磁光效应实验报告
电光磁光效应实验报告(3篇)

第1篇一、实验目的1. 理解电光效应和磁光效应的基本原理。
2. 通过实验验证马吕斯定律和法拉第定律。
3. 探究电光晶体在不同电场和磁场下的光学性质。
4. 深入理解光的偏振现象及其在光通信和光显示等领域的应用。
二、实验原理电光效应是指当光通过电场作用下的介质时,光的偏振方向发生改变的现象。
马吕斯定律描述了电光效应的基本规律,即入射光的偏振方向与电场方向垂直时,透射光的强度与入射光的强度成正比。
磁光效应是指光通过磁场作用下的介质时,光的偏振方向发生改变的现象。
法拉第定律描述了磁光效应的基本规律,即光在磁场中传播时,其偏振方向会旋转。
三、实验仪器与材料1. 电光晶体样品(如LiNbO3)2. 激光器(如He-Ne激光器)3. 偏振器4. 电场发生器5. 磁场发生器6. 光功率计7. 光谱仪8. 望远镜9. 计算机及数据采集系统四、实验步骤1. 电光效应实验(1)将电光晶体样品放置在实验装置中,并确保其表面平行于电场方向。
(2)调整偏振器,使其偏振方向与入射光的偏振方向垂直。
(3)开启激光器,调节光功率计,使入射光功率稳定。
(4)调节电场发生器,改变电场强度,观察透射光的偏振方向变化。
(5)记录不同电场强度下透射光的偏振方向,并与理论计算结果进行比较。
2. 磁光效应实验(1)将电光晶体样品放置在实验装置中,并确保其表面平行于磁场方向。
(2)调整偏振器,使其偏振方向与入射光的偏振方向垂直。
(3)开启激光器,调节光功率计,使入射光功率稳定。
(4)调节磁场发生器,改变磁场强度,观察透射光的偏振方向变化。
(5)记录不同磁场强度下透射光的偏振方向,并与理论计算结果进行比较。
3. 电光与磁光效应综合实验(1)同时调节电场发生器和磁场发生器,观察透射光的偏振方向变化。
(2)记录不同电场和磁场强度下透射光的偏振方向,并与理论计算结果进行比较。
五、实验数据与结果分析1. 电光效应实验:通过实验数据,可以观察到透射光的偏振方向随电场强度的变化而变化,符合马吕斯定律。
磁光效应实验报告讲解

磁光效应实验报告班级:光信息31姓名:张圳学号:21210905023同组:白燕,陈媛,高睿孺近年来,磁光效应的用途愈来愈广,如磁光调制器,磁光开关,光隔离器,激光陀螺中的偏频元件,可擦写式的磁光盘。
所以掌握磁光效应的原理和实验方法非常重要。
一.实验目的1.掌握磁光效应的物理意义,掌握磁光调制度的概念。
2.掌握一种法拉第旋转角的测量方法(磁光调制倍频法)。
3.测出铅玻璃的法拉第旋转角度θ和磁感应强度B之间的关系。
二.实验原理1. 磁光效应当平面偏振光穿过某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表面其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即:θ(9-1)=vlB式中l为光波在介质中的路径,v为表征磁致旋光效应特征的比例系数,称为维尔德常数,它是表征物质的磁致旋光特性的重要参数。
根据旋光方向的不同(以顺着磁场方向观察),通常分为右旋(顺时针旋转)和左旋(逆时针旋转),右旋时维尔德常数v>O,左旋时维尔德常数v<0。
实验还指出,磁致旋光的方向与磁场的方向有关,由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏振等功能性磁光器件,在激光技术发展后,其应用价值倍增。
如用于光纤通讯系统中的磁光隔离器等。
2.在磁场作用下介质的旋光作用从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。
这里左旋和右旋是相对于磁场方向而言的。
图3 法拉第效应的唯象解释如果磁场的作用是使右旋圆偏振光的传播速度c / n R 和左旋圆偏振光的传播速度c / n L 不等,于是通过厚度为d 的介质后,便产生不同的相位滞后:d n R R λπϕ2= , d n L L λπϕ2= (2) 式中λ 为真空中的波长。
磁光效应实验报告

磁光效应实验报告磁光效应是指当一束光穿过具有磁性的介质时,光的传播速度和偏振方向都会发生变化的现象。
磁光效应实验是研究光在磁场中的行为和性质的重要手段,通过实验可以验证磁光效应的存在,并测定磁光常数等参数。
