模糊逻辑推理与模糊方程

合集下载

模糊控制——理论基础(4模糊推理)

模糊控制——理论基础(4模糊推理)

模糊控制——理论基础(4模糊推理)1、模糊语句将含有模糊概念的语法规则所构成的语句称为模糊语句。

根据其语义和构成的语法规则不同,可分为以下⼏种类型:(1)模糊陈述句:语句本⾝具有模糊性,⼜称为模糊命题。

如:“今天天⽓很热”。

(2)模糊判断句:是模糊逻辑中最基本的语句。

语句形式:“x是a”,记作(a),且a所表⽰的概念是模糊的。

如“张三是好学⽣”。

(3)模糊推理句:语句形式:若x是a,则x是b。

则为模糊推理语句。

如“今天是晴天,则今天暖和”。

2、模糊推理常⽤的有两种模糊条件推理语句:If A then B else C;If A AND B then C下⾯以第⼆种推理语句为例进⾏探讨,该语句可构成⼀个简单的模糊控制器,如图3-11所⽰。

其中A,B,C分别为论域U上的模糊集合,A为误差信号上的模糊⼦集,B为误差变化率上的模糊⼦集,C为控制器输出上的模糊⼦集。

常⽤的模糊推理⽅法有两种:Zadeh法和Mamdani法。

Mamdani推理法是模糊控制中普遍使⽤的⽅法,其本质是⼀种合成推理⽅法。

注意:求模糊关系时A×B扩展成列向量,由模糊关系求C1时,A1×B1扩展成⾏向量3、模糊关系⽅程①、模糊关系⽅程概念将模糊关系R看成⼀个模糊变换器。

当A为输⼊时,B为输出,如图3-12所⽰。

可分为两种情况讨论:(1)已知输⼊A和模糊关系R,求输出B,这是综合评判,即模糊变换问题。

(2)已知输⼊A和输出B,求模糊关系R,或已知模糊关系R和输出B,求输⼊A,这是模糊综合评判的逆问题,需要求解模糊关系⽅程。

②、模糊关系⽅程的解近似试探法是⽬前实际应⽤中较为常⽤的⽅法之⼀。

人工智能的模糊推理与模糊逻辑

人工智能的模糊推理与模糊逻辑

人工智能的模糊推理与模糊逻辑人工智能的模糊推理与模糊逻辑在当今信息时代发展中扮演着重要的角色。

随着人工智能技术的不断进步,越来越多的领域开始应用模糊推理与模糊逻辑,以解决现实世界中存在的复杂问题。

模糊推理是指基于模糊集合理论的推理方法,能够应对模糊、不确定和不完全信息的推理和决策问题。

而模糊逻辑则是一种扩展了传统逻辑的形式,用于处理模糊概念和模糊语言的推理问题。

模糊推理与模糊逻辑的基础是模糊集合理论。

模糊集合理论是20世纪60年代由日本学者山下丰提出的,用来描述现实世界中存在的模糊、不确定性和不完全性现象。

在模糊集合理论中,每个元素都有一个隶属度,表示其属于该模糊集合的程度。

通过模糊集合的交集、并集和补集等运算,可以对模糊信息进行处理和推理,从而实现对不确定性问题的分析和决策。

在人工智能领域,模糊推理与模糊逻辑的应用范围非常广泛。

其中一个重要的应用领域是模糊控制系统。

在传统的控制系统中,输入和输出之间的关系通常是通过清晰明确的数学模型来描述的,但是现实世界中很多系统存在着模糊性和不确定性,这时就需要使用模糊推理和模糊逻辑来构建模糊控制系统。

