《概率论与数理统计》(数学专业)试卷分析 - 山东理工大学
《概率论与数理统计》习题及答案__第一章解析

解0. P A - B > P (A ) P (A B=)0.—7 P,B
所以
P(AB)=0.4,
故
p(AE) =0.6;
0.2二P(B) -P(AB)二P(B) -0.4.
所以
P(B)=0.6
p(AB)=1-p(aU b)=1-p(a)-p(b)p(ab)=0.1
A ={e1,e3,65}。
S
二{(1,1),
(1,2),
(1,3),(
:1,4),(
1,5),(
1,6)
(2,1),
(2,2),
(2,3),
(2, 4),
(2,5),
(2,6)
(3,1),
(3,2),
(3,3),
(3,4),
(3,5),
(3,6)
(4,1),
(4, 2),
(4,3),
(4, 4),
2 2
共3!种,故基本事件总数为C7C53^1260,而A中的基本事件只有一个,
解2七个字母中有两个E,两个C,把七个字母排成一排,称为不尽相异 元素的全排列。一般地,设有n个元素,其中第一种元素有 山个,第二种元素
有n2个…,第k种元素有nk个(ni5k二n),将这n个元素排成一排
称为不尽相异元素的全排列。不同的排列总数为
n!
ni!n?!入!’
对于本题有
2!2!
10•从0,1,2,|||,9等10个数字中,任意选出不同的三个数字,试求下列事 件的概率:A二,三个数字中不含0和5'A2二,三个数字中不含0或5'A3二
'三个数字中含0但不含5'
考研高等数学中概率统计试题分析

考研高等数学中概率统计试题分析摘要:本文分析了概率论与数理统计的内容和题型,对其难度系数进行了打分;通过对难度系数的剖析,说明了概率论与数理统计部分的解答题(22分)常考的范围,便于考生复习时抓住重点,对于考研的同学有一定的指导作用.关键词:概率论与数理统计研究生考试高等数学在考研的高等数学中,满分是150分,概率论与数理统计的内容,34分,占大约22.7%,其中选择题8分(两小题),填空题4分(一小题),解答题22分(两大题);本文对于概率论与数理统计的内容,根据公式(或概念)的难度,将其难度划分为若干等级,进行打分;对于题型,根据解题时所用的知识点的多少,也将其难度划分为若干等级,进行打分.最后,根据这两个等级,对难度系数进行综合打分.具体解释如下:对于公式,根据其难度,分为三个等级,其难度系数分布赋予1、1.5、2.比如,古典概型的公式,p(a)=,其中n为事件a的样本点数,n为样本点总数,该公式很简单,难度系数定义为1;再比如,全概率公式,比较复杂,难度系数定义为1.5;至于连续型随机变量(简记为r.v)的条件密度公式f(y|x)=,其中f(x,y)是连续型随机变量(随机变量简记为r.v)(x,y)的联合密度函数,f(x)为(x,y)关于x的边缘密度函数,即使f(x,y)和f(x)都求出了,用条件密度公式f(y|x)=时,还需要考虑两者的公共定义域,因此难度系数规定为2.对于有关概念,也根据其难度,分为三个等级,其难度系数也分布赋予1、1.5、2.比如:独立性概念,比较简单,难度系数定义为1;再比如,t-分布的定义,涉及一个标准正态分布和一个?掊-分布,且还要求独立,涉及的内容较多,难度系数规定为1.5;至于极大似然估计的概念,比较难理解,且离散时和连续时,其似然函数还不一样,故难度系数规定为2.对于题型,根据其解题时所用到的知识点的多少,对其难度进行打分.所用的知识点多,难度系数就高,比如:古典概型的计算;一般只用到排列与组合的知识,难度系数定义为1;再比如:涉及极大似然估计的题,解题时要用到求导数的知识,解方程的知识,故难度系数定义为2,有时还需验证无偏性,因此难度系数定义为≥2.对于所用的知识点,也根据知识的难易和运算量进行打分,比如:对于一般的积分,难度系数规定为1;对于积分且需要讨论的,难度系数规定为1.5;对于在一个题目中,多次用积分运算的,比如:对于连续型r.v方差的计算,其难度系数也定义为1.5.下面我们分析概率论与数理统计的主要内容和题型,对其综合难度系数进行如下分析.难度系数表近年来,研究生考试中,解答题22分(两大题),基本上是考查学生综合运用知识的能力,这类考题其综合难度系数一般,下面针对近年来的试题作具体分析:(下面的1—10题,见文献[1].11—12题,见文献[2]).1.(2007年数学一、三(23),11分)设二维随机变量(x,y)的概率密度为f(x,y)=2-x-y,02y};(2)求z=x+y的概率密度f(z).难度分析:求概率,用积分,难度系数为1;求二维随机变量的函数的密度函数,公式难度系数1.5;再用积分计算,且涉及讨论,难度系数为1.本大题的难度系数为3.5.2.(2007年数学一、三(24),11分)设总体的概率密度为f(x;θ),0f(x,y)=ae,-∞2y).难度分析:已知边缘密度f(x)和条件密度f(y|x),求(x,y)的概率密度f(x,y),难度系数为1;求边缘概率密度,用积分且讨论,难度系数为1,5;求概率,难度系数为1.综合难度系数为3.5.12.(2013年数学三(23),11分)设总体x的概率密度为f(x,θ)=e,x>00,其他,其中θ为未知参数且大于零.x,...x为来自总体x的简单随机样本.(1)求θ的矩估计量;(2)求θ的极大似然估计量.难度分析:求的矩估计量,难度系数为3.5;求的极大似然估计量,难度系数为3.5.综合难度系数为7.从上面的分析可见,解答题的试题都是出现在难度系数≥3.5的部分.因此,同学们在考研复习时,要重点复习难度系数表中综合难度系数≥3.5的内容.至于填空题和选择题,主要考查同学们对基本概念的理解及一定的综合运算能力,只要按照大纲给定的内容认真进行复习就可以了.参考文献:[1]王松桂,张忠占,程维虎等人.概率论与数理统计(第三版)[m].科学出版社,2011:238-240.[2]2013年全国硕士研究生入学统一考试数学三试题.中国教育在线.。
难做概率论与数理统计去年试卷分析