本实验旨在通过测量光在磁场中的传播速度和偏振方向的变化,验证磁光效应的存在,并进一步探究其规律和特性。
实验仪器和材料:1. He-Ne 氦氖激光器。
2. 磁铁。
3. 偏振片。
4. 介质样品。
5. 光电探测器。
6. 数据采集系统。
实验步骤:1. 将氦氖激光器放置在实验台上,并调整使其发出稳定的激光。
2. 在激光器发出的光路上放置一个偏振片,调整偏振片使光通过后为线偏光。
3. 将磁铁放置在光路上,使光线通过磁场区域。
4. 在磁场区域内放置介质样品,调整磁场强度和方向。
5. 在光路的末端放置光电探测器,并连接数据采集系统,记录光的强度和偏振方向随时间的变化。
实验结果:通过实验测量和数据分析,我们发现在磁场作用下,光的传播速度和偏振方向发生了变化。
当介质样品处于磁场中时,光的传播速度随磁场强度和方向的变化而发生改变,同时光的偏振方向也发生了旋转。
这些结果表明了磁光效应的存在,并且为进一步研究磁光效应的规律和特性提供了重要的实验数据。
实验讨论:磁光效应的存在和特性对于光学和材料科学具有重要意义。
通过实验我们可以进一步研究磁光常数和材料的磁光性质,为开发新型光学器件和材料提供理论和实验基础。
在实际应用中,磁光效应也被广泛应用于光学通信、光存储和光传感等领域,具有重要的科学和技术价值。
结论:通过本次实验,我们验证了磁光效应的存在,并测定了光在磁场中的传播速度和偏振方向的变化。
磁光效应是光学和材料科学中的重要现象,具有重要的理论和实际应用价值。
我们将继续深入研究磁光效应的规律和特性,为光学和材料科学的发展做出更多的贡献。
通过本次实验,我们对磁光效应有了更深入的了解,也为相关领域的研究和应用提供了实验数据支持。
磁科尔效应实验报告

一、实验目的1. 理解磁光科尔效应的基本原理。
2. 通过实验观察并测量磁光科尔效应的现象。
3. 探讨磁光科尔效应在不同条件下的变化规律。
二、实验原理磁光科尔效应,又称次电光效应(QEO),是指当一束光通过响应于电场的材料时,材料的折射率发生变化的现象。
这种现象与普克尔斯效应不同,其诱导折射率的变化与电场的平方成正比。
磁光科尔效应分为克尔电光效应(直流科尔效应)和光克尔效应(交流科尔效应)两种特殊情况。
三、实验器材1. 磁光克尔效应实验装置2. 可调直流电源3. 可调交流电源4. 光源5. 分束器6. 折射率测量仪7. 计时器8. 记录本四、实验步骤1. 将磁光克尔效应实验装置连接好,确保各部分连接牢固。
2. 打开光源,调整光源强度,使其稳定。
3. 将分束器置于光源和样品之间,调整分束器,使部分光束照射到样品上,另一部分光束作为参考光束。
4. 调整样品,使其位于光路中心。
5. 打开可调直流电源,调整电压,使样品受到直流电场作用。
观察折射率测量仪的示数,记录数据。
6. 关闭直流电源,打开可调交流电源,调整电压和频率,观察折射率测量仪的示数,记录数据。
7. 重复步骤5和6,分别记录不同电压、频率下的折射率变化数据。
8. 分析实验数据,探讨磁光克尔效应的变化规律。
五、实验结果与分析1. 直流电场下,样品的折射率随电压平方增大而增大,符合磁光克尔效应的特点。
2. 交流电场下,样品的折射率随电压平方增大而增大,但随频率变化而变化。
当频率较高时,折射率变化较小;当频率较低时,折射率变化较大。
3. 通过实验数据分析,得出磁光克尔效应的变化规律如下:- 直流电场下,折射率变化与电压平方成正比。
- 交流电场下,折射率变化与电压平方成正比,但随频率变化而变化。
六、实验结论1. 磁光克尔效应实验成功观察到磁光克尔效应现象。
2. 实验结果表明,磁光克尔效应与电压平方成正比,且随频率变化而变化。
3. 该实验验证了磁光克尔效应的基本原理,为磁光克尔效应在光学信息处理、光通信等领域的研究提供了实验依据。
磁光效应实验报告

磁光效应实验报告磁光效应实验报告引言:磁光效应是指材料在磁场作用下产生的光学效应。
这一效应在物理学领域中具有重要的研究价值和应用前景。
本次实验旨在通过磁光效应实验,探究磁场对光学性质的影响,并进一步了解磁光效应的机理。
实验材料与仪器:本次实验所用的材料为磁光材料,其中磁光晶体是最常见的一种。
实验仪器包括磁场发生器、光源、光电探测器、光学元件等。
实验步骤:1. 准备工作:根据实验要求,调整光源的亮度和波长,确保实验环境的稳定性。
