传感器与检测技术实验的报告.doc

合集下载

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告前言:传感器多种多样,玲琅满目,可供我们选择的有很多。

压电传感器,电感涡流传感器等众多高性能传感器,被大量应用在各行各业。

特别是机床行业,以及汽车制造等行业更是应用广泛,是国内外公认的具有发展前途的高技术产业。

一、压电传感器(PT124G-210)1、传感器照片2、应用场景3、测量原理应变式压力传感器,是外界的压力,引起应变材料的几何形状发生改变,进而导致材料的电阻发生变化,检测这个电阻变化量可以测得外力的大小。

压阻式压力传感器通常是半导体压敏材料,半导体压阻式传感器在受到外力后,自身的几何形状几乎没有什么改变,而是其晶格参数发生改变,影响到禁带宽度,禁带宽度哪怕是非常微小的改变,都会引起载流子密度很大的改变,这最终引起材料的电阻率发生改变4、传感器原理压力或振动引起应变材料的几何形状发生改变,根据形变大小进行数据的显示5、比较它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。

缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。

二、涡流式传感器(ECS-3)1、传感器图片2、应用场景电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。

对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护3、测量原理通过电涡流效应的原理,准确测量被测体(必须是金属导体)与探头端面的相对位置。

4、传感器原理即利用金属导体置于变化的磁场中,产生感应电流,从而在金属体内形成自行闭合的电涡流线。

5、比较特点是长期工作可靠性好、灵敏度高、抗干扰能力强、非接触测量、响应速度快、不受油水等介质的影响,常被用于对大型旋转机械的轴位移、轴振动、轴转速等参数进行长期实时监测,可以分析出设备的工作状况和故障原因,有效地对设备进行保护及预维修。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告前言:位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。

在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。

按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。

模拟式又可分为物性型和结构型两种。

常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。

数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。

这种传感器发展迅速,应用日益广泛。

一、电容式传感器1、传感器照片(luoshida-m30)2、应用场景管件材质:ABS塑料安装方式:齐平/非齐平检测距离:2-20mm/2-30mm可调节工作电压:10-40VDC输出方式:NPN/PNP NO/NC/NO+NC连接方式:2M PVC线缆3、测量原理这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。

这个外壳在测量过程中通常是接地或与设备的机壳相连接。

当有物体移向接近开关时,不论它是否为导体,由於它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。

这种接近开关检测的物件,不限於导体,可以绝缘的液体或粉状物等。

4、比较优点:温度稳定性好,结构简单,适应性强,动态响应好,可以实现非接触测量,具有平均效应:缺点:输出阻抗高,负载能力差,寄生电容影响大,输出特性非线性二、霍尔式位移传感器1、传感器照片(MIRAN-WOA-C-R角度位移)2、应用场景供电电压24V DC,输出信号有4-20MA、0-5V、0-10V等3、测量原理如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。

此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。

二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。

2、数字万用表、示波器。

3、实验连接导线若干。

三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。

常见的有应变式电阻传感器和热敏电阻传感器。

应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。

2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。

主要有变极距型、变面积型和变介质型电容传感器。

其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。

3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。

包括自感式和互感式传感器。

自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。

4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。

常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。

四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。

(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。

2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。

(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。

3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。

传感器与检测技术实验

传感器与检测技术实验

《传感器与检测技术》实验实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:△R/R=K/ε式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态的变化。

电桥的作用是将应变电阻变化转换成电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压:U O1=ε/4。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表(主控台上电压表)、±1 5V电源、±4 V电源、万用表。

四、实验步骤:1、检查应变传感器的安装根据图1 -1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R1、R2、R3、R4。