通过模糊控制系统,可以有效地处理复杂系统的控制问题,提高系统的性能和稳定性。

另一个重要的应用领域是模糊信息检索和决策支持系统。

在信息爆炸的时代,人们需要从海量的数据中获取有用的信息,模糊推理和模糊逻辑可以帮助人们快速、准确地找到他们需要的信息。

通过模糊信息检索和决策支持系统,可以有效地处理模糊查询和不完全信息的检索问题,提高信息检索的效率和准确性。

除了以上两个应用领域外,模糊推理与模糊逻辑还可以应用于模式识别、专家系统、人工智能语音识别等领域。

在模式识别领域,模糊推理和模糊逻辑可以帮助系统更准确地识别复杂模式和特征,提高模式识别的准确性和鲁棒性。

在专家系统领域,模糊推理和模糊逻辑可以帮助系统模拟人类专家的知识和推理过程,实现对复杂问题的自动化处理和分析。

在人工智能语音识别领域,模糊推理和模糊逻辑可以帮助系统更好地理解和处理人类语音,提高语音识别的准确性和鲁棒性。

模糊推理课件

模糊推理课件

模糊逻辑
一切具有模糊性的语言都称为模糊语言 , 它是一种广泛使用的自然语言,如何将模 糊语言表达出来,使计算机能够模拟人的 思维去推理和判断,这就引出了语言变量 这一概念 。语言变量是以自然语言中的词、 词组或句子作为变量 。语言变量的值称为 语言值,一般也是由自然语言中的词、词 组或句子构成。语言变量的语言值通常用 模糊集合来描述,该模糊集合对应的数值 变量称作基础变量。
首先求系统的模糊关系矩阵 R
R ( A B) ( A C)
由玛达尼(Mamdani)法得
0.8 A B A B ( x, y ) 0.4 0.1 0 A C AC ( x, y ) 0.5 0.5
0.5 0.2 0.4 0.2 0.1 0.1 0 0 0.6 0.6 0.6 0.7
(6) 复原律
(7) 补余律 (模糊逻辑运算不符合) (8) av1=1 av0=a a∧1=a a ∧0=0
模糊逻辑对应于模糊集合论,模糊逻辑运算除了不满
足布尔代数里的补余律外,布尔代数的其它运算性质它都 适用。除此之外,模糊逻辑运算满足De-Morgan代数,即
对于补余运算,De-Morgan代数中是这样定义的:
于是,当x”较小“时的推理结果
B' ( y) A' ( x) R
即:
0 0 B ' ( y ) 1 0.6 0.4 0.2 0 0 0 0 1 0 0.4 0.7 0.7 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0.4 0.7
模糊推理系统



模糊逻辑 模糊命题 模糊推理规则 模糊推理系统
模糊逻辑
语言是一种符号系统,通常包括自然语言和人工 语言两种。自然语言是指人类交流信息时使用的 语言,它可以表示主、客观世界的各种事物、观 念、行为、情感等。自然语言具有相当的不确定 性,其主要特征就是模糊性,这种模糊性主要是 由于自然语言中经常用到大量的模糊词(如黎明、 模范、优美、拥护等)。人工语言主要是指程序设 计语言,如我们熟悉的C语言、汇编语言等。人工 语言的格式是非常严密、且概念十分清晰。

模糊逻辑与模糊推理

模糊逻辑与模糊推理

第3章模糊逻辑与模糊推理3.1命题与二维逻辑普通命题:二值逻辑中一个意义明确可以分辨真假的陈述句称为命题(举例)。

复命题:用或、与、非、若…则、当且仅当等连接的单命题称为复命题。

注意:P T Q O(PQQ)CAO 1→(01)∪1=10 0→(00)J1=13.2模糊命题与模糊逻辑模糊命题:具有模糊概念的命题称为模糊命题。

例?为一模糊命题,称v(r)=χ∈[o,ι]为模糊命题?的真值。

模糊逻辑:将研究模糊命题的逻辑称为模糊逻辑。

3.3布尔代数与De-Morgan代数布尔代数:格——满足福等律、交换律、结合律、吸收律分配格——还满足分配律再满足复原律、补余律称为布尔代数1=({0,1},v,∕∖,C)表示一个布尔代数。