2. 设置实验装置:将光源、光电探测器和磁场发生器依次连接起来,确保信号的传输和接收正常。
3. 施加磁场:通过磁场发生器产生稳定的磁场,调整磁场的强度和方向,并记录相关数据。
4. 测量光学性质:将磁光材料放置在磁场中,利用光电探测器测量光的强度变化,并记录相关数据。
5. 数据分析:根据实验数据,进行曲线拟合和统计分析,得出实验结果。
实验结果与讨论:通过实验,我们观察到在磁场的作用下,光的强度发生了变化。
进一步分析数据,我们发现光的强度随着磁场的增加而呈现出线性变化的趋势。
这一结果表明了磁光效应的存在,并证实了磁场对光学性质的影响。
磁光效应的机理可以通过磁光晶体的结构来解释。
磁光晶体中的电子受到磁场的作用,会发生能级的分裂。
当光通过磁光晶体时,受到电子能级的影响,光的传播速度和振动方向会发生变化,从而导致光的强度发生改变。
这种现象被称为磁光效应。
磁光效应在光通信、光存储等领域具有广泛的应用前景。
通过研究磁光效应,可以进一步提高光学器件的性能,实现更高效的光传输和信息存储。
此外,磁光效应还可以用于磁光显示器等领域,为显示技术的发展提供新的可能性。
结论:通过本次实验,我们成功地观察到了磁光效应,并通过数据分析得出了实验结果。
磁光效应的存在证实了磁场对光学性质的影响。
磁光效应的机理可以通过磁光晶体的结构来解释。
磁光效应在光通信、光存储等领域具有广泛的应用前景,为光学器件的性能提升和显示技术的发展提供了新的可能性。
磁光效应实验报告

沈阳工业大学创新性实验报告实验课题: 磁光效应专业班级:XXXXXX姓名: XXX学号: XXXXXX****: **磁光效应实验【实验目的】1、了解法拉第效应产生的原因。
2、会用消光法检测磁光玻璃的费尔德常数。
3、学会用消光法检测磁光玻璃的费尔德常数能。
【实验仪器】半导体激光器、起偏器、电磁铁(螺线管)、检偏器、直流稳压电源、多量程电流表、光电功率计【实验原理】概述:1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。
法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。
之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。
法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。
,,从而减少光纤中器件表面反射是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光光对光源的干扰;磁光隔离器也被广泛应用于激光多级放大和高分辨率的激光光谱,激光选模等技术中。
在磁场测量方面,利用法拉第效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲强磁场、交变强磁场。
在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏的高压电流。
法拉第效应实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B成正比,即:θVBd=比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。
费尔德常数V与磁光材料的性质有关,对于顺磁、弱磁和抗磁性材料(如重火石玻璃等),V为常数,即θ与磁场强度B有线性关系;而对铁磁性或亚铁磁性材料(如YIG等立方晶体材料),θ与B不是简单的线性关系。
磁光克尔 实验报告

磁光克尔实验报告引言磁光效应是指光波在磁场中传播时发生的旋光现象。
克尔效应是磁光效应的一种特殊现象,指的是在磁场中垂直于磁场方向的光波传播时,会发生旋光现象。
磁光克尔实验是用来研究磁光效应的一种常用实验方法,本实验旨在通过观察和测量克尔角来研究磁光克尔效应,并验证克尔关系式。
实验装置与原理实验装置主要由磁铁、起偏器、检偏器、光源、光阑、样品、读数器等组成。
光源经过起偏器后,成为偏振光,通过光阑后遇到样品,样品中的光将发生旋光,然后再通过检偏器,最后进入读数器进行测量。
克尔角是克尔效应的一个重要参数,定义为磁场方向与光轴方向(矩形截面晶体的主平面内)法线的夹角。
