,研究者还可以使用磁光克尔效应测量仪来探索激光脉冲的信号。

表面磁光克尔效应

表面磁光克尔效应

表面磁光克尔效应(物教101林晗)摘要克尔磁光效应:入射的线偏振光在已磁化的物质表面反射时,振动面发生旋转的现象,1876年由J.克尔发现。

克尔磁光效应的最重要应用是观察铁磁体的磁畴(见磁介质、铁磁性)。

不同的磁畴有不同的自发磁化方向,引起反射光振动面的不同旋转,通过偏振片观察反射光时,将观察到与各磁畴对应的明暗不同的区域。

用此方法还可对磁畴变化作动态观察。

利用磁光克尔效应测量磁性薄膜的磁信号和磁滞回线,确定磁性薄膜的磁各向异性随薄膜厚度的影响。

研究铁磁(FM)/反铁磁(AFM)双层膜的交换偏置(Exange bias)现象。

关键词:偏振光;振动面;磁畴目录摘要 (1)序论 (3)1表面磁光克尔效应原理 (3)1.1 表面磁光克尔效应 (4)1.2 交换偏置 (4)2三种克尔效应分析 (4)2.1极向克尔效应 (5)2.2纵向克尔效应 (5)2.3横向克尔效应 (5)3实验光路图 (5)3.1光路图的连接 (5)3.2光路图的特点 (6)4克尔信号分析 (7)4.1磁滞回线原理 (7)4.2磁化原理 (8)5表面克尔磁光效应的实际应用 (8)5.1磁性材料的开发 (9)5.2提高器件的速率. (9)结语 (9)参考文献 (9)附件一 (10)序论磁光效应指的是光与处于磁化状态的物质之间发生相互作用而引起的各种光学现象。

包括克尔磁光效应、科顿-穆顿效应(磁双折射效应)和塞曼效应、法拉第效应等。

物质的磁化都是这些效应起源的重要条件,这些效应反映了物质磁性与光间的联系。

这些都被广泛用于探索研究与技术相关的磁材料。

目前研究和应用最广泛的磁光效应为法拉第效应和克尔效应。

1845年,英国物理学家法拉第首次发现了线偏振光透过放置磁场中的物质,沿着磁场方向传播时,光的偏振面发生旋转的现象,后来被称为法拉第效应[1]。

受到了法拉第效应的启示,1876年,克尔发现了线偏振光入射到磁化媒质表面反射时偏振面发生旋转的现象,即克尔效应[2]。

磁光Kerr效应

磁光Kerr效应

当一束单色线偏振光照射在磁光介质薄膜表面时,部分光线将发生透射,透射光线的偏振面与入射光的偏振面相比有一转角,这个转角被叫做磁光法拉第转角(θF).而反射光线的偏振面与入射光的偏振面相比也有一转角,这个转角被叫做磁光克尔转角(θk),这种效应叫做磁光克尔效应.磁光克尔效应包括三种情况:(1)纵向克尔效应,即磁化强度既平行于介质表面又平行于光线的入射面时的克尔效应;(2)极向克尔效应,即磁化强度与介质表面垂直时发生的克尔效应;(3)横向克尔效应,即磁化强度与介质表面平行时发生的克尔效应写入了信息的磁光介质,利用磁光克尔效应来读出所写的信息.具体方法是:将一束单色偏振光聚焦后照射在介质表面上的某点,通过检测该点处磁畴的磁化方向来辨别信息的“0”或“1”。

例如,被照射的点为正向磁化,+θk,,相反被照射的点为反向磁化,-θk。

因此,如果偏振分析器的轴向恰好调整为与垂直于记录介质的平面成θk夹角,那么在介质上反向磁化点的反射光线将不能通过偏振分析器,而在介质的正向磁化处,反射光则可以通过偏振分析器。

