(完整版)高中数学必修一第二章测试题(含答案).docx

合集下载

高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章一、单选题1.已知a≥0,b≥0,且a+b=2,则( )A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤32.已知正数x,y满足x+1y=1,则1x+4y的最小值为( )A.9B.10C.6D.83.在实数集上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意实数x都成立,则实数a的取值范围是( )A.(﹣1,1)B.(0,2)C.(―12,32)D.(―32,12)4.已知1≤a+b≤5,―1≤a―b≤3,则3a―2b的取值范围是( )A.[―6,14]B.[―2,14]C.[―2,10]D.[―6,10] 5.若关于x的不等式x2―4x―2―a>0在区间(1,4)内有解,则实数a的取值范围是( )A.a<―2B.a>―2C.a>―6D.a<―6 6.若x=5―2,y=2―3,则x,y满足( )A.x>y B.x≥y C.x<y D.x=y7.正数a,b满足9a +1b=2,若a+b≥x2+2x对任意正数a,b恒成立,则实数x的取值范围是( )A.[―4,2]B.[―2,4]C.(―∞,―4]∪[2,+∞)D.(―∞,―2]∪[4,+∞)8.设正数a,b满足b―a<2,若关于x的不等式(a2―4)x2+4bx―b2<0的解集中的整数解恰有4个,则a的取值范围是( )A.(2,3)B.(3,4)C.(2,4)D.(4,5)二、多选题9.下列函数最小值为2的是( )A.y=x2+1x2B.y=x2+3+1x2+3C.y=2x+12x D.y=x2+1x,x>010.已知a>0,b>0.若4a+b=1,则( )A.14a +1b的最小值为9B.1a+1b的最小值为9C.(4a+1)(b+1)的最大值为94D.(a+1)(b+1)的最大值为9411.已知a>0,b>0,则下列式子一定成立的有( )A.2aba+b ≤ab B.a2+b22≤a+b2C.1a +1b≤4a+bD.a2+b22≤a2+b2a+b12.已知正数a,b满足a(a+b)=1,下列结论中正确的是( )A.a2+b2的最小值为22―2B.2a+b的最小值为2C.1a +1b的最小值为332D.a―b的最大值为1三、填空题13.设一元二次不等式ax2+bx+1>0的解集为{x|―1<x<13},则ab的值是 .14.已知x,y为正实数,且x+4y=1x+1y=m,则m的最小值为 .15.已知实数a,b满足ab>0,则aa+b―aa+2b的最大值为 16.已知实数x,y,z满足:{x+y+z=3x2+y2+z2=36,则|x|+|y|+|z|的最大值为 .四、解答题17.已知集合A={x|―2<x<5},B={x|m+1≤x≤2m―1}.(1)当m=3时,求(∁R A)∩B;(2)若A∪B=A,求实数m的取值范围.18.求证下列问题:(1)已知a,b,c均为正数,求证:bca +acb+abc≥a+b+c.(2)已知xy>0,求证:1x>1y的充要条件是x<y.19.已知不等式组{―x<2,x2+7x―8<0的解集为A,集合B={x|a―5<x<3a―5}.(1)求A;(2)若A∪B=B,求a的取值范围.20.已知函数g(x)=k2x+k,ℎ(x)=x2―2(k2―k+1)x+4.(1)当k=1时,求函数y=ℎ(x)g(x),x∈(―∞,―1)的最大值;(2)令f(x)={g(x),x>0ℎ(x),x<0,求证:对任意给定的非零实数x1,存在惟一的实数x2(x1≠x2)使得f(x1)=f(x2)成立的充要条件是k=4.21.若函数f(x)=a x2―(2a+1)x+2.(1)讨论f(x)>0的解集;(2)若a=1时,总∃x∈[13,1],对∀m∈[1,4],使得f(1x)+3―2mx≤b2―2b―2恒成立,求实数b的取值范围.22.已知函数f(x)=2|x+1|―|x―a|(a∈R).(Ⅰ)当a=2时,求不等式f(x)⩾x+2的解集;(Ⅱ)设函数g(x)=f(x)+3|x―a|,当a=1时,函数g(x)的最小值为t,且2m +12n=t(m>0,n>0),求m+n的最小值.答案解析部分1.【答案】C 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】A,C 10.【答案】B,C 11.【答案】A,D 13.【答案】614.【答案】315.【答案】3―2216.【答案】1+22217.【答案】(1)解:∵集合A ={x|―2<x <5},B ={x|m +1≤x ≤2m ―1}.∴∁R A ={x|x ≤―2或x ≥5},m =3时,B ={x|4≤x ≤5},∴(∁R A )∩B ={5}(2)解:若A ∪B =A ,则B ⊆A ,当B =∅时,m +1>2m ―1,解得m <2,成立;当B ≠∅时,{m +1≤2m ―1m +1>―22m ―1<5,解得2≤m <3,综上实数m 的取值范围为(―∞,3)18.【答案】(1)证明:bc a +ac b +ab c =2bc a +2ac b +2ab c 2=bc a +ac b +bc a +ab c +ac b +ab c 2≥2bc a ⋅ac b+2bc a ⋅ab c+2ac b ⋅ab c=a +b +c ,当且仅当bc a =ac b ,bc a=ab c ,acb =abc ,即a =b =c 时等号成立.