克尔角的大小直接与样品的性质及磁场的强弱有关。
实验步骤1. 将实验装置按照要求搭建好,调整起偏器和检偏器的角度,使其相互垂直。
2. 使用光源照射样品,调整磁铁的电流大小,观察检偏器的显示值,并记录下来。
3. 改变磁场的方向,逐渐增加电流大小,记录下检偏器的显示值。
4. 根据记录的数据绘制出克尔角随磁场强度的变化曲线。
数据处理与分析根据实验记录的数据,我们可以得到克尔角随磁场强度的变化曲线。
根据克尔关系式可以得到:K = V / (L * B)其中,K为克尔角,V为检偏器的显示值,L为样品的长度,B为磁场的强度。
通过绘制曲线,我们可以观察到克尔角随磁场强度的变化趋势。
一般来说,随着磁场强度的增加,克尔角会呈现出先增大后减小的趋势。
这是因为在磁场较弱时,磁光效应相对较小,克尔角较小;随着磁场强度的增加,磁光效应逐渐强化,克尔角也逐渐增大;当磁场达到一定强度后,由于样品本身的特性限制,克尔角开始减小。
结论通过本次实验,我们成功研究了磁光克尔效应,并验证了克尔关系式。
我们观察到克尔角随磁场强度的变化曲线,并根据该曲线得出了克尔角随磁场强度变化的一般规律。
此外,我们还了解到了磁光克尔效应在光学、材料学等领域的重要应用。
总的来说,本实验对我们深入理解磁光效应以及克尔效应的产生机制起到了重要的作用,为进一步研究相关领域的理论和应用提供了实验基础。
磁光效应物理实验报告(3篇)

第1篇一、实验目的1. 理解磁光效应的原理及其在光学领域中的应用;2. 掌握磁光效应实验的基本操作;3. 通过实验,测定磁光效应中的一些关键参数,如磁光克尔效应和法拉第效应;4. 分析实验数据,得出磁光效应的相关规律。
二、实验原理磁光效应是指电磁波在磁场中传播时,其电磁场分布发生变化的现象。
主要包括磁光克尔效应和法拉第效应。
1. 磁光克尔效应:当线偏振光通过具有磁光性质的介质时,其偏振面会旋转一个角度,称为克尔角。
克尔效应的大小与磁场的强度和介质的磁光常数有关。
2. 法拉第效应:当线偏振光通过具有法拉第效应的介质时,其偏振面会旋转一个角度,称为法拉第角。
法拉第效应的大小与磁场的强度、介质的法拉第常数以及光在介质中的传播速度有关。
三、实验仪器与材料1. 磁光克尔效应实验装置:包括线偏振光源、磁光克尔效应样品、检偏器、光电池等;2. 法拉第效应实验装置:包括线偏振光源、法拉第效应样品、检偏器、光电池等;3. 直流稳压电源、磁铁、光具座、光电池读数仪等。
四、实验步骤1. 磁光克尔效应实验:(1)将线偏振光源发出的光通过检偏器,得到线偏振光;(2)将线偏振光照射到磁光克尔效应样品上,调节磁铁的位置,使样品处于磁场中;(3)通过检偏器观察光电池的输出信号,记录克尔角;(4)改变磁场强度,重复上述步骤,得到一系列克尔角数据。
2. 法拉第效应实验:(1)将线偏振光源发出的光通过检偏器,得到线偏振光;(2)将线偏振光照射到法拉第效应样品上,调节磁铁的位置,使样品处于磁场中;(3)通过检偏器观察光电池的输出信号,记录法拉第角;(4)改变磁场强度,重复上述步骤,得到一系列法拉第角数据。
五、实验数据整理与归纳1. 对磁光克尔效应实验数据进行处理,得到克尔角与磁场强度的关系曲线;2. 对法拉第效应实验数据进行处理,得到法拉第角与磁场强度的关系曲线;3. 根据实验数据,分析磁光克尔效应和法拉第效应的规律。
六、实验结果与分析1. 磁光克尔效应实验结果表明,克尔角与磁场强度呈线性关系,符合磁光克尔效应的规律;2. 法拉第效应实验结果表明,法拉第角与磁场强度呈线性关系,符合法拉第效应的规律;3. 通过实验,验证了磁光效应在光学领域中的应用,如光学隔离器、光开关等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴不够重合,检偏棱镜,透镜聚焦位置不好,抑或是测量时噪音过大,影像数据的读取。
四、
参考文献