加热丝也接于模块上,可用万用表进行测量判别,各应变片初始阻值R1=R2=R3=R4=350Ω,加热丝初始阻值为50Ω左右。

2、差动放大器的调零图1 -1应变式传感器安装示意图首先将实验模块调节增益电位器Rw3顺时针到底(即此时放大器增益最大。

然后将差动放大器的正、负输入端相连并与地短接,输出端与主控台上的电压表输入端Vi相连。

检查无误后从主控台上接入模块电源±15V以及地线。

合上主控台电源开关,调节实验模块上的调零电位器Rw4,使电压表显示为零(电压表的切换开关打到2V档)。

关闭主控箱电源。

(注意:Rw4的位置一旦确定,一般不作改变,一直到做完实验为止)3、电桥调零适当调小增益Rw3(顺时针旋转1 -2圈,电位器最大可顺时针旋转5圈),将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂,与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好,其中模块上虚线电阻符号为示意符号,没有实际的电阻存在),按图1 -2完成接线,接上桥路电源±4V (从主控箱引入),同时,将模块左上方拨段开关拨至左边“直流”档(直流档和交流档调零电阻阻值不同)。

传感器与检测技术实验报告

传感器与检测技术实验报告

热电偶原理及现象一、实验目的和要求1、观察了解热电偶的结构2、熟悉热电偶的工作特性3、学会查阅热电偶分度表二、实验原理两种不同的金属导体互相焊接成闭合回路时,当两个接点温度不同时回路中就会产生电流,这一现象称为热电效应,产生电流的电动势叫做热电势。

通常两种不同金属的这种组合成为热电偶。

三、实验主要仪器设备1、+15V不可调直流稳压电源2、差动放大器3、电压表4、电热器5、水银温度计(自备)6、主、副电源四、操作方法与实验步骤1、了解热电偶在实验仪上的位置及符号,实验仪所配的热电偶是由铜-康铜组成的简易热电偶,分度号为T。

实验仪有二个热电偶,它封装在双平行梁的上片梁的上表面(在梁表面中间二根细金属丝焊成的一点,就是热电偶)和下片梁的下表面,两个热电偶串联在一起产生热电势为二者的总和。

2、按图4接线,开启主、副电源,调节差动放大器调零旋钮,使电压表显示零,记录下自备温度计的室温(此时的温度为零端温度)。

3、将+15V直流电源接入加热器的一端,加热器的另一端接地(加热时间不要超过2分钟)。

观察电压表显示值的变化,待显示值稳定不变时记录下电压表显示的读数E。

4、用自备的温度计测出上梁表面热电偶的温度t并记录下来5、根据热电偶的热电势与温度之间的关系式:Eab (t,t)=Eab(t,tn)+Eab(tn ,t),计算热端温度为t,冷端温度为0℃时的热电势,Eab(t,t),根据计算结果,查分度表得到温度t。

6、热电偶测得温度值与自备温度计测得的温度值相比较(注意:本实验仪所配的热电偶为简易热电偶,并非标准热电偶,只要了解热电势现象)。

7、实验完毕关闭主、副电源,尤其是加热器+15V电源(自备温度计测出温度后马上拆去+15V电源连接线),其他旋钮置原始位置。

五、实验内容及实验数据记录根据电路原理图图4接好电源电路,开启主、副电源,调节差动放大器调零旋钮,使电压表显示零,将+15V直流电源接入加热器的一端,加热器的另一端接地(加热时间不要超过2分钟)。

传感器与检测技术实验报告

传感器与检测技术实验报告

西华大学实验报告(理工类)开课学院及实验室:自动检测及自动化仪表实验室实验时间:年月日一、实验目的1.观察了解箔式应变片的结构及粘贴方式;2.测试应变梁变形的应变输出;3.比较各桥路间的输出关系;4.比较金属应变片与半导体应变片的各种的特点。

二、实验原理应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

三、实验设备、仪器及材料直流稳压电源(±4V档)、电桥、差动放大器、箔式应变片、测微头、(或双孔悬臂梁、称重砝码)、电压表。

四、实验步骤(按照实际操作过程)1.调零。

开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。

输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。

调零后电位器位置不要变化,调零后关闭仪器电源。

2.按图1.1将实验部件用实验线连接成测试桥路。

桥路中R1、R2、R3、和WD为电桥中的固定电阻和直流调平衡电位器,R为金属箔式应变片(可任选上、下梁中的一片工作片)。

直流激励电源为±4V。

3.确认接线无误后开启仪器电源,并预热数分钟。

测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。

调整电桥WD电位器,使测试系统输出为零。

4.旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零为起点,向上和向下移动各5mm,测微头每移动0.5mm记录一个差动放大器输出电压值,并列表。