这表明反射光的偏振面旋转了2θk的角度.这样,如果我们在经过磁光介质表面反射的光线后方,在通过偏振分析器后的光路上安放一光电检测装置(例如光电倍增管),就可以很方便地辨认出反射点是正向磁化还是反向磁化,也就是完成了“0”和“1”的辨认.如果把磁光介质附着在可旋转的圆盘表面,磁光盘.旋转时,如果同时有单色偏振光聚焦在磁光盘表面,就可实现光线的逐点扫描,即信息被连续读出。

Θk影响因素1、温度,通常、温度的升高θk将减小;2、θk与成分的配比有很大的关系3、与入射光的波长有密切的关系。

测得θk与波长的关系曲线-磁光谱。

一定波长对应峰值。

第四,与制备的工艺有直接关系,如退火的程序、时间、环境倾向采用波长更短的光(如蓝色激光)作为光源来进行磁光信息存储,其光子具有更高能量。

磁光克尔效应研究

磁光克尔效应研究

磁光克尔效应研究摘要:当光电子技术日益在新兴高科技领域获得广泛应用的同时,以磁光效应原理为背景的磁光器件显示了其独特的性能和广阔的应用前景,引起了人们的浓厚兴趣。

表面磁光克尔效应,作为测量材料磁光特性特别是薄膜材料的物性的一种有效方法,已被广泛应用于磁有序、磁各向异性、多层膜中的层间耦合以及磁性超薄膜的相变行为等问题的研究。

本文简单介绍了什么是磁光克尔效应、磁光克尔效应的发展、以及表面磁光克尔效应作为一种测量方法的原理、实验装置和发展。

关键词:磁光克尔效应;磁光特性;表面磁光克尔效应1.引言1845年,Michael Faraday发现当给玻璃样品加一磁场时,透射光的偏振面将发生旋转,首次发现磁光效应。

随后他在处于外加磁场中的金属表面做反射实验,但由于他所谓的表面不够平整,因而实验结果不能使人信服。

1877年John Kerr在观察偏振光从抛光过的电磁铁磁极反射出来时,发现了磁光克尔效应(magneto-optic Kerr effect)。

1985年Moog和Bade r两位学者对铁超薄膜磊晶成长在金单晶(100)面上的磁光克尔效应做了大量实验,成功得到一原子层厚度磁性物质的磁滞回线,并提出SMOKE作为表面磁光克尔效应(surface magneto-optic Kerr effect)的缩写,用以表示应用磁光克尔效应在表面磁学上的研究。

由于此方法磁性测量灵敏度达一原子层厚度,且此装置可配置于超高真空系统上面工作,所以成为表面磁学的重要研究方法。

2.磁光克尔效应图1 克尔效应示意图一束线偏振光从具有磁矩的介质表面反射时,反射光将是一束椭圆偏振光,而且偏振方向将发生产生旋转。

相对于入射的线偏振光(以椭圆的长轴为标志)的偏振面方向有一定的偏转,偏转的角度为克尔转角,短轴与长轴的比为椭偏率,如图1所示。

复磁光克尔角定义为:,其大小正比于样品的磁化强度。

表1给出了常见的磁性物质在室温下的磁光克尔转角的数值。

表面磁光科尔效应与超薄膜磁性性质

表面磁光科爾效應與超薄膜磁性性質文/蔡志申摘要表面磁光科爾效應其磁性解析靈敏度達一原子層厚度,且儀器配置合於超高真空系統之工作,為奈米級超薄膜磁性研究之一大利器。

本文以實驗者角度介紹表面磁光科爾效應原理,並簡介超薄膜之磁滯曲線特性、磁異向性、磁性相變與合金之磁性性質。

一、簡介在1845年,Michael Faraday首先發現了磁光效應[1,2],他發現當外加磁場在玻璃樣品上時,透射光的偏極面發生旋轉的效應,隨後他在外加磁場之金屬表面上做光反射的實驗,但由於他所謂的表面並不夠平整,因而實驗結果不能使人信服。

