高考数学考点专题总复习15
河南高三数学知识点汇总

河南高三数学知识点汇总高考数学是高三学生备考中非常重要的一门科目,而在高三数学备考中,掌握并熟练运用各个知识点是必不可少的。
河南高三数学知识点汇总就是为了帮助广大考生全面、系统地复习和掌握数学知识点。
本文将对河南高三数学知识点进行汇总,以便考生能够更加有针对性地进行复习备考。
一、函数与方程1.1 一元二次函数1.2 一次函数与一元一次方程1.3 二次函数与二次方程1.4 不等式与不等式方程二、三角函数2.1 正弦、余弦、正切函数2.2 三角函数的基本关系式2.3 三角函数的图像与周期性三、空间几何3.1 点、向量及其运算3.2 平面与直线方程3.3 空间几何体的投影与轴测画法3.4 空间几何体的位置关系与距离计算四、数列与数列极限4.1 数列的概念与性质4.2 等差数列与等差数列求和4.3 等比数列与等比数列求和4.4 通项公式与数列极限五、导数与微分5.1 导数的概念与运算法则5.2 函数的极值与最值5.3 函数的单调性与区间5.4 微分与近似计算六、概率与统计6.1 随机事件与概率的定义6.2 事件的概率运算6.3 排列与组合6.4 统计图与统计指标七、立体几何7.1 空间点、线、面的位置关系及其性质7.2 空间几何体的计算7.3 空间几何体的投影与剖面八、数学证明与应用题8.1 数学证明的基本方法与技巧8.2 数学应用题的分析与解法8.3 综合运用各个知识点解决问题以上是河南高三数学知识点的汇总,考生在备考过程中可以按照这些知识点进行有针对性的复习。
复习过程中要注重理解概念、记忆公式,灵活运用各种解题方法,通过大量的练习加深对知识点的理解。
同时,要注意总结解题经验,培养自己的数学思维能力和创造力。
总之,高三数学备考是一个需要坚持和耐心的过程,只有学生在备考中充分理解数学知识点,并能够熟练地运用解题方法,才能够在高考中取得好成绩。
希望考生在备考中能够充分利用以上汇总的知识点,有针对性地进行备考,相信你们一定会取得优异的成绩。
2020届高考数学大二轮复习刷题首选卷第一部分刷考点考点十五直线与圆、椭圆、双曲线、抛物线课件理

3.(2019·湖南师大附中月考七)已知动圆 C 经过点 A(2,0),且截 y 轴所
得的弦长为 4,则圆心 C 的轨迹是( )
A.圆
B.椭圆
C.双曲线 答案 D
D.抛物线
解析 设圆心 C(x,y),弦为 BD,过点 C 作 CE⊥y 轴,垂足为 E,则|BE|
=2,∴|CA|2=|CB|2=|CE|2+|BE|2,∴(x-2)2+y2=22+x2,化为 y2=4x,故
r2-A2B2= 52-32
10.(2019·河南鹤壁模拟)与双曲线x92-1y62 =1 具有相同的渐近线,且经
过点 A(3,-2 3)的双曲线方程是________.
答案 解析
49x2-y42=1 设与双曲线x92-1y62 =1 具有相同的渐近线的双曲线的方程为x92-
1y62 =m(m≠0),代入点 A(3,-2 3),解得 m=41,则所求双曲线的方程为x92-
(2)证明:①当直线 l 垂直于 x 轴时,直线 l 的方程为 x=2,此时直线 l 与椭圆x42+y32=1 相切,与题意不符.
②当直线 l 的斜率存在时,设直线 l 的方程为 y+1=k(x-2).
y+1=kx-2,
由x42+y32=1,
消去 y 整理得
(4k2+3)x2-(16k2+8k)x+16k2+16k-8=0.
二、填空题 9.(2019·湖南株洲第二次教学质量检测)设直线 l:3x+4y+a=0,与圆 C:(x-2)2+(y-1)2=25 交于 A,B,且|AB|=6,则 a 的值是________.
答案 10 或-30
解析 因为|AB|=6,所以圆心到直线的距离为 d= =4,所以|6+324++4a2|=4,即 a=10 或 a=-30.
2024年高考数学第一轮复习知识点总结