模糊代数(De-MOrgen代数、模糊软代数):不满足补余律,且满足De-Morgen律的布尔代数,即1=([0,1],v,人()称为模糊代数。

3.4模糊逻辑公式模糊逻辑公式:设M,居,…,X”为在[0,1]区间中取值的模糊变量,将映射F:[o,ιp→[0,1]称为模规逻辑公式。

模糊逻辑公式/的真值T(∕),称为/的真值函数。

真值函数的运算性质:T(F)=I-T(F)T(F vF)=max(T(F),T(F))T(F A F)=min(T(FXnF))T(F→F)=min(1,I-T(F)+T(F))了真——F 中一切赋值均为T(F)≥J2 /假——尸中一切赋值均为TX 产)<g1 .模糊逻辑函数的分解例:模糊逻辑函数/(x,y,z)=0V 取丫兀由,确定/(x,y,z)在〃=2处于第一级时变量的取值范围。

解:为满足了处于第一级,则Jf(X,y,z)≥6 于是,疝≥%或xyz ≥见或xyz≥a i 则有:x≥i -a↑x≥a↑y≥∖-a[或y≥a↑z≥a 1 [z≤∖-a↑2 .模糊逻辑函数范式——标准型析取形式:∕=∑n/∙»=17=1 合取形式:F=<=1j=1举例:f(x,y,z)=[(xVy)A V[(xvz)A y]=(xvy)v(xvz)v(yvz)3.5 语言变量及其集合描述自然语言:具有模糊性,灵活。

模糊推理以及逻辑运算(重点参考第5页后的内容)

模糊推理以及逻辑运算(重点参考第5页后的内容)

对数据要求高
模糊推理需要大量的数据和样本 进行训练和优化,对于数据量较 小的情况可能无法得到理想的结 果。
如何克服模糊推理的局限性
引入人工智能技术
利用人工智能技术如深度学习、强化学习等,可以进一步提高模 糊推理的精度和效果。
结合其他方法
可以将模糊推理与其他方法如概率论、统计方法等相结合,形成混 合模型以提高精度和可靠性。
灵活性高
模糊推理不要求精确的数学模型,可以根据实际需求灵活地调整模 糊集合和隶属度函数。
适用范围广
模糊推理适用于许多领域,如控制、决策、模式识别等,能够解决许 多实际问题。
模糊推理的局限性
主观性较强
模糊推理中的模糊集合和隶属度 函数的定义往往基于专家经验或 主观判断,具有较强的主观性。
精度有限
由于模糊推理的原理,其结果的 精度往往受到一定限制,难以达 到与精确数学模型相当的水平。
根据模糊规则库中的模糊条件 语句和结论语句进行推理,得 出模糊结论。
去模糊化模块
将模糊结论转换为精确值,以 便于输出和决策。
模糊推理系统的设计流程
确定输入输出变量
首先需要确定系统的输入和输出变量, 并了解它们的变化范围和特性。
02
选择隶属度函数
根据输入输出变量的特性,选择合适 的隶属度函数,将输入的精确值转换 为模糊集合中的隶属度值。
01
03
建立模糊规则库
根据实际问题的需求,建立合适的模 糊规则库,包括条件语句和结论语句。
去模糊化处理
将推理得到的模糊结论转换为精确值, 以便于输出和决策。
05
04
设计推理算法
根据模糊规则库,设计合适的推理算 法,实现从输入到输出的映射。
模糊推理系统的应用实例