2010–2011学年 秋冬 学期《 概率论与数理统计》试卷注:~(0,1),(){}:(1)0.84,(1.645)0.95,(1.96)0.975,(2)0.98X N x P X x Φ=≤Φ=Φ=Φ=Φ=212(),(),(,)t n n F n n αααχ分别表示服从具有相应自由度的t 分布,2χ分布和F 分布的上α分位点: 22220.9750.950.050.025(9) 2.70,(9) 3.32,(9)16.92,(9)19.02χχχχ====,==0.050.025(9) 1.83,(9) 2.26t t ,0.050.05(2,9) 4.26,(9,2)19.4F F ==。
一、填空题 (每小格3分,共42分,每个分布均要写出参数)1.设,A B 为两随机事件,已知()0.6,()0.5,()0.3P A P B P AB === ,则()P A B ⋃= ___,()P A A B ⋃=_ _。
2.一批产品的寿命X (小时)具有概率密度2,800()0,800ax f x x x ⎧≥⎪=⎨⎪<⎩,则a =_ _,随机取一件产品,其寿命大于1000小时的概率为_ ;若随机独立抽取6件产品,则至少有两件寿命大于1000小时的概率为_ _;若随机独立抽取100件产品,则多于76件产品的寿命大于1000小时的概率近似值为_ _。
3.设随机变量221212(,)~(,,,,)X Y N μμσσρ,已知~(0,1),~(1,4)X N Y N ,0.5ρ=-。
设123,74Z X Y Z X Y =-=+,则1Z 服从_ __分布,12Z Z 与的相关系数12Z Z ρ=__ ___,12Z Z 与独立吗?为什么?答: 。
4.设总体2~(,),,(0)X N μσμσ>是未知参数,110,,X X 为来自X 的简单随机样本,记2X S 与为样本均值和样本方差,则22X μ是的无偏估计吗?答:__ __;若22{}0.95P S b σ≤=,则b =_ _; 22{}P S σ==_ _;μ的置信度为95%的单侧置信下限为_ ;对于假设2201:1,:1H H σσ≥<的显著性水平为5%的拒绝域为_ _。
概率论与数理统计的期末考试试卷答案详解

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B =U ()A 、AB B 、A BC 、A BD 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+UC 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 CD、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==L ,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14D 、14-13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12 D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
高等数学(概率论部分)研究生考试试题分析

高等数学(概率统计部分)研究生入学试题考试典型题型分析主讲人:杨新梅单位:数学与计算机科学学院概率论与数理统计题型总结目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。
概率论与数理统计主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。
【高等数学】概率论与数理统计-多维随机变量及其分布专项试卷及答案解析