2024年高考数学第一轮复习知识点总结一、函数与方程(约占25%)1. 函数的概念与性质:定义域、值域、单调性、奇偶性、周期性等。
2. 一次函数与二次函数:斜率、截距、图像特征、解析式、三要素表示法。
3. 指数函数与对数函数:性质、特征、解析式。
4. 三角函数:正弦函数、余弦函数、正切函数的性质、图像、周期与频率等。
5. 幂函数与反比例函数:性质、图像、变化规律。
6. 组合与复合函数:定义、性质、计算方法。
7. 方程与不等式:一元一次方程、一元二次方程、一元高次方程的解法、根的判别、关系式、二次函数与方程。
二、空间与向量(约占15%)1. 点、直线与平面:空间几何图形的基本概念、关系与性质。
2. 空间向量:向量的表示、运算、模与单位向量、数量积与向量积的意义与计算。
3. 空间直线与平面的方程:点线面关系、夹角与距离、平面投影问题。
4. 空间几何证明:基本证明方法与技巧。
三、导数与微分(约占15%)1. 函数的导数:导数的定义与性质、基本导数公式、导数的几何意义、高阶导数。
2. 导数的计算:四则运算法则、链式法则、乘法法则、常见函数的导数。
3. 函数的微分:微分的定义与计算、微分与导数的关系、微分中值定理。
4. 导数应用:切线、法线、函数的极值与最值、函数的单调性、函数的凹凸性与拐点、不定积分、定积分等。
四、概率与统计(约占15%)1. 随机事件与概率:事件的概念、样本空间、事件的运算、概率的定义与性质、基本事件、条件概率与乘法定理。
2. 随机变量:离散型与连续型随机变量、分布函数、概率分布列、概率密度函数、期望与方差。
3. 概率分布:离散型随机变量的分布、二项分布、泊松分布、连续型随机变量的分布、均匀分布、正态分布。
4. 统计与抽样:参数与统计量、抽样方法与数据处理、样本均值与总体均值的关系、抽样分布与中心极限定理。
五、数列与数列极限(约占13%)1. 数列与数列极限:数列的概念与性质、数列极限的定义与性质、等差数列、等比数列、收敛性判定、数列极限的性质。
高考数学必考知识点总结归纳

高考数学必考知识点总结归纳高考数学必考知识点总结直线、平面、简单多面体1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.7.球体积公式。
球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.高考数学备考知识点任一x=A,x=B,记做ABAB,BAA=BAB={x|x=A,且x=B}AB={x|x=A,或x=B}Card(AB)=card(A)+card(B)—card(AB) (1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1、集合元素具有①确定性;②互异性;③无序性2、集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n—1;非空真子集数:2n—2高考数学重要知识点表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
2024年高三数学高考知识点总结

2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。
高三数学知识点总结(15篇)

高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高考数学核心考点

高考数学核心考点一、选择、填空题1、解不等式:一元二次不等式;分式不等式;指数不等式、对数不等式(化为同底). 2、集合的交;并;补运算. 3、充分必要条件的判断(确定互推关系). 4、 四种命题的表达;全称命题、特称命题的否定表达(一改换、二否定);及其真假性判断;或、且、非命题的真假判断。
5、复数的加、减、乘、除运算;模的计算. 6、 向量的加、减、数乘、数量积的坐标运算;模的计算;定义运算;平行、垂直的关系式运用;几何意义的运算(三角形法则,平行四边形法则)。
7、线性规划:求目标函数的最大最小值. 8、古典概型、几何概型的计算. 9、 编读程序框图.10、 求分段函数值. (综合指数式、对数式运算).11、 求定义域(分母0≠、真数0>、偶数根式的被开方数0≥).12、 函数单调性、奇偶性的判断(特殊值法、定义法).13、 函数图像的判断: ①利用变换作图,②性质法(利用定义域、值域、单调性、奇偶性、周期性,过定点)14、 利用零点存在性定理判断零点(即方程的根)所在区间.15、 利用导数求切线方程;求单调区间;求极值;求最值.16、 同角三角函数关系公式;诱导公式;两角和与差公式;二倍角公式的综合运算.17、 三角函数sin()y A x ωϕ=+图像的伸缩、平移的变换,及其性质(周期,对称轴、对称中心、单调区间、最值)18、 等差、等比数列常规量的计算(列方程组求首项和公差或公比;利用性质求解).19、 根据三视图求体积、表面积、侧面积;多面体的外接球与内切球的问题.20、 空间点、线、面位置关系的判断(借助正方体或长方体找反例排除).21、 求直线与圆的方程;直线被圆截得的弦长;及其位置关系(两点间距离、点到线距离公式、两平行线距离公式).22、 求圆锥曲线的方程;及其几何性质(离心率、渐近线等).二、解答题23、 数列:(1) 求通项公式(公式法、累加法、累乘法、构造法).(2) 求前n 项和(公式法、分组求和法、错位相减法、裂项相消法).(3) 证明等差、等比数列(定义法).24、 三角函数与解三角形:(1) 利用正弦定理、余弦定理、勾股定理、内角和定理解三角形,求面积.(2) 化归sin()y A x ωϕ=+形式.(3) 求T A ωϕ、、、值.(4) 给值求值(同角三角函数关系公式、诱导公式、两角和与差公式、二倍角的运用).(5) 求最大最小值(或给定x 的范围),及其对应的x 的集合.(6)求单调区间(当0,0A ω>>时,求增代增,求减代减)25、 统计与概率:(1) 抽样方法:系统抽样(等间距抽样);分层抽样(等比例抽样).(2) 数字特征:众数、中位数、平均数、方差、标准差、极差.(3) 数据分析:茎叶图、频率直方图;回归分析;独立性检验.(4) 从频率直方图估计:众数、中位数、平均数、方差.26、 空间立体几何:(1) 线面平行、面面平行的证明.(2) 线线垂直、线面垂直、面面垂直的证明.(3) 求体积(先证明高、后计算高及底面积、代公式求得体积).(4) 翻折问题.27、 平面解析几何:直线、圆、圆锥曲线的综合运用.28、 用导数研究函数.(恒成立问题,存在性问题)29、 极坐标与参数方程(转化法、数形结合法).。
高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.若数列{a n }前8项的值各异,且a n +8=a n 对任意n ∈N *都成立,则
下列数列中可取遍{a n }前8项值的数列为
A .{a 2k +1}
B .{a 3k +1}
C .{a 4k +1}
D .{a 6k +1}
2.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累
积的需求量S n (万件)近似地满足S n =90
n (21n -n 2-5)(n =1,2,……,12),按此预测,在本年度内,需求量超过1.5万件的月份是
A .5月、6月
B .6月、7月
C .7月、8月
D .8月、9月
3.在数列{a n }中,如果存在非零常数T ,使得a m+T =a m 对于任意的非
零自然数m 均成立,那么就称数列{a n }为周期数列,其中T 叫数列{a n }的周期。
已知数列{x n }满足x n+1=|x n –x n-1|(n ≥2),如果x 1=1,x 2=a (a ∈R ,a ≠0),当数列{x n }的周期最小时,该数列前2019项的和是
A .668
B .669
C .1336
D .1337
4.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关
系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是
5.已知{}n a 是 首项为1,公差为-2的等差数列 ,则
∑=-10121k k a
= 。
6.200根圆柱形钢管,堆成一三角形垛或梯形垛,每上一层少一根,最下一层最少要放 根 。
7.已知函数1
3)(+=x x x f ,数列{}n a 满足).)((,111*+∈==N n a f a a n n (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)记13221++++=n n n a a a a a a S ,求n S .
参考答案
BCDA
-2019, (∑∑==-=+-=-∴+-=-+-=10110
122.20163021,321,32k k k k
n k a k a n a ) 20.( ,2)1(321+=++++n n n 满足条件2002
)1(≥+n n 的最小自然数n 为20,故最小一层最少要放20根。
)
7.解析:(Ⅰ)由已知得,131+=
+n n n a a a , ∴311
1+=+n n a a ,即3111=-+n
n a a ∴数列⎭⎬
⎫⎩⎨⎧n a 1是首项11=a ,公差3=d 的等差数列. ∴233)1(11-=⨯-+=n n a n
, 故)(2
31*∈-=N n n a n
(Ⅱ) ∵)1
31231(31)13)(23(11+--=+-=+n n n n a a n n 13221++++=n n n a a a a a a S )13)(23(1741411+-+
+⨯+⨯=n n )]131231()7141()411[(31+--++-+-=n n 1
3)1311(31+=+-=n n n 。