什么是模糊算法初步了解模糊逻辑

什么是模糊算法初步了解模糊逻辑

什么是模糊算法初步了解模糊逻辑模糊算法初步了解模糊逻辑随着科技和人工智能的不断发展,越来越多的算法被广泛运用于各种应用领域中。

其中,模糊算法就是其中之一。

那么,什么是模糊算法?下面就让我们一起来初步了解一下模糊逻辑吧。

一、什么是模糊算法?在传统的计算机模型中,逻辑关系是非常明确的——要么是真,要么是假。

这种二元逻辑虽然简单明了,但是却无法处理那些带有不确定性的问题,比如人类语言中那些含糊不清的描述。

而模糊逻辑则提供了一种计算模型,使得计算机能够处理那些不确定的信息。

模糊算法就是基于模糊逻辑的一种算法。

它本质上是一种模糊推理系统,通过对数据进行模糊化处理,使得模糊的数据能够被计算机所理解。

在模糊算法中,一个变量的取值不再是明确的,而是一个模糊的概念,其取值不仅可以是0或1,还可以是介于0和1之间的任何实数。

这种算法能够处理那些难以用精确数据来描述的问题,如模糊控制、图像处理、语言识别等。

二、模糊逻辑的基本概念模糊逻辑是一种可以处理模糊性的逻辑。

在模糊逻辑中,一个命题的真值不再是只有真和假两种取值,而能够取任意介于0和1之间的实数值。

具体来说,模糊逻辑中的三个基本概念是模糊集、隶属度函数和模糊关系。

1. 模糊集模糊集是指定义在某个数学空间上的一类不精确的集合。

与传统集合不同的是,模糊集可以包括一些元素,它们的隶属度是介于0和1之间的实数值,即一个元素属于模糊集的程度。

比如,我们可以定义一个“年轻人”模糊集,其隶属度可以根据不同年龄段来定义。

2. 隶属度函数隶属度函数是一个数学函数,它可以将一个元素与一个模糊集进行联系。

其输出是该元素与该模糊集之间的隶属度,可以理解为描述该元素在该模糊集中所占的比重。

例如,一个“温和”的隶属度函数可能如下表示:___________///________________0.2 0.5 1其中,数值0.2表示隶属度在0.2时的取值,0.5表示隶属度在0.5时的取值,1表示隶属度在1时的取值。

人工智能领域中的模糊逻辑推理算法

人工智能领域中的模糊逻辑推理算法

人工智能领域中的模糊逻辑推理算法人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够智能地表现出类似人类的思维和行为的科学。