1877年John Kerr在觀察偏極化光從拋光過的電磁鐵磁極反射出來時,發現了磁光科爾效應(magneto-optic Kerr effect)[2,3]。

1985年Moog 和Bader兩位學者進行鐵超薄膜磊晶成長在金單晶(100)面上的磁光科爾效應量測實驗,成功地得到一原子層厚度磁性物質之磁滯曲線,並且提出了以SMOKE來作為表面磁光科爾效應(surface magneto-optic Kerr effect)的縮寫,用以表示應用磁光科爾效應在表面磁學上的研究[4,5]。

由於此方法之磁性解析靈敏度達一原子層厚度,且儀器配置合於超高真空系統之工作,因而成為表面磁學的重要研究方法。

隨著科學技術的發展,應用元件的科技研發方向正快速朝向輕、薄、短、小推展,控制在奈米層次所製造出來的奈米電子元件其元件密度、速度、耗能及成本效益將遠超過現有的半導體技術;在元件製作過程中,能成長高品質的薄膜與精準地控制其物性,才能保證接續之微形蝕刻之成功,因而厚度僅約幾個原子層之超薄膜的相關研究在電子工業元件尺寸奈米化的技術中更顯得重要;由於在磁性感測器、磁光記憶元件、磁性記憶體等之工業應用與磁性自旋電子元件的可能性,帶來了億兆美元的商機,磁性超薄膜的物性研發,不但可帶動相關科學知識之突破,更可有效地提升工業技術,因而世界各科技先進國家無不投入大量資源。

表面磁光克尔效应实验


2. 实验原理--橫向克尔效应
图4 横向克尔效应 如图4所示,磁化方向在样品膜面内,并且垂直于 入射面。横向克尔效应中反射光的偏振状态没有变化。 这是因为在这种配置下,光电场与磁化强度矢积的方 向永远没有与光传播方向相垂直的分量。横向克尔效 应中,只有在偏振光(偏振方向平行于入射面)入射 条件下,才有一个很小的反射率的变化。
1. 历史背景
3.SMOKE测量到的信息来源于介质上的 光斑照射的区域。由于激光光束的束斑可用聚 焦到1mm以下,这意味着SMOKE可以进行局 域磁性的测量。这一点是其他磁性测量手段诸 如振动样品磁强计和铁磁共振所无法比拟的。
在磁性超薄膜的研究中,样品的制备是一 个周期较长而代价昂贵的过程。有人已经实现 在同一块样品上按生长时间不同而制备出厚度 不等的锲形磁性薄膜。这样从一块样品上就能 够得到磁学性质随薄膜厚度变化的信息,可以 大大提高实验效率。无疑,SMOKE的这种局 域测量的特点使它成为研究这类不均匀样品的 最好工具。
2的光线有一个本底光强。 反射光偏振面旋转方向和
同向时,则光强增大,反向
时,则光强减小,因此,样 品的磁化方向可以通过光强 的变化来区分。
2. 实验原理--SMOKE的数学推导
在图2的光路中,假设取入射光为 p 偏振(电场矢量 Ep
平行于入射面),当光线从磁化了的样品表面反射时 由于克尔效应,反射光中含有一个很小的垂直于 Ep 的电场分量 Es ,通常 Es << Ep 。在一阶近似下有:
两个偏振棱镜的设置状态 主要是为了区分正、负克尔 旋转角。
若两个偏振方向设置在消 光位置,无论反射光偏振面 是顺时针还是逆时针旋转, 反映在光强的变化上都是强 度增大。
这样,就无法区分偏振面 的正负旋转方向,也就无法 判断样品的磁化方向。