5.直流半桥:保持差动放大器增益不变,将R2换成与应变片R工作状态相反的另一金属箔式应变片,(若R拉伸,换上去的应为压缩片)形成半桥。

重复单臂电桥的步骤;6.直流全桥:保持差动放大器增益不变,将R1换成与应变片R工作状态相反的另一金属箔式应变片,(若R拉伸,换上去的应为压缩片),将 R3换成与应变片R工作状态相同的另一金属箔式应变片,形成全桥。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的。

本实验旨在通过对传感器与检测技术的学习和实践,掌握传感器的工作原理、应用范围以及检测技术的基本方法和实验操作技能,提高实验能力和动手能力。

二、实验仪器与设备。

1. 传感器,温度传感器、光敏传感器、压力传感器。

2. 检测设备,示波器、数字万用表、信号发生器。

3. 实验平台,Arduino开发板、实验电路板、连接线等。

三、实验内容与步骤。

1. 温度传感器实验。

a. 将温度传感器连接至Arduino开发板,并接通电源。

b. 编写Arduino程序,读取温度传感器的数据并通过串口监视器输出。

c. 调节温度传感器周围环境的温度,观察串口监视器的数据变化。

d. 记录实验数据并分析温度传感器的工作原理。

2. 光敏传感器实验。

a. 将光敏传感器连接至Arduino开发板,并接通电源。

b. 编写Arduino程序,读取光敏传感器的数据并通过串口监视器输出。

c. 调节光线强度,观察串口监视器的数据变化。

d. 记录实验数据并分析光敏传感器的工作原理。

3. 压力传感器实验。

a. 将压力传感器连接至Arduino开发板,并接通电源。

b. 编写Arduino程序,读取压力传感器的数据并通过串口监视器输出。

c. 施加不同的压力,观察串口监视器的数据变化。

d. 记录实验数据并分析压力传感器的工作原理。

四、实验结果与分析。

通过本次实验,我们成功地实现了对温度传感器、光敏传感器和压力传感器的实验操作,并获取了相应的实验数据。

通过对数据的分析,我们深入理解了传感器的工作原理和应用场景,掌握了检测技术的基本方法和实验操作技能。

五、实验总结。

本次实验使我们对传感器与检测技术有了更深入的了解,提高了实验能力和动手能力。

通过实验操作,我们不仅掌握了传感器的工作原理和应用范围,还深入理解了检测技术的基本方法和实验操作技能。

这对我们今后的学习和科研工作具有重要的意义。

六、参考文献。

1. 《传感器与检测技术》,XXX,XXX出版社,XXXX年。

传感器检测技术实验报告

传感器检测技术实验报告

《传感器与检测技术》实验报告姓名:学号:院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员:评定成绩:审阅教师:传感器第一次实验实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。

二、基本原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。

电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=∆为电阻丝长度相对变化。

三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤1. 根据接线示意图安装接线。

2. 放大器输出调零。

3. 电桥调零。

4.应变片单臂电桥实验。

测得数据如下,并且使用Matlab 的cftool 工具箱画出实验点的线性拟合曲线:由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。

系统灵敏度S =ΔUΔW =0.0535V /Kg (即直线斜率),非线性误差= Δm yFS =0.0810.7×100%=0.75%五、思考题单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。

答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。

实验三 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品资料“传感器与检测技术”实验报告序号实验名称1 电阻应变式传感器实验2 电感式传感器实验学号: 3 电容传感器实验913110200229姓名:杨薛磊序号:83实验一电阻应变式传感器实验(一)应变片单臂电桥性能实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

三、需用器件与单元:主机箱中的± 2V ~± 10V (步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 12位数显万用表(自备)。

四、实验步骤:应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器 +5V 电源输入口、多芯插头、应变片测量电路、差动放大器组成。