在人工智能领域中,模糊逻辑推理算法是一种重要的方法,其可以有效地处理现实世界中存在的不确定性和模糊性问题。

本文将介绍人工智能领域中的模糊逻辑推理算法及其应用。

一、模糊逻辑推理算法概述模糊逻辑推理算法是基于模糊逻辑的推理方法,模糊逻辑是对传统的布尔逻辑的扩展,允许命题的真值在完全为真和完全为假之间存在连续的可能性。

模糊逻辑推理算法通过模糊化输入和输出,使用模糊规则进行推理,最终得到模糊结果。

模糊逻辑推理算法主要包括以下几个步骤:1. 模糊化:将输入的精确值转化为模糊化的值,反映出其模糊性和不确定性。

2. 模糊规则匹配:根据模糊规则库,匹配输入的模糊值和规则库中的规则。

3. 推理:根据匹配到的规则进行推理,得到模糊输出。

4. 解模糊化:将模糊输出转化为精确值,以便进行后续的处理和决策。

二、模糊逻辑推理算法的应用领域1. 专家系统专家系统是一种能够模拟人类专家的思维和行为的计算机程序。

在专家系统中,模糊逻辑推理算法可以用于处理专家知识中存在的模糊性和不确定性,帮助系统作出正确的决策和推理。

2. 模式识别模式识别是通过对事物特征进行抽象和分类,从而识别和理解事物的过程。

在模式识别中,模糊逻辑推理算法可以用于处理存在模糊性和不确定性的模式,提高模式识别的准确性和鲁棒性。

3. 数据挖掘数据挖掘是从大量的数据中发现潜在的、有效的信息,并进行模式的分析和提取的过程。

在数据挖掘中,模糊逻辑推理算法可以用于处理数据中存在的模糊性和不确定性,挖掘出更多有意义的信息。

4. 控制系统控制系统是指对某个对象或过程进行控制的系统。

在控制系统中,模糊逻辑推理算法可以用于处理控制对象的模糊输入和输出,实现对控制系统的智能化控制。

三、模糊逻辑推理算法的发展趋势随着人工智能领域的不断发展,模糊逻辑推理算法也在不断演化和完善。

模糊推理方法

模糊推理方法

模糊推理方法模糊推理方法是一种基于模糊逻辑的推理方法,它不同于传统的二值逻辑推理,而是考虑了事物之间的不确定性和模糊性。

在现实生活中,我们经常面对各种模糊的问题,例如天气预报、医学诊断、金融风险评估等等,这些问题都存在一定的模糊性和不确定性。

而模糊推理方法正是为了解决这些模糊问题而被提出的。

模糊推理方法的核心是模糊集合理论,它将模糊性作为一个数学概念进行描述。

在模糊集合理论中,每个元素都可以具有一定的隶属度,表示该元素属于该模糊集合的程度。

通过模糊集合的隶属度,我们可以对事物进行模糊分类和模糊推理。

模糊推理方法主要包括模糊逻辑推理和模糊数学推理两种形式。

模糊逻辑推理是通过对模糊命题的模糊逻辑运算,推导出模糊结论的过程。

模糊数学推理则是利用模糊数学的方法,通过模糊关系的运算,得出模糊结论的过程。

在模糊推理方法中,常用的推理规则包括模糊蕴涵规则、模糊合取规则、模糊析取规则等。

这些推理规则可以根据具体的问题和需求进行选择和组合,以实现对模糊问题的推理和决策。

模糊推理方法的应用非常广泛。

在天气预报中,由于气象数据的不确定性和模糊性,传统的二值逻辑推理往往无法准确预测天气情况。

而模糊推理方法可以通过对多个气象数据的模糊运算,得出更准确的天气预报结果。

在医学诊断中,由于病情的复杂性和多样性,传统的二值逻辑推理往往无法全面考虑各种可能性。

而模糊推理方法可以通过对病情特征的模糊分类和模糊推理,提供更全面的医学诊断结果。

除了天气预报和医学诊断,模糊推理方法还广泛应用于金融风险评估、交通流量预测、工程管理等领域。

在金融风险评估中,由于金融市场的不确定性和复杂性,传统的二值逻辑推理往往无法准确评估风险。

而模糊推理方法可以通过对各种金融指标的模糊运算,得出更准确的风险评估结果。

在交通流量预测中,由于交通数据的不确定性和随机性,传统的二值逻辑推理往往无法准确预测交通流量。

而模糊推理方法可以通过对多个交通数据的模糊运算,得出更准确的交通流量预测结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊逻辑推理与模糊方程
本次课程内容
1 近似推理 2 模糊条件推理 3 多输入模糊推理 4 多输入多规则推理 5 解模糊方程
模糊逻辑推理
扎德推理法
A B 1 (1 A B) A B (A B) (1 A)
AB (x, y) [A (x) B ( y)] [1 A (x)]
玛达尼推理法
0.3 0.3 0.4 0.7 0.7
[10.6 R 0.6 0.6 0.6 0.6 0.6
1
1
1
1
1
1 1 1 1 1
[0.40.40.40.7
较大
(
y)
[
0.4 1
0.4 2
0.4 3
0.7 4
1] 5
模糊条件推理
模糊逻辑推理
语言规则: 如果x是A,则y是B,否则y是C。
逻辑表达: (A B) (A C)
A B AB
AB (x, y) A (x) B ( y)
模糊逻辑推理
1 近似推理 前提1: 如果x是A, 则y是B 前提2: 如果x是A‘ , 结论: y是B’ ,