表面磁光克尔效应实验


当两个偏振方向之间有一个小角度时,通过 偏振棱镜2的光线有一个本底光强。反射光偏振面 旋转方向同向时光强增大,反向时光强减小,这 样样品的磁化方向可以通过光强的变化来区分。
表面磁光克尔效应实验扫描图样
克尔信号分析
虽然表面磁光克尔效应的测量结果是克尔 旋转角或者克尔椭偏率,并非直接测量磁 性样品的磁化强度。但是在一阶近似的情 况下,克尔旋转角或者克尔椭偏率均和磁 性样品的磁化强度成正比。表面磁光克尔 效应实际上测量的是磁性样品的磁滞回线, 因此可以获得矫顽力、磁各向异性等方面 的信息。
磁性材料可分为顺磁质、抗磁质、铁磁质等, 磁性材料可分为顺磁质、抗磁质、铁磁质等,它们 的磁化机制各不相同在这里不作详细介绍。 的磁化机制各不相同在这里不作详细介绍。 磁性材料又可分为硬磁材料、软磁材料、 磁性材料又可分为硬磁材料、软磁材料、矩磁材料 等等,它们的磁滞回线是各有特点的 等等,它们的磁滞回线是各有特点的
B
B
B
O
H
H
O
H
硬磁材料 软磁材料 矩磁材料
磁化原理
(1)、一般材料的磁化原理 )、一般材料的磁化原理 B0
(a)无外磁场时
B/
(b)有外磁场时
(2)、铁磁质的磁化原理 )、铁磁质的磁化原理B0Fra bibliotek(a)无外磁场时
(b)有外磁场时
课后问题
如何判断是哪种克尔效应?
如何判断正负克尔效应?正负克尔效应的产 生与什么因素有关?
2.纵向克尔效应:磁化方向在样品膜面内, 并且平行于入射面。纵向克尔信号的强度 一般随光的入射角的减小而减小,在零入 射角时为零。
3.横向克尔效应:磁化方向在样品膜面内, 并且垂至于入射面。横向克尔效应中反射 光的偏振状态没有变化。

表面磁光科尔效应

表面磁光克尔效应(SMOKE)一、磁光效应简介1845年,Michael Faraday首先发现了磁光效应,即当外加磁场在玻璃样品上时,透射光的偏极面发生旋转的效应(法拉第效应);随后他在外加磁场之金属表面上做光反射的实验,但由于他所谓的表面并不够平整,因而实验结果不能使人信服。

1877年John Kerr在观察偏振光从拋光过的电磁铁磁极反射出来时,发现了磁光科尔效应(magneto-optic Kerr effect)。

1985年Moog和Bader 两位学者研究了生长在Au单晶(100)面上的Fe单晶超薄膜的磁光克尔效应测量实验,成功地得到一个原子层厚度磁性物质的磁滞曲线,并且提出了以SMOKE 来作为表面磁光克尔效应(surface magneto-optic Kerr effect)的缩写,用以表示磁光克尔效应在表面磁学上的研究。

这是SMOKE首次被用于研究在Au(0 0 1)表面外延生长的Fe超薄膜的磁学性质。

由于SMOKE所表现出的亚原子单层的磁性探测灵敏度和易于与超高真空系统结合的特点,使它在近些年已经发展成为一种重要的和常规的研究薄膜磁学性质的技术。

它被广泛应用于研究表面超薄膜的磁有序、磁性相变、磁各向异性,以及层间耦合等多种磁学现象。

同时SMOKE在商业上还被应用于商用高密度的磁光存储技术。

SMOKE的优点:和别的磁性测量手段相比,SMOKE具有四个优点:1) SMOKE的灵敏度极高。

国际上现在通用的SMOKE测量装置其探测灵敏度可以达到亚原子层的磁性,这一点使得SMOKE在磁性超薄膜的研究中有着重要地位。

2) SMOKE测量是一种无损伤测量。

探测用的“探针”是可见光束,因此不会对样品造成任何破坏,对于需要做多种测量的实验样品来说,这一点非常有利。

3) SMOKE 可以测量局域磁性。

由于SMOKE测量到的信息来源于被测介质上的光斑照射点,这意味着SMOKE可以对样品上最小的光斑尺寸范围作局域磁性测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档