(2)证明:依题意xy >0,则{x >0y >0或{x <0y <0,所以:1x >1y ⇔1x ―1y =y ―x xy >0⇔y ―x >0⇔x <y ,所以:1x>1y 的充要条件是x <y .19.【答案】(1)解:由{―x <2x 2+7x ―8<0,得{x >―2―8<x <1,得―2<x <1,所以A ={x |―2<x <1}.(2)解:由A ∪B =B ,得A ⊆B ,所以{a ―5≤―23a ―5≥1,得2≤a ≤3,故a 的取值范围为[2,3].20.【答案】(1)解:当 k =1 时,函数 y =x 2―2x +4x +1, x ∈(―∞,―1) ,令 t =x +1<0 ,则 y =t +7t―4 ,此时 ―t >0 ,由 (―t )+(―7t )≥2(―t )×7―t =27 ,即 t +7t≤―27 ,当且仅当 t =―7 ,即 x =―7―1 时取等号,综上,当 x =―7―1 时, y 最大值是 ―27―4 .(2)解:充分性:当 k =4 时, f (x )={16x +4,x >0x 2―26x +4,x <0 , 当 x >0 时, y =16x +4 在 (0,+∞) 单调递增,且 y >4 ,当 x <0 时, y =x 2―26x +4 在 (―∞,0) 单调递减,且 y >4 ,若 x 1>0 ,则存在惟一的 x 2<0 ,使得 f (x 1)=f (x 2) ,同理 x 1<0 时也成立,必要性:当 x >0 时, y =k 2x +k ,当 k =0 时, f (x ) 在 (0,+∞) 上的值域为 {0} ,显然不符合题意,因此 k ≠0 ,当 x >0 时, f (x ) 在 f (x ) 的取值集合 A =(k ,+∞) ,x <0 , f (x )=x 2―2(k 2―k +1)x +4 的对称轴 x =k 2―k +1>0 , f (x ) 在 (―∞,0) 上递减, f (x )>f (0)=4 ,所以 f (x ) 的取值集合 B =(4,+∞) ,①若 x 1>0 , f (x ) 且在 (0,+∞) 上单调递增,要使 f (x 1)=f (x 2) ,则 x 2<0 ,且 A ⊆B ,有 k ≥4 .②若 x 1<0 , f (x ) 且在 (―∞,0) 上单调递减,要使 f (x 1)=f (x 2) ,则 x 2>0 ,且 B ⊆A ,有 k ≤4 .综上: k =4 .21.【答案】(1)已知f (x )=a x 2―(2a +1)x +2,①当a =0时,f (x )=―x +2>0时,即x <2;②当a ≠0时,f (x )=a (x ―1a )(x ―2),若a <0,f (x )>0,解得 1a <x <2,若0<a <12,f (x )>0,解得x <2或x >1a ,若a =12,f (x )>0,解得x ≠2,若a >12时,f (x )>0,解得x <1a 或x >2,综上所述:当a <0时,f (x )>0的解集为(1a ,2);当a =0时,f (x )>0的解集为(―∞,2);当0<a <12时,f (x )>0的解集为(―∞,2)∪(1a ,+∞);当a =12时,f (x )>0的解集为(―∞,2)∪(2,+∞);当a >12时,f (x )>0的解集为(―∞,1a )∪(2,+∞).(2)若a =1,则f (x )=x 2―3x +2,∴f (1x )+3―2m x =1x 2―2m x +2,令t =1x ,原题等价于∃t ∈[1,3],对∀m ∈[1,4]使得t 2―2mt +2≤b 2―2b ―2恒成立,令g (m )=―2tm +t 2+2,∴g (m )是关于m 的减函数,∴对∀m ∈[1,4],g (m )≤b 2―2b ―2恒成立,即b 2―2b ―2≥g (m )max =g (1)=t 2―2t +2,又∃t ∈[1,3],b 2―2b ―2≥t 2―2t +2,即b 2―2b ―2≥(t 2―2t +2)min =12―2×1+2=1,故b 2―2b ―3=(b ―3)(b +1)≥0,解得b ≤―1或b ≥3.22.【答案】解:(Ⅰ)当 a =2 时, f (x )⩾x +2 化为 2|x +1|―|x ―2|≥x +2 ,当 x⩽―1 时,不等式化为 ―x ―4⩾x +2 ,解得 x⩽―3 ;当 ―1<x <2 时,不等式化为 3x⩾x +2 ,解得 1⩽x <2 ;当 x⩾2 时,不等式化为 x +4⩾x +2 ,解得 x⩾2 ,综上不等式 f (x )⩾x +2 的解集是 {x |x⩽―3或x⩾1}(Ⅱ)当 a =1 时, g (x )=2|x +1|+2|x ―1|⩾2|x +1+1―x |=4 ,当且仅当 (x +1)(x ―1)⩽0 ,即 ―1⩽x⩽1 时,等号成立.所以,函数 g (x ) 的最小值 t =4 ,所以 2m +12n =4 , 12m +18n=1 .m +n =(m +n )(12m +18n )=n 2m +m 8n +58⩾2n 2m ⋅m 8n +58=98 ,当且仅当 {12m +18n =1,n 2m =m 8n 即 {m =34,n =38时等号成立,所以 m +n 的最小值为 98.。