图3-8
l"-
x
x+y=l
f j f (川)1 = 了 了心产ρ dxdy = 了叫了Axe-x(l+y) dy
( =f了出 f了Ae-zo叫[x(l +川)
00
=[了dxf: A 川= Af了e-zdx = A.
rs、
H U
飞 J
FJ VS ,,‘、 y 、,,
一
pphtttt,
〕 由 中
F ZJ ,
学tJi养成笔记与�二步负挡严这边
(4)F1 (x) 与F2 (x) 是两个分布函数,F1 (x)F2 (x) 也满足分布函数的充要条件,也是分 布函数.
[F1 (x)F2 (x汀 ’= !1 (x)F2 (x)+F1 (x)/2 (工)就是概率密度 .
XIO
I (5) 【
1
-,2
1 YIO
I 1 ’
Fx(x)=F(x,+oo)=φ( 2x),Fy (y)=FC+oo,y)=φ(y-1)'
从而 F(x,y)=Fx(x)Fy (y) ,即X,Y 相互独立 .
如果X~N(µ ,a2 ), 则
{斗气 7 Fx(x)=阳ζx) =P
}=φ (平),
故φ(2x)对应X~N(O,
l_
4
)
,φ(y-1)对应Y~N(l,l).又
川川=(。,
、BJ fJ va r,‘、 y
一
rll〈l1、
nd
VJ , nu
=士 C IT )F(÷,2)
0骂王zζ1, 其他 . 。三;;: 'Y :$ζ1,
’ - X,Y 相互独立 ;
其他.
(3)(l)A=l; (Il)Jy (y)=」l_(l_十 l_y寸 )Z ,γ J >O,
山东大学概率论与数理统计(第二版-刘建亚)习题解答——第2章

山东大学概率论与数理统计(第二版-刘建亚)习题解答——第2章2.1 随机事件与概率2.1.1 随机事件随机事件是指在一次试验中,可能出现的不同结果,通常用字母A,B,C,…表示。
例如,掷一枚骰子,可能出现的结果是1、2、3、4、5、6,我们可以用A表示结果为1,B表示结果为2,以此类推。
在概率论和数理统计中,随机事件是研究的对象,用来描述试验的结果。
2.1.2 概率的定义与性质概率是对随机事件发生的可能性的度量,通常用P(A)表示事件A发生的概率。
概率具有以下性质:1.非负性:对任意事件A,有P(A) >= 0。
2.规范性:对样本空间Ω中的所有事件A,有P(Ω) =1。
3.可列可加性:对不相容的事件A1,A2,…,有P(A1 U A2 U …) = P(A1) + P(A2) + …其中,不相容的事件是指不可能同时发生的事件,也称为互不相容事件或互斥事件。
2.2 古典概型2.2.1 古典概型的概念与性质古典概型是指在试验中,各个基本事件发生的概率相等的情况。
在古典概型中,事件A发生的概率可以通过以下公式计算:P(A) = 事件A的基本事件数 / 样本空间Ω的基本事件数例如,抛一枚硬币的古典概型中,事件A表示出现正面,事件A的概率为1/2。
2.2.2 习题解答习题1某部门有4个职位,甲、乙、丙、丁,有8名候选人。
求任命结果中:(a)各职位都有人担任的概率;(b)甲、乙职位都有人担任的概率;(c)甲、乙职位都无人担任的概率。
解答:(a)各职位都有人担任的概率可以通过计算有人担任各职位的情况总数除以总情况数得到。
有人担任各职位的情况数为8 * 7 * 6 * 5 = 1680,总情况数为8 * 8 * 8 * 8 = 4096。
所以,概率为P(A) = 1680 / 4096。
(b)甲、乙职位都有人担任的概率可以通过计算甲、乙职位都有人担任的情况总数除以总情况数得到。
甲、乙职位都有人担任的情况数为8 * 7 * 6 * 5 = 1680,总情况数为8 * 8 * 8 * 8 = 4096。
概率论与数理统计考试试卷与答案

n05——06一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1,=)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.8185 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东理工大学成人高等教育试卷分析报告
一、简要说明
1.题量:共26道题,其中10道填空题(其中10个空)共记20分、10道选择题共记20分、5道计算题共记50分、1道证明题记10分,卷面满分100分。
2.覆盖面:考试内容的覆盖面较广,涵盖教学大纲要求的大部分教学知识点,符合教学大纲的要求。
3.试卷结构:基础题(60%),综合题(30%),提高题(10%),上述各类型题所占的比例符合教学要求。
难度程度适中,试题体现了课程的重点和难点。
二、成绩分析
1. 考试成绩分布
从以上情况看,各个等级层的结构基本正常,分布虽离正态分布还有一定差距,但总体看基本合理。
2. 考试成绩难易度分析
三、分析结论
1
根据以上的几个方面的分析,我们可以得到如下结论:信科012的成绩不正常,而信科011的成绩基本上是服从正态分布的,但从两个班的总体来说,成绩总体是服从正态分布的,这说明学生考试成绩的分布基本合理,整套试卷内容充实,覆盖面广,难易适当,这也说明试卷科学合理,但从试题的难度系数看,第八题证明题较难,这说明学生在理论推导方面的功底还不够扎实,希望在这方面加强训练。
从考试成绩的标准差来看,差异相差较大,这说明,本专业学生中程度相差较大,另一方面可能是由于提高题过于难。
从班级平均成绩来看,班与班之间基本上没有差异。
从分析指标上看,总体情况符合统计意义的正常状态。
2。