实验模板中的 R1( 传感器的左下 )、R2( 传感器的右下 )、R3( 传感器的右上 )、R4( 传感器的左上)为称重传感器上的应变片输出口;没有文字标记的 5 个电阻符号是空的无实体,其中 4 个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R 6、R7是 350 Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。

加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。

多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

1、将托盘安装到传感器上,如图 1 —4 所示。

图 1 —4传感器托盘安装示意图2 、测量应变片的阻值:当传感器的托盘上无重物时,分别测量应变片R1 、 R2 、 R3 、R4的阻值。

在传感器的托盘上放置10 只砝码后再分别测量R1 、 R2 、 R3 、 R4 的阻值变化,分析应变片的受力情况(受拉的应变片:阻值变大,受压的应变片:阻值变小。

)。

图 1 — 5 测量应变片的阻值示意图3 、实验模板中的差动放大器调零:按图 1 — 6 示意接线,将主机箱上的电压表量程切换开关切换到2V 档,检查接线无误后合上主机箱电源开关;调节放大器的增益电位器R W3 合适位置 (先顺时针轻轻转到底,再逆时针回转 1 圈 )后,再调节实验模板放大器的调零电位器 R W4,使电压表显示为零。

图 1 — 6 差动放在器调零接线示意图4 、应变片单臂电桥实验:关闭主机箱电源,按图 1 —7 示意图接线,将±2V ~± 10V 可调电源调节到±4V 档。

检查接线无误后合上主机箱电源开关,调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在传感器的托盘上依次增加放置一只20g 砝码(尽量靠近托盘的中心点放置),读取相应的数显表电压值,记下实验数据填入表 1 。

图 1 —7 应变片单臂电桥实验接线示意图表 1 应变片单臂电桥性能实验数据重量 (g) 0 20 40 60 80 100 120 140 160 180 电压 (mV) 0 -4 -9 -14 -19 -23 -27 -32 -36 -405 、根据表 1 数据作出曲线并计算系统灵敏度S= V/ W ( V 输出电压变化量,W 重量变化量)和非线性误差δ,δ = m/yFS× 100%式中m 为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS 满量程输出平均值,此处为200g。

实验完毕,关闭电源。

数据分析:系统灵敏度S = V/W=0.224非线性误差δ = m/yFS× 100%=1.02%(二)应变片半桥性能实验一、实验目的:了解应变片半桥(双臂)工作特点及性能。

二、基本原理:应变片基本原理参阅实验一。

应变片半桥特性实验原理如图 2 —1 所示。

不同应力方向的两片应变片接入电桥作为邻边,输出灵敏度提高,非线性得到改善。

其桥路输出电压 Uo ≈ (1 / 2)( △R /R)E = (1 / 2)K εE 。

图 2 — 1应变片半桥特性实验原理图三、需用器件与单元:主机箱中的± 2V ~± 10V (步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:1 、按实验一(单臂电桥性能实验)中的步骤 1 和步骤 3 实验。

2 、关闭主机箱电源,除将图1— 7 改成图 2 — 2 示意图接线外,其它按实验一中的步骤 4 实验。

读取相应的数显表电压值,填入表 2 中。

图 2 — 2 应变片半桥实验接线示意图表 2 应变片半桥实验数据重量 (g) 0 20 40 60 80 100 120 140 160 180 电压 (mV) 0 8 16 24 33 41 49 58 66 743 、根据表 2 实验数据作出实验曲线,计算灵敏度S= V/W ,非线性误差δ。

实验完毕,关闭电源。

数据分析:系统灵敏度S = V/W=0.413非线性误差δ = m/yFS× 100%=2.05%五、思考题:半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:邻边。

在邻边时 , 中点的电位变化的才能和另外的参考点进行比较, 如果不在临边, 也就会出现当两个应变片都发生变化时,与他们对应电阻的电位差可能会出现0 的情况。

举个例子:两个应变片的电阻分别为A 和 B, 另外两个电阻为 C 和 D, 假设 A=B=C=D,那么, 在邻边时 ,当因为受力 ,A 电阻大于 B 时 ,两点间电位会低于 C 和 D, 反之亦然;而如果不在临边, 那么 A 和 C 之间的电位变化和 C 与 D 之间的电位变化就没有前面的规律了,也就无法判断哪个应变片出现受力变化了。