高一数学必修一第二章试卷及答案

高一数学必修一第二章试卷及答案

高一数学必修一第二章试卷及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。

必修一数学第二章测试卷(含答案)

必修一数学第二章测试卷(含答案)

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、简答题四、综合题总分得分一、选择题1、已知函数,若函数有四个零点,则实数的取值范围为()A. B. C. D.2、若函数在(,)上既是奇函数又是增函数,则函数的图象是()3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ()A.-1 B.1 C.0 D.201524、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是()A.B.C.D.5、下图可能是下列哪个函数的图象( )评卷人得分. .. .6、已知,,,则的大小关系是()A .B .C .D .7、设,,,则的大小关系是A. B. C. D.8、下列函数中值域为(0,)的是()A. B. C. D.9、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是()A .B .C .D .10、已知函数,若,则的取值范围是()A. B. C. D.11、已知函数的最小值为()A.6 B.8 C.9D.1212、已知f(x)是定义在R上的奇函数,当x<0时,f(x)=那么的值是( )A. B.- C. D.-13、下列函数中,反函数是其自身的函数为A. B.C. D.14、对于函数,令集合,则集合M为A.空集 B.实数集 C.单元素集 D.二元素集15、函数y=定义域是A .B .C .D .二、填空题评卷人得分16、函数为奇函数,则实数 .17、设函数,给出下列四个命题:①函数为偶函数;②若其中,则;③函数在上为单调增函数;④若,则。

则正确命题的序号是..18、若,则定义域为 .19、若方程有两个不相等的实数根,则的取值范围是20、定义函数,若存在常数,对于任意,存在唯一的,使得,则称函数在上的“均值”为,已知,则函数在上的“均值”为.21、在R+上定义一种运算“*”:对于、R+,有*=,则方程*=的解是= 。

人教版高中数学必修1第二章单元测试(一)- Word版含答案

人教版高中数学必修1第二章单元测试(一)- Word版含答案

2018-2019学年必修一第二章训练卷基本初等函数(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数ln 11x y x+=-定义域为( ) A .()4,1--B .()4,1-C .()1,1-D .(]1,1-2.已知log 92a =-,则a 的值为( ) A .3-B .13-C .3D .133.3662log 2+3log 3=( ) A .0B .1C .6D .62log 34.已知函数()e 11ln 1x x f x xx ⎧-≤=⎨>⎩,那么()ln2f 的值是( )A .0B .1C .()ln ln 2D .25.已知集合2log |1{}A y y x x >==,,1|,>1}2xB y y x ⎛⎫={= ⎪⎝⎭,则A B I =( ) A .1{|0}2y y <<B .{}1|0y y <<C .1{|1}2y y << D .∅6.设05log 06a .=.,11log 06b .=.,0611c .=.,则( ) A .a b c << B .b c a <<C .b a c <<D .c a b <<7.函数2xy -=的单调递增区间是( )A .()-∞∞,+B .()0-∞,C .(0)∞,+D .不存在8.函数41()2x x f x +=的图象( )A .关于原点对称B .关于直线y x =对称C .关于x 轴对称D .关于y 轴对称9.函数2log ||||xy x x =的大致图象是( )10.定义运算aa ba b ba b≤⎧⊕=⎨>⎩则函数()12x f x ⊕=的图象是( ) 此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.函数()log (1)xa f x a x =++在[]0,1上的最大值与最小值和为a ,则a 的值为( )A .14B .12C .2D .412.已知函数()f x 满足:当4x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭;当4x <时,()()1f x f x =+,则22lo )g 3(f +=( ) A .124B .112 C .18D .38二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.幂函数()f x 的图象过点14,2⎛⎫⎪⎝⎭,那么()8f =________.14.若01a <<,1b <-,则函数()x f x a b =+的图象不经过第________象限. 15.已知m 为非零实数,若函数ln 11m y x ⎛⎫=-⎪-⎝⎭的图象关于原点中心对称,则m =________.16.对于下列结论:①函数2()R x y a x ∈+=的图象可以由函数01()x y a a a >≠=,且的图象平移得到;②函数2x y =与函数2log y x =的图象关于y 轴对称; ③方程255()log 21log 2()x x +=-的解集为{}1,3-; ④函数()(n )l 1ln 1y x x -=+-为奇函数.其中正确的结论是________.(把你认为正确结论的序号都填上)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式: (1)1220.5312+22 (0.01)54--⎛⎫⎛⎫⋅- ⎪ ⎪⎝⎭⎝⎭.(2)2 30.5207103720.12 392748--⎛⎫⎛⎫+++π+⎪⎪⎝⎭⎝⎭18.(12分)求值:(1)112 23312+2|.064| 2 54-⎛⎫⎛⎫⋅0- ⎪ ⎪⎝⎭⎝⎭;(2)21 239483(log 2log 2)(log 3log 3)log 3lg1⎛⎫+⋅+++ ⎪⎝⎭.19.(12分)已知,2[]3x∈-,求11()142x xf x=-+的最小值与最大值.20.(12分)已知函数22x xy b a++=(a,b是常数,且0a>,1a≠)在区间3,02⎡⎤-⎢⎥⎣⎦上有max3y=,min52y=,试求a和b的值.21.(12分)设a ,R b ∈,且2a ≠,定义在区间()b b -,内的函数1()lg 12axf x x +=+是奇函数.(1)求b 的取值范围; (2)讨论函数()f x 的单调性.22.(12分)设()()1 2log 10f x ax -=,a 为常数.若()32f =-.(1)求a 的值;(2)求使()0f x ≥的x 的取值范围;(3)若对于区间[]3,4上的每一个x 的值,不等式1()2xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.2018-2019学年必修一第二章训练卷基本初等函数(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】∵10x +>,10x ->,∴11x -<<.故选C . 2.【答案】D【解析】∵log 92a =-,∴22193a --⎛⎫== ⎪⎝⎭,且0a >,∴13a =.故选D .3.【答案】B【解析】原式666log 2log 3log 61=+==.故选B . 4.【答案】B【解析】∵0ln21<<,∴()ln 2ln 2e 1211f =-=-=.故选B . 5.【答案】A【解析】∵1x >,∴2log 0y x >=,即{}|0A y y >=.又1x >,∴1122xy ⎛⎫=< ⎪⎝⎭,即1{|0}2B y y =<<.∴1{|0}2A B y y =<<I .故选A .6.【答案】C【解析】∵050505log 1log 06log 05<<.....,∴01a <<.1111log 06log 10<...=, 即0b <.061.11>..011=,即1c >.∴b a c <<.故选C .7.【答案】B 【解析】函数122x xy -⎛⎫== ⎪⎝⎭,当0x <时为2x y =,递增,当0x >时为12xy ⎛⎫= ⎪⎝⎭,递减.故2xy -=的单调增区间为()0-∞,.故选B .8.【答案】D【解析】函数()f x 的定义域是R ,4144414()()2242x x x x xx x x x f x f x ----+⨯++-====⨯,则函数()f x 是偶函数,其图象关于y 轴对称.故选D . 9.【答案】D【解析】当0x >时,22log log xy x x x ==,当0x <时,22log ()l ()og xy x xx =---=-,分别作图象可知选D . 10.【答案】A【解析】据题意20()121x xx f x x ⎧≤=⊕=⎨>⎩,故选A .11.【答案】B【解析】∵函数x y a =与()log 1a y x =+在[]0,1上具有相同的单调性,∴函数()f x 的最大值、最小值应在[]0,1的端点处取得,由01log 1log 2a a a a a +++=,得12a =. 故选B . 12.【答案】A【解析】222222log 3log 4log 3log 12log 164<+=+==,22log 24log 164>=, 由于当4x <时,()()1f x f x =+, 则()()22222log 3log 121log 12log 2()4()f f f f +==+=, 又当4x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭,所以22log 241log 24211(log 24)2=224f ⎛⎫== ⎪⎝⎭, 所以21(2log 3)24f +=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【解析】设()f x x α=,将14,2⎛⎫⎪⎝⎭代入,求得12α=-.则12() f x x =,所以12(8)8f =. 14.【答案】一【解析】定义域是R ,函数()f x 的大致图象如图1所示,当0x <时,1x a >,则1x a b b >++,由于1b <-,则10b <+,则函数()f x 的图象经过第二、三象限;当0x ≥时,01x a <≤,则10x b a b b <≤<++,则函数()f x 的图象经过第四象限,不经过第一象限.图115.【答案】2-【解析】由图象关于原点中心对称可知函数ln 11m y x ⎛⎫=-⎪-⎝⎭为奇函数, 即有ln 1ln 111m m x x ⎛⎫⎛⎫-=--⎪ ⎪---⎝⎭⎝⎭对于定义域内任意x 恒成立, 化简并整理得()20m m +=,因为m 为非零实数,因此解得2m =-. 16.【答案】①④【解析】2x y a +=的图象可由x y a =的图象向左平移2个单位得到,①正确; 2x y =与2log y x =的图象关于直线y x =对称,②错误;由255()log 21log 2()x x +=-得2221221020x x x x ⎧+=-⎪->⎨⎪->⎩∴1,312x x x x ⎧=-⎪⎪>-⎨⎪⎪><⎩或∴3x =.③错误;设()()()ln 1ln 1f x x x -+-=,定义域为()1,1-,关于原点对称,()()()()[ln 1ln 1ln 1()l 1()]n f x x x x x f x -++----==-=-.∴()f x 是奇函数,④正确.故正确的结论是①④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)1615;(2)100. 【解析】(1)原式1211116114310061015⎛⎫⎛⎫+⋅ ⎪ ⎪⎝⎭⎝⎭=-=+-=. (2)原式122322564375937 +10 3+1003+=1009274831648⎛⎫⎛⎫+-=++- ⎪ ⎪⎝⎭⎝⎭.18.【答案】(1)25-;(2)2.【解析】(1)原式1232=1+4525⨯-=-.(2)原式lg3lg3113lg 25lg3353·022lg 23lg 2422lg36lg 24lg 2lg 2lg3234g 4l ⎛⎫⎛⎫+-⋅ ⎪ ⎪⎝⎭⎝+⎭=++=+=+=. 19.【答案】34,57. 【解析】设12x t =,即12xt ⎛⎫= ⎪⎝⎭,∵,2[]3x ∈-,∴184t ≤≤.∴2213()124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭.又∵184t ≤≤,∴当12t =,即1x =时,()f x 有最小值34;当8t =,即3x =-时,()f x 有最大值57. 20.【答案】2a =,2b =.【解析】令22(211)u x x x ++-==,3,02x ⎡⎤∈-⎢⎥⎣⎦,所以,当1x =-时,min 1u =-;当0x =时,max 0u =.当01a <<时,满足10352a b a b -⎧+=⎪⎨+=⎪⎩,即2332a b ⎧=⎪⎪⎨⎪=⎪⎩, 当1a >时,满足10523a b a b -⎧+=⎪⎨⎪+=⎩,即22a b =⎧⎨=⎩, 综上:23a =,32b =,或2a =,2b =. 21.【答案】(1)10,2⎛⎤⎥⎝⎦;(2)见解析.【解析】(1)1()lg()12axf x b x b x+=-<<+是奇函数等价于:对任意()x b b ∈-,都有()()1012f x f x axx ⎧-=-⎪⎨+>⎪+⎩①②①式即为112lg=lg 121ax x x ax -+-+,由此可得112=121ax x x ax-+-+,也即2224a x x =, 此式对任意()x b b ∈-,都成立相当于24a =,因为2a ≠,所以2a =-, 代入②式,得12>012x x -+,即1122x -<<,此式对任意()x b b ∈-,都成立相当于 1122b b -≤-<≤,所以b 的取值范围是10,2⎛⎤⎥⎝⎦. (2)设任意的1x ,2()x b b -∈,,且12x x <,由10,2b ⎛⎤∈ ⎥⎝⎦,得121122b x x b -≤-<<<≤,所以2101212x x <-<-,1201212x x <+<+.从而()()()()()()212121221112121212lglg lg lg1012121212x x x x x x x x f x f x -+----=<=+++-=.因此()f x 在()b b -,内是减函数,具有单调性.22.【答案】(1)2;(2)9,52x ⎡⎫∈⎪⎢⎣⎭;(3)178m <-.【解析】(1)∵()32f =-,∴()1 2log 102ax -=-.即211032a -⎛⎫-= ⎪⎝⎭,∴2a =.(2)∵()()1 2log 100x f x a -≥=,∴1021x -≤.又1020x ->,∴9,52x ⎡⎫∈⎪⎢⎣⎭.(3)设()()1 21=log 102xax g x ⎛⎫-- ⎪⎝⎭.由题意知()g x m >在[]3,4x ∈上恒成立,∵()g x 在[]3,4上为增函数,∴17(3)8m g <=-.。

(完整word版)高中数学必修一第二章测试题(含答案)(word文档良心出品)

(完整word版)高中数学必修一第二章测试题(含答案)(word文档良心出品)

高中数学必修一第二 1D . y = X +函 数 的 是A . (2 ,+OO) ()B . (— 0,2)A. y =In (x+2) C[4+O )B . y =—-,x+ 1D . [3,+o )Cy=1x11.函数xy = a-1 十0, 且a 工1)的图象( )A、 y 3 y 1 y 2B 、牡 * wc 、y 1 y 3 y 2 D 、% y ?出6. F 列函数中,在区间 (0, )上为增 ( ) 章14 —7.若a<2则化简 2的结果是的是A . a p a qB . a p a qC . a 』a 乂D -a p -a q2、 已知f( 1x0二 x ,则 f( 5=)( )A 、 105B 、 510C 、 Ig10D 、Ig52a — 13 .函数y = log a x 当x>2时恒有y >1, 则a的取值范围是1口A.' a < 2 且 a = 121B . 0 ::: a 或 1 :: a 乞2C . 1 :: a乞 2 21D. a _1或0 :: a _ —24.当 a = 0 时,函数 y = ax b 和 y = b ax& 函数y = . Ig x + lg(5 — 3x)的定义域是 [05B . [0,耳C .[15、设 * =40.9,y 2 =80.48,y 3 = 1 ,则12丿A A1 r4丿它的单间是工J ■+ 00 )Doo, 0)10.函数 y = 2+ Iog 2(x 2 + 3)(x > 1)的值域、选择1 .已知p>q>1,0<a<1,则下列各式中正确 ( )A. B . - 2a — 1C. D . — 1 — 2aA C . (—3y v 3xIog4x v Iog4y+ 3的图象一定过定点15.设函数f(x)是定义在R上的奇函数,若当x€ (0, )时,f(x)= lg x,则满足f(x) > 0的x的取值范围是13.将函数y=2x的图象向左平移一个单位,得到图象C1,再将G向上平移一个单位得到图象C2,作出C2关于直线y=x对称的图象C3,贝V C3的解析式为.三、解答题17. 化简下列各式:(2)2|g 2+ |g 3(2) 1 1 .1 +2 lg 0.36 + 砂16 18. 已知f(x)为定义在[—1,1]上的奇函数,1 a 当x€ [—1,0]时,函数解析式f(x)=才—(a€ R).(1) 写出f(x)在[0,1]上的解析式;(2) 求f(x)在[0,1]上的最大值.419. 已知x> 1 且x工3,f(x) = 1 + log x3,g(x) = 2log x2,试比较f(x)与g(x)的大小.x120. 已知函数f(x)= 2 —尹|.(1) 若f(x) = 2,求x 的值;(2) 若2t f(2t)+ mf(t) > 0 对于t€[1,2]恒成立,求实数m的取值范围.21 .已知函数f(x)= a x T(a>0 且a工1).(1) 若函数y = f(x)的图象经过P(3,4) 点,求a的值;(2) 若f(lg a) = 100,求a 的值;(3) 比较f lg 盘与f( —2.1)的大小,并写出比较过程.10x—10—x22•已矢口f(x)= 10X十10-X.(1) 求证f(x)是定义域内的增函数;(2) 求f(x)的值域.答案.选择题1 —5.BDAAC 6—10.ACCCC 11 —12.DC二.填空题13 . (1,4) 14. — ^,+m15 .(—1,0) U (1 ,+^ )16. y=log2(xT)-1( )AB. Iog x3v log y3C1 1D.(4)x<(4)y二、填空题13. 函数f(x)= a x「1P,则P点的坐标是__________ .14. 函数f(x) = Iog5(2x+ 1)的单调增区间是(1)[(0.064 5厂2.5]3-17. 解2lg 2 + lg 31 + 2lg 0.62+ 4|g 242lg 2 + lg 32lg 2 + lg 31 + lg2 + lg3 —lg 10 + lg 2=2lg 2 + lg 3 = 1—2lg 2 + lg 3 —.18. 解(1) •/ f(x)为定义在[—1,1]上的奇函数,且f(x)在x= 0处有意义,•-f(0) = 0,1 a即f(0) = 40—尹=1 —a= O..・.a = 1.4 4即当 1 v x v-时,f(x) v g(x);当x>4时,3 3f(x) > g(x).20. 解(1)当x v 0 时,f(x)= 0;当x>0 时,f(x) = 2x—*.1由条件可知2x— /= 2,即22x— 2 -2x—1 =0,解得2x= 1± 2.••• 2x> 0, • x= log2(1 + 2)./ 2t 1、f t 1(2)当t € [1,2]时,2 2 —尹 + m 2—2> 0,即m©—1) > —(24t—1).•/ 22—1> 0, • m> —(22t+ 1).•-1 € [1,2], • —(1 + 221) € [ —17 ,—5],故m的取值范围是[—5, + ).• lg a lg a—1= 2(或lg a —1= log a100).设x€ [0,1],则一x€ [ —1,0].21 .解(1) •••函数y = f(x)的图象经过又f( —x) = —f(x),—f(x)= 4x—2x.••• f(x) = 2x—4x.(2)当x€ [0,1] , f(x) = 2x—4x= 2x—(2x)2,•••设t= 2x(t> 0),则f(t)=t —『.••• x€ [0,1] , • t€ [1,2] •当t= 1 时,取最大值,最大值为 1 — 1 = 0.19. 解f(x) —g(x) = 1 + Iog x3 —2log x2 = 1 +log x4= log x4x,4 3 3当 1 v x v §时,4X V 1, • log^x v 0; P(3,4),• a31= 4, 即卩a2= 4.又a>0 ,所以a = 2.(2)原式=1 + lg2 X 310+ lg 2--f(— x)=⑴原式竝蟲升5卜眾(2)由f(lg a) = 100 知,a lg a」100. • (lg a—1) lg a = 2.• lg a—lg a — 2 = 0,• lg a=— 1 或lg a= 2,1 • a=或a= 100.10⑶当a>1 时,fig 盘>f(— 2.1);当x>4时,4x> 1, 3•- log x4x>0. 因为,f lg =f(—2)=a 3,当0<a<1 时,f lg f( —2.1).—3.1f( —2.1) = a ,当a>1时,y= a x在(—^, + )上为增函数,•/ —3>— 3.1 , ••• a—3>a—3.1.即f g疵>f(—巾;当0<a<1时,y= a x在(—m,+ m)上为减函数,•/ —3>— 3.1 , • a—3<a—3.1,即f g盅<f(—巾-22. (1)证明因为f(x)的定义域为R,口10—X—10x且f( —x) = —x x =—f(x),10 x+ 10x所以f(x)为奇函数.10x—10—x 102x— 1 2 f(x)= 10x+ 10-x- 1o2x+ 1= 1 —102x+ 1. 令X2> X1,则2f(X2)—f(x1)= (1 —102x2+ 1 ) —(1 —2102X1 + 1)- 102x2—102xi—2 • 102x2 + 1 102xi+ 1 .因为y= 10x为R上的增函数,所以当X2> X1 时,102x2 —102x1 > 0.又因为102x1+ 1 > 0,102X2+ 1> 0.故当X2> X1 时,f(X2)—f(X1)> 0,即f(X2)> f(X1).所以f(x)是增函数.102x— 1 “⑵解令y= f(x).由y=岳TR,解得102x-严.1 —y因为102x> 0,所以一1 v y v 1.即f(x)的值域为(一1,1).。