B' A' ( A B)
B'
(
y)
{
x
A'
(
x)
AB
(
x,
y)}
论域X=Y={ 1,2,3,4,5 } , ”较小“,分别如下:
0.3 0.3 0.4 0.7 0.7
R 0.6 0.6 0.6 0.6 0.6
1
1
1
1
1
1 1 1 1 1
0 0 0.4 0.7 1
0
0
0.4
0.7
0.7
R 0 0 0.3 0.3 0.3
0 0 0
0
0
0 0 0 0 0
较大 ( y) 较小( y) R
0 0 0.4 0.7 1
模糊方程
解模糊方程
A R=B
设 A F(U V) B F(U W) R F(V W)
A=(aij )mn B=(bij )ms R=(rij )ns
A R A (R1 R 2 ... Rs ) (B1 B2 ... Bs )
A Ri =Bii 1,...s
Ri rrrn TBi bbbm T
0.5 0.6 0.7
0.8 0.5 0.2 R 0.5 0.6 0.6
0.5 0.6 0.7
D [0.2 R [0.5
多输入模糊推理
模糊逻辑推理
前提1: 如果A且B, 那么 C
前提2: 现在是A‘且B’
结论: C' ( A'and' ( A'and' C] ( A' A C)] (B' C)]
小(x) [10.7
大 ( y) [00 较小(x) [10.6
x小y大 (x小1, y大1) [小 大 ] [1 小]
=[1 0][1-1]=0
x小y大 (x小1, y大3 ) [小 大 ] [1 小]
=[1 0.4][1-1]=0.4
小→大的关系矩阵R
0 0 0.4 0.7 1
0.5
0.2 0.5
D'
0.5 0.1
0.2 0.1
1 0
C' 0.2 0.2 z1 z2
多输入多规则推理
if andBthenC1 if mandBmthenCm
if andBthenC1 否则 if andB2thenC2 否则 否则 if mandBmthenCm
C' =C1' C'2 ...... C'n Ci' ( Ai' Ai Ci )] (Bi' i Ci )
问题: 当输入 A= 0.2/x1 + 1/x2 + 0.4/x3 时,输出D?
R (A B) (AC)
R (x, y) [A (x) B ( y)] [(1 A(x)) C ( y)]
0.8 0.5 0.2 A B 0.4 0.4 0.2
0.1 0.1 0.1
0 0 0 A C 0.5 0.6 0.6
a11 a12 ... a1n r1 b1
a21
a22
...
a2
n
r2
b2
. . ... . . .
R (A B) (AC)
R (x, y) AB
AC
[A (x) B ( y)] [(1 A (x)) C ( y)]
B' A' R A' [(A B) (AC)]
一个系统,当输入为A时,输出为B,否则输出C。已知 A=1/x1 + 0.4/x2 + 0.1/x3 B=0.8/y1 + 0.5/y2 + 0.2/y3 C=0.5/y1 + 0.6/y2 + 0.7/y3
在X和Y上有三个模糊子集 “大”、 “小”、
“大”=0.4/3 + 0.7/4 + 1/5
“小“=1/1 + 0.7/2 + 0.3/3
“较小”=1/1 + 0.6/2 + 0.4/3 + 0.2/4
规则为若x小,则y大, 那么当x=较小时,y=?
(Y?)=(X较小)([ X小)(Y大)]
y? (y?) 较小{x较小(x较小) x小y大 (x小, y大)}
x1 x2
y1 y2 y3
z1 z2
已知: A'=0.8+0.1 及 B'=0.5+0.2+ 0 , 求C'
x1 x2
y1 y2 y3
0.1 0.5 1 D A B 0.1 0.5 0.5
0.1
0.1 0.1
0.5
0.2 0.5
R
DT
C
1 0.1
0.2
1
0.2 0.1
1 0.1
0.5
0.2 0.5
模糊逻辑推理
C' (z) {A' (x) [A (x) C (z)]} {B' ( y) [B ( y) C (z)]}
x
y
{A' (x) A (x) C (z)} {B' ( C (z)} {B C (z)}
( A B ) C (z)
得到
D
.
.
.
dm1 . dmn
将D写成列矢量DT DT [d11d1ndm1dmn ]T
求关系矩阵R
R=DT X C
由 A’ 和 B’ 求出 D’ 将D’ 也写成 DT’
D’=A’ X B’
最后得到所求的 C’ C’=DT’ 。R
设 A= 1 +0.5 且 B=0.1+0.5+ 1 ,则C=0.2+ 1
A {A' (x) A(x)} B {B' ( y) B ( y)} x
模糊推理过程也可以用模糊关系矩阵的运算来表述 比如: 已知 IF A and B then C 那么,当 A‘ and B’ 时 C’=?
先求D=AXB, 令
dxy A(x) B ( y)
d11 . d1n
相关文档
最新文档