(三)应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

二、基本原理:应变片基本原理参阅实验一。

应变片全桥特性实验原理如图 3 —1 所示。

应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1= R 2= R3= R4,其变化值R1= R2=R3= R 4时,其桥路输出电压Uo ≈ (△R / R)E = K εE 。

其输出灵敏度比半桥又提高了一倍,非线性得到改善。

图 3 —1 应变片全桥特性实验接线示意图三、需用器件和单元:主机箱中的± 2V ~± 10V (步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:1 、实验步骤与方法(除了按图 3 —2 示意接线外)参照实验二,将实验数据填入表 3作出实验曲线并进行灵敏度和非线性误差计算。

实验完毕,关闭电源。

图 3 — 2应变片全桥性能实验接线示意图2 、表3 全桥性能实验数据重量 (g) 20 40 60 80 100 120 140 160 180 200 电压 (mV) -17 -34 -51 -67 -84 -100 -117 -134 -151 -1673 、根据表 /3 实验数据作出实验曲线,计算灵敏度S= V/ W ,非线性误差δ。

实验完毕,关闭电源。

数据分析:系统灵敏度S = V/W=0.834非线性误差δ = m/yFS× 100%=4.12%(四)应变片单臂、半桥、全桥性能比较一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:如图 4 ( a)、(b )、( c)( a )单臂(b)半桥(c)全桥图 4应变电桥三、需用器件与单元:主机箱中的±2V ~± 10V (步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。

经实验验证阐述理由(注意:实验一、二、三中的放大器增益必须相同)。

实验完毕,关闭电源。

实验分析:全桥是半桥的两倍,半桥是单臂的两倍,也就是说,灵敏度:全 =2* 半=4* 单实验二电感式传感器实验(一)差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器的工作原理电磁互感原理。

三、需用器件与单元:主机箱中的± 15V 直流稳压电源、音频振荡器;差动变压器、差动变压器实验模板、测微头、双踪示波器。

四、实验步骤:1 、差动变压器、测微头及实验模板按图11 — 6 示意安装、接线。

实验模板中的L1 为差动变压器的初级线圈,L2 、L3 为次级线圈,*号为同名端; L 1的激励电压必须从主机箱中音频振荡器的Lv 端子引入。

检查接线无误后合上主机箱电源开关,调节音频振荡器的频率为 4kHz ~5kHz 、幅度为峰峰值Vp-p = 2V 作为差动变压器初级线圈的激励电压(示波器设置提示:触发源选择内触发CH1 、水平扫描速度TIME/DIV在0.1mS~10μS范围内选择、触发方式选择AUTO。

垂直显示方式为双踪显示DUAL 、垂直输入耦合方式选择交流耦合 AC 、CH1 灵敏度 VOLTS/DIV在0.5V~1V范围内选择、CH2灵敏度VOLTS/DIV在 0.1V ~ 50mV 范围内选择 )。

图 11 — 6 差动变压器性能实验安装、接线示意图2、差动变压器的性能实验:使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用如下方法实验。

调节测微头的微分筒(0.01mm/每小格),使微分筒的0 刻度线对准轴套的10mm刻度线。

松开安装测微头的紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形Vp-p( 峰峰值 )为较小值 (越小越好,变压器铁芯大约处在中间位置)时,拧紧紧固螺钉,再顺时针方向转动测微头的微分筒12 圈,记录此时的测微头读数和示波器CH2 通道显示的波形 Vp-p( 峰峰值 )值为实验起点值。

以后,反方向(逆时针方向 ) 调节测微头的微分筒,每隔△X=0.2mm(可取60~70点值)从示波器上读出输出电压Vp-p值,填入表11(这样单行程位移方向做实验可以消除测微头的机械回差)。

3 、根据表11 数据画出X - Vp-p曲线并找出差动变压器的零点残余电压。

相关文档
最新文档