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知a>b>0,c>d,下列不等式中必成立的一个是( )A.a c>bdB.ad<bc C.a+c>b+d D.a―c>b―d2.已知x,y均为正实数,且1x+2+4y+3=12,则x+y的最小值为( )A.10B.11C.12D.133.若两个正实数x,y满足2x+1y=1,且x+2y>m2+2m恒成立,则实数m的取值范围是( )A.(―∞,―2)∪[4,+∞)B.(―∞,―4)∪[2,+∞)C.(―2,4)D.(―4,2)4.若x,y∈R+,且x+3y=5xy,则3x+4y的最小值是( )A.5B.245C.235D.1955.小明从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<ab B.v=ab C.ab<v<a+b2D.v=a+b26.已知a>0,b>0,若不等式m3a+b ―3a―1b≤0恒成立,则m的最大值为( )A.4B.16C.9D.37.已知x,y∈(―2,2),且xy=1,则22―x2+44―y2的最小值是( )A.207B.127C.16+427D.16―4278.已知函数f(x)=2x|2x―a|,若0≤x≤1时f(x)≤1,则实数a的取值范围为( )A.[74,2]B.[53,2]C.[32,2]D.[32,53]二、多选题9.已知a>b>c>0,则( )A.a+c>b+c B.ac>bc C.aa+c>bb+cD.a x<b c10.已知a>0,b>0,且a+b=ab,则( )A.(a―1)(b―1)=1B.ab的最大值为4C.a+4b的最小值为9D.1a2+2b2的最小值为2311.已知a,b∈R∗,a+2b=1,则b2a +12b+12ab的值可能为( )A.6B.315C.132D.5212. 现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆.过点.C 作AB 的垂线交半圆于点D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E.则该图形可以完成的无字证明有( )A .a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C .a 2+b 22≥a +b2(a ≥0,b >0)D .ab ≥21a+1b(a >0,b >0)三、填空题13.已知不等式|x ―1|+|x +2|≥5的解集为  .14. 已知实数x ,y 满足―1≤x +y ≤4且2≤x ―y ≤3,则x +3y 的取值范围是  .15.若关于x 的不等式x 2+mx ―2<0在区间[1,2]上有解,则实数m 的取值范围为  .16.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xyZ 取得最大值时,2x+1y ―2z的最大值为 .四、解答题17.U =R ,非空集合 A ={x |x 2―5x +6<0} ,集合 B ={x |(x ―a )(x ―a 2―2)<0} .(1)a =12时,求 (∁ U B )∩A ;(2)若 x ∈B 是 x ∈A 的必要条件,求实数 a 的取值范围.18.已知 p :|1―x ―13|≤2 , q :x 2―2x +1―m 2≤0(m >0) ,若 ¬p 是 ¬q 的充分而不必要条件,求实数m 的取值范围.19.求解不等式x 2―a ≥|x ―1|―120.已知a ,b ,c 都为正实数,满足abc (a +b +c )=1(1)求S =(a +c )(b +c )的最小值(2)当S 取最小值时,求c 的最大值.21.某项研究表明;在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位;辆∕时)与车流速度v (假设车辆以相同速度v 行驶,单位米∕秒)、平均车长l (单位:米)的值有关,其公式为F =76000νv 2+18v +20l(1)如果不限定车型,l =6.05,则最大车流量为多少.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加多少.22.已知a ,b ,c 为实数且a +2b +5c =10.(1)若a ,b ,c 均为正数,当2ab +5ac +10bc =10时,求a +b +c 的值;(2)证明:(2b +5c )2+(a +b +5c )2+(a +2b +4c )2≥4903.答案解析部分1.C已知a>b>0,c>d,由不等式的同向相加的性质得到a+c>b+d正确;当a=2,b=1,c=-1,d=-2时,a c<bd, ,a―c=b―d A,D不正确;c=2,d=1时,ad=bc,B不正确. 2.D解:因为x,y>0,且1x+2+4y+3=12,则x+y=(x+2)+(y+3)―5=2(1x+2+4y+3)[(x+2)+(y+3)]―5=2(5+y+3x+2+4(x+2)y+3)―5≥2(5+2y+3x+2⋅4(x+2)y+3―5=13,当且仅当y+3x+2=4(x+2)y+3,即x=4,y=9时等号成立,则x+y的最小值为13.3.D由基本不等式得x+2y=(x+2y)(2x +1y)=4yx+xy+4≥24yx⋅xy+4=8,当且仅当4yx=xy,由于x>0,y>0,即当x=2y时,等号成立,所以,x+2y的最小值为8,由题意可得m2+2m<8,即m2+2m―8<0,解得―4<m<2,因此,实数m的取值范围是(―4,2),4.A从题设可得15y+35x=1,则3x+4y=15(3x+4y)(1y+3x)=15(3x y+12yx+13)≥15(12+13)=5,5.A6.B7.C8.C不等式f(x)≤1可化为|2x―a|≤2―x,有―2―x≤a―2x≤2―x,有2x―2―x≤a≤2x+2―x,当0≤x≤1时,2x+2―x≥22x×2―x=2(当且仅当x=0时取等号),2x―2―x≤2―12=32,故有32≤a≤2。

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。

高中数学必修第一册第二章综合测试01含答案解析(1)

高中数学必修第一册第二章综合测试01含答案解析(1)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D ,则a b <2.若++,则a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc <B .11a b<C .b aab>D .22a ab b >> 7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B ;(2)若=A B A ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b +-+-+(.+ ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b a a b ab--,0a b <<,0b a ∴->,0ab >,0b a ab -∴,即11a b>,故选项B 不成立;选项C ,0a b <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b aa b ,故选项C 不成立;选项D ,0a b <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++ ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+-- ((当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N .故选A . 10.【答案】C【解析】2x >,20x ∴->.11==222=422y x x x x ∴+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<,>>1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使2002=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->.22222==a b a b ab a b a b a b a b +-+∴-+---()(),当且仅当a b -时等号成立.22a b a b+∴-的最小值为D .二、 13.【答案】111a a-+ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a - <≤,2111a∴-,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --((),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c d a b >,即0bc adab->, ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162ab x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+ <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+(). 因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分) 由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x ≤≤.(3分) (2)因为=A B A ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时, 由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a 、b 为正实数,且11a b+.11a b ∴+(当且仅当=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯ ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+,a b ∴+.234a b ab - ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.高中数学 必修第一册 6 / 6 因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x +-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浩瀚补课班必修一第二章唐海亮高中数学必修一第二章测试题 (2)一、选择题:1.已知p>q>1,0< a<1,则下列各式中正确的是A .a p a q B.p a q aC.a p a q D.p a q a2 、已知 f (10x )x,则 f (5)()A 、105B 、510C、lg10D、lg 53.函数y log a x 当x>2时恒有 y >1,则 a 的取值范围是A.1a2且a1 2B . 0 a 1或1 a 2 C. 1 a 2 21D.a 1或0a2b ax4.当a0时,函数 y ax b 和 y 的图象只可能是11.55、设y140.9 , y280.48 , y3,则2()A 、y3y1y2B 、y2y1y3 C、y1y3y2D、y1y2y3 6.下列函数中,在区间(0,+∞ )上为增函数的是()A.y=ln(x +2) B.y=-x+ 1C.y=1x21D.y=x+x7.若 a<12,则化简42a- 1 2的结果是()()A.2a-1B.-2a-1C.1- 2aD.- 1-2a8.函数 y= lg x+ lg(5 -3x)的定义域是()()5A.[0,)35B. [0,3]C.[1,5)35D.[1 ,3]()19.幂函数的图象过点2,4,则它的单调递增区间是()A.(0,+∞ ) B. [0,+∞ )C.(-∞,0) D.( -∞,+∞ )10.函数 y= 2+log 2(x2+3)(x≥1)的值域为()A.(2,+∞ ) B. (-∞, 2)C.[4,+∞) D.[3 ,+∞ )x111.函数 y= a -a(a>0,且 a≠1)的图象1 / 4浩瀚补课班必修一第二章唐海亮可能是()12 .若0 < x < y < 1 ,则()A.3y<3xB.log x3< log y3C.log 4x<log 4y11D. (4)x<( 4) y二、填空题13.函数 f(x)= a x-1+ 3 的图象一定过定点P,则 P 点的坐标是 ________.14.函数 f(x) =log5(2x+1)的单调增区间是________.15.设函数f(x)是定义在R 上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足 f(x) > 0 的 x 的取值范围是______.13.将函数y 2 x的图象向左平移一个单位,得到图象 C11向上平移,再将C一个单位得到图象C2,作出 C2关于直线 y=x 对称的图象 C33的解.,则 C析式为三、解答题17.化简下列各式:1 -2.52330(1)[(0.064 5)]3-38-π;(2)2lg 2 +lg 3.111+2 lg 0.36+4lg 1618.已知 f(x)为定义在 [-1,1] 上的奇函数,1 a 当 x∈ [-1,0] 时,函数解析式f(x)=4x-2x (a∈R) .(1)写出 f(x)在 [0,1] 上的解析式;(2)求 f(x)在[0,1] 上的最大值.419.已知 x> 1 且 x≠3, f(x)= 1+log x3,g(x)=2log x2,试比较 f(x)与 g(x) 的大小.20.已知函数f(x)= 2x-21|x|.(1)若 f(x)=2,求 x 的值;(2)若 2t f(2t)+ mf(t) ≥ 0 对于 t∈ [1,2] 恒成立,求实数m 的取值范围.21.已知函数f(x)= a x-1(a>0 且 a≠1).(1)若函数y= f(x) 的图象经过P(3,4)点,求 a 的值;(2)若 f(lg a)= 100,求 a 的值;1(3)比较 f lg 100与 f( -2.1)的大小,并写出比较过程.10x-10-x22.已知 f(x)=10x+10-x.(1)求证 f(x)是定义域内的增函数;(2)求 f ( x)的值域.答案一 . 选择题1— 5.BDAAC6— 10.ACCCC11— 12.DC二 .填空题13 . (1,4)14.-1,+∞15 . ( -21,0)∪ (1,+∞ )16.y log 2 (x1) 12 / 4浩瀚补课班必修一第二章唐海亮17.解 (1)原式=641-52-271 1 0005 2 383-1=431× -5×2-331-1=5 10 52 32 32-3- 1= 0.2(2)原式=2lg 2 +lg 311lg 0.61+2+ lg 24242lg 2 +lg 3=2× 31+ lg10 +lg 22lg 2+lg 3=1+ lg 2 + lg 3 - lg 10+ lg 2=2lg 2+ lg 3 =1.2lg 2+ lg 318.解(1)∵ f(x)为定义在 [- 1,1] 上的奇函数,且 f(x) 在 x= 0 处有意义,∴f(0) = 0,1 a即f(0) =40-20= 1- a= 0.∴ a= 1.设x∈ [0,1] ,则- x∈[- 1,0] .∴f(- x)=1-1= 4x- 2x. 4- x 2- x又∵ f(- x)=- f(x) ,∴ - f(x)= 4x- 2x.∴f(x)=2x- 4x.(2)当 x∈ [0,1] ,f(x)= 2x-4x= 2x- (2x)2,∴设 t= 2x(t> 0),则 f(t)= t -t2.∵x∈ [0,1] ,∴ t∈ [1,2] .当 t= 1 时,取最大值,最大值为 1- 1= 0.19.解f(x)- g(x)= 1+ log x3- 2log x2= 1+log x 3= log x3x,444时,33x< 0;当 1<x<x< 1,∴ log x344当 x>4时,3x> 1,∴ log x3x>0.344即当 1< x<4时,f( x)< g(x);当 x>4时,33f( x)> g(x).20.解(1)当 x<0 时,f(x)= 0;当 x≥0 时,f( x)= 2x-1x.2由条件可知2x-21x= 2,即 22x-2·2x- 1=0,解得 2x=1± 2.∵ 2x> 0,∴ x= log 2(1+2).t2t1t1(2) 当 t∈ [1,2] 时,22-2t +m 2-t22≥0,即m(22t- 1)≥ -(2 4t-1).∵22 t- 1> 0,∴ m≥- (22t+ 1).∵t∈ [1,2] ,∴ -(1+22t)∈[-17,-5],故m 的取值范围是 [- 5,+∞ ) .∴ lg a lg a-1= 2(或 lg a-1= log a100) .21 .解(1) ∵函数 y = f(x) 的图象经过P(3,4),∴a3-1= 4,即 a2= 4.又a>0 ,所以 a= 2.(2) 由 f(lg a)=100 知, a lg a-1= 100.∴(lg a- 1) ·lg a= 2.∴lg 2a- lg a-2= 0,∴lg a=- 1 或 lg a= 2,∴a=1或 a= 100.101(3) 当 a>1 时, f lg 100 >f(- 2.1);1当0<a<1 时, f lg 100 <f(- 2.1).因为, f lg1=f(-2)=a-3,1003 / 4浩瀚补课班必修一第二章 唐海亮f(-2.1)= a -3.1,当 a>1 时,y = a x 在 (- ∞,+ ∞ )上为增函数,∵ - 3>- 3.1, ∴a - 3>a -3.1.1即 f lg 100 >f(- 2.1);当 0<a<1 时,y = a x 在 (- ∞ ,+ ∞ )上为减函数,∵ - 3>- 3.1, ∴a - 3<a -3.1,1即 f lg 100 <f(- 2.1).22. (1) 证明 因为 f(x)的定义域为 R ,10- xx且 f(- x)= - 10 =- f(x),10- x + x10所以 f(x)为奇函数.10x - 10-x 102x - 12 f(x)= x - x = 102x + = 1- 102x .10 + 10 1 +1令 x 2> x 1,则f(x 2) - f(x 1 ) = (1 -2 ) - (1 - 2102x + 12102x 1+1)102x - 102x1= 2·2102x 1+ 1.102x 2+ 1 因为 y = 10x 为 R 上的增函数,所以当 x 2> x 1 时, 102x 2- 102x 1> 0. 又因为 102x 1+ 1> 0,102x 2+ 1> 0.故当 x 2> x 1 时, f(x 2)- f(x 1)> 0,即 f( x 2)> f(x 1).所以 f(x)是增函数.102x - 1(2) 解 令 y = f(x).由 y = 102x + 1,解1+ y得 102x =1- y .因为 102x > 0,所以- 1< y < 1.即 f(x) 的值域为 (- 1,1).4 / 4。

相关文档
最新文档