[1]. Qiu Z Q , Bader S D. Surface magneto-optic Kerreffect [J ] . Journal of Magnetism and Magnetic Materials , 1999 ,200 :664~678. [2]. 赵凯华. 新概念物理教程·光学[M] . 北京:高等教育出版社,2004. [3]. 刘公强,乐志强,沈德芳。磁光学。 上海科学技术出版社,2002. [4]. 廖延彪. 偏振光学[M] . 北京:科学出版社,2005. [5]. 吴思诚 王祖铨. 近代物理实验 高等教育出版社,2005. [6]. M. Faraday, Trans. Roy. Soc. (London) 5 (1846) 592. [7]. J. Kerr, Philos. Mag. 3 (1877) 339. [8]. J. Kerr, Philos. Mag. 5 (1878) 161. [9]. E.R. Moog, S.D. Bader, Superlattices Microstruct. 1 (1985) [10]. 543. [11]. S.D. Bader, E.R. Moog, P. GruK nberg, J. Magn. Magn. [12]. Mater. 53 (1986) L295. [13]. S.D. Bader, J. Magn. Magn. Mater. 100 (1991) 440. [14]. J.C. Maxwell, A Treatise on Electricity and Magnetism, [15]. Vol. II, chap. XXI, Clarendon Press, Oxford, 1873, pp.399-417. [16]. Z.Q. Qiu, S.D. Bader / Journal of Magnetism and Magnetic Materials 200 (1999) 664}678 677
数据表(略) 由数据:I(+)=0.120V, I(-)=0.092V I0=[I(+)+I(-)]/2=0.106V △I=I(+)-I(-)=0.028 δ=60′
θk =3.96′ 结论:外加磁场使样品饱和时,有正向饱和与反向饱和,而两种饱和之间的转化通过的曲线 是不重合的。通过外加磁场使样品饱和后,样品本身的性质发生了变化,即在同一个磁场下 测得电压(探测器光强)不同。实验中得到的磁滞回线在饱和处的交叉一方面可能是光路光
B/mT
斜率 K=-0.03898, R=-0.99966
V k / D = -0.01299(°/(mT*mm))=-7796[(′)/(T*cm)]
结论:旋光玻璃的费尔德常数为负数,基本符合旋光玻璃的参数。根据公式可知其原因是在 旋光玻璃中右旋偏振光的折射率小于左旋偏振光。 根据公式亦可知旋光玻璃色散 dn/dl 为正 数。 3、 表面磁光克尔效应
斜率 k=-0.07594, R=-0.99994
V / BD, / B k (斜率)
V k / D
V=-0.012657(°/(mT*mm))=-7594[(′)/(T*cm)] 样品二:
B-α 点 线 图 拟 合直 线
5
α /°
4 3 2 1 0 -120 -100 -80 -60 -40 -20 0
样品二: 完全消光位置:9.30° B/mT 角度/° 偏转角/° -11.4 9.76 0.46 -23.5 10.27 0.97 -35.7 10.66 1.36
B-α拟合直线
样品一:
B-α 曲 线
10
拟 合直 线
α /°
8
6
4
2
0 -120 -100 -80 -60 -40 -20 0
B/mT
故: 它表明法拉第旋光角的大小和样品介质的厚度成正比,和磁场强度成反比,并且和 入射光的波长λ及样品的色散有关。 2)表面磁光克尔效应 ①当一束线性偏振光入射到不透明样品表面时, 如果样品是各向异性的, 反射光将变成椭圆 偏振光且偏振方向会发生偏转。 而如果此时样品为铁磁状态, 还会导致反射光偏振面相对于 入射光的偏振面额外再转过一小角度, 这个小角度称为克尔旋转角θK , 即椭圆长轴和参考 轴间的夹角。同时,由于样品对 p 偏振光和 s 偏振光的吸收率不同,反射光的椭偏率也要 发生变化,这个变化称为克尔椭偏率εK ,即椭圆长短轴之比。 按照磁场相对入射面的配置状态不同, 表面磁光克尔效应可以分为 3 种: a. 极向克尔效应,其磁化方向垂直于样品表面并且平行于入射面; b. 纵向克尔效应, 其磁化方向在样品膜面内,并且平行于入射面; c. 横向克尔效应,其磁化方向在样品膜面内,并且垂直于入射面. 经推导,得磁饱和情况下克尔旋角为:
磁光效应实验
姓 班 学 名: 级: 号:
指导老师: 陈宏 实验时间: 2012.04.09
【摘要】 :本实验通过研究由光路、励磁电源及电磁铁、样品架、探测、数据采集等部分构 成的系统,根据法拉第效应和表面磁光克尔效应原理,设计了几个实验,磁致旋光效应和克 尔效应进行了观察,对法拉第旋转角、费尔德常数和纵向克尔转角进行了测量和计算。实验 过程中通过控制变量法、数据采集并作图、计算机软件观测等方法手段,让我们对法拉第效 应和表面磁光克尔效应有了更深的理解,对相应的测量有了更好的掌握。 【关键词】 :法拉第效应、表面磁光克尔效应、费尔德常数、纵向克尔转角
克尔椭偏率:
二、
实验
由光路、励磁电源及电磁铁、样品架、探测、数据采集等部分构成如下图的两个系统。 先对磁场进行标定,再分别调整如图光路至满足实验对光路的要求,并对法拉第偏转角、透 过检偏棱镜的光强进行测量,用以计算费尔德常数和纵向克尔转角。
图 1、法拉第实验光路图
图二、表面磁光克尔效应光路图
三、
实验数据处理及结论
1、 磁场标定 数据表格
I/A B/mT
0 0
0.05 -11.4
0.10 -23.5
0.15 -35.7
0.20 -47.8
0.25 -59.8
0.30 -72.0
0.35 -84.1
0.40 -96.2
0.45 -108.2
0.50 -120.3
表一、磁场标定 B-I 曲线
B-I曲 线 拟 合直 线
B/mT
0
-20
-40
-60
-80
-100
-120 0.0 0.1 0.2 0.3 0.4 0.5
I/A
图 、B-I 图 B=-241.4I+0.45 R=-0.99999
结论:励磁电流与磁场在(0.5A 以内)基本成正比 2、 法拉第效应 样品一 B/mT 角度/° 偏转角/° 数据表格 完全消光位置:10.84° -11.4 11.56 0.72 -23.5 12.43 1.59 -35.7 13.38 2.54 D:6.1mm -47.8 14.28 3.44 D:3mm -47.8 11.18 1.88 -59.8 11.57 2.27 -72.0 12.06 2.76 -84.1 12.55 3.25 -96.2 13.06 3.76 -108.2 13.54 4.24 -120.3 14.02 4.72 -59.8 15.20 4.36 -72.0 16.12 5.28 -84.1 17.01 6.17 -96.2 17.94 7.1 -108.2 18.86 8.02 -120.3 19.86 9.02
一、
前言
1、 实验背景 一束入射光进入具有固有磁矩的物质内部传输或者在物质界面反射时, 光波的传播特性, 例 如偏振面、 相位或者散射特性会发生变化, 这个物理现象称为磁光效应 (magneto-optic effect ) 。 法拉第效应和克尔效应都属于磁光效应。 法拉第效应已广泛应用与现代技术中, 例如应用于 物质结构、半导体物理、电工测量、激光技术等的研究中。而克尔效应作为表面磁学的重要 实验手段,已被广泛应用与磁有序、磁各向异性、多层膜中层间耦合以及磁性超薄膜间的相 变行为等问题的研究中。 2、 实验原理 1) 、法拉第效应 ①在磁场不是非常强时, 偏振面旋转的角度α与光波在介质中走过的路程 D 及介质中的 磁感应强度在光的传播方向的分量 B 成正比,即: α = VBD。比例系数 V 由物质和工作波 长决定,表征物质的磁光特性,这个系数称为费尔德常数。 ②经典理论: 法拉第效应来源于电磁场与物质的相互作用。 一束平面偏振光可以分解为 左旋和右旋(相对于磁场)圆偏振光, 当它沿着磁场方向通过磁场中的介质时, 磁场与电子轨 道平面垂直,则电子受到径向洛伦磁力作用,由于光具有左旋和右旋两个电矢量,电子所受 的总径向力(劳仑磁力和束缚力)有两个不同的取值, 因此电子的轨道半径不同, 磁场的作用 使左旋园偏振的折射率 nL 和右旋圆偏振光 nR 不相等, 产生一定的位相差, 从而引起电矢量 偏振面的旋转。α(法拉第转角)为:
③法拉第旋转角的计算
由量子理论知道,样品介质中原子的轨道电子具有磁偶极矩
平面偏振光在磁场 B 作用下通过样品介质时, 光量子与轨道电子发生相互作用, 光量子使轨 道电子由基态激发到高能态,处于激发态的轨道电子吸收了光量子的角动量±h,电子的动 能和以前一样没有改变,而势能则增加了△V。
介质对光量子折射率与光量子能量有关: