程序升温分析技术PPT课件
气相色谱的程序升温

气相色谱的程序升温
气相色谱的程序升温是指在气相色谱分析过程中,通过改变柱温的方式来提高分离效率的方法。
具体而言,程序升温是指在一定的时间内,按照一定的升温速度将柱温升高到一定的温度,然后保持一定的时间,最后再以一定的降温速度将柱温降回到初始温度。
通过程序升温,可以使不同沸点的组分在不同的温度下分离,从而提高分离效率和峰形的对称性。
在程序升温过程中,柱温的变化可以分为三个阶段:初始温度、升温阶段和恒温阶段。
初始温度是指在程序升温开始时柱温所处的温度,一般为室温或较低的温度。
升温阶段是指柱温从初始温度升高到设定的最高温度的过程,升温速度可以根据需要进行调整。
恒温阶段是指柱温保持在最高温度的过程,一般为数分钟到数十分钟不等,可以根据需要进行调整。
程序升温的优点是可以提高分离效率,缩短分析时间,同时还可以改善峰形的对称性,提高检测灵敏度。
但是,程序升温也存在一些缺点,如可能会导致峰的重叠、拖尾等问题,需要根据实际情况进行调整。
总的来说,气相色谱的程序升温是一种非常有用的分离技术,在气相
色谱分析中得到了广泛的应用。
第六章 程序升温分析技术(上)

向扩散;
或吸附剂具有双孔分布也都能引起多脱附峰的出现;。
不同的TPD峰彼此相互分离,则可把每个峰看成是具有等同能量的各个 表面中心所显示的TPD峰,中心的各种参数:Ed(或△Ha ),v,n等。
1.2.1 多吸附中心模型
ra为吸附速率。各中心的脱附速率方程为:
d1 n ka (1 1 ) n cG kd 11 dt
d1 X dt
2
d 2 ) dt
TPD过程的边界条件为: t=0, T=T0 0 若 θ < X ,即 θ = θ 和 θ 1=0
0
0
1
2
0
T
2
பைடு நூலகம்
X2
若 θ 1 > X2 ,即 θ
0
0
2
=1 和
θ 0T - X2 θ 1= X1
0
1.2.1 多吸附中心模型
不能通过独立的模拟每种中心的TPD规律来描述多中心TPD
吸附剂(含催化剂)表面不均匀主要表现在表面中心的能量有一定的分 布,即表面中心的能量是不均一的,各部位的能量不同。
不同能量中心在表面的分布情况很复杂,比较简单的情况比如表面上只 有两种不同的中心,两种中心的能量强度相差悬殊,这时在TPD图上显 示的是彼此分离的两个峰。
1.2.3 脱附活化能分布与TPD曲线的关系
n 1
(1-7) (1-8)
n=1时,
Tm和Fc有关时,TPD过程伴随着在吸附,如果加大Fc使Tm和Fc无关, 即得式(1-7)、(1-8)。这时,TPD变成单纯的脱附过程。 通过改变Fc可以判断TPD过程有无再吸附发生以及消除再吸附现象的发生。 对于脱附动力学是一级(n=1)的,TPD谱图呈现不对称图形, 脱附动力学是二级(n=2)的,TPD谱图呈现对称形,因此可以从图形的 对称与否,判定n的值。
第七讲程序升温分析技术在催化剂表征中的应用

第七讲程序升温分析技术在催化剂表征中的应用多相催化过程是一个极其复杂的表面物理化学过程,这个过程的要紧参与者是催化剂与反应分子,因此要阐述某种催化过程,首先要对催化剂的性质、结构及其与反应分子相互作用的机理进行深入研究。
分子在催化剂表面发生催化反应要经历很多步骤,其中最要紧的是吸附与表面反应两个步骤,因此要阐明一种催化过程中催化剂的作用本质及反应分子与其作用的机理,务必对催化剂的吸附性能(吸附中心的结构、能量状态分布、吸附分子在吸附中心上的吸附态等)与催化性能(催化剂活性中心的性质、结构与反应分子在其上的反应历程等)进行深入研究。
这些性质最好是在反应过程中对其进行研究,这样才能捕捉得到真正决定催化过程的信息,而程序升温分析法(TPA T)则是其中较为简易可行的动态分析技术之一。
当然除TPAT技术之外,还有原位红外光谱法(包含拉曼光谱法)、瞬变应答技术与其它原位技术均能够在反应或者接近反应条件下有效地研究催化过程。
程序升温分析技术(TPAT)在研究催化剂表面上分子在升温时的脱附行为与各类反应行为的过程中,能够获得下列重要信息:l表面吸附中心的类型、密度与能量分布;吸附分子与吸附中心的键合能与键合态。
l催化剂活性中心的类型、密度与能量分布;反应分子的动力学行为与反应机理。
l活性组分与载体、活性组分与活性组分、活性组分与助催化剂、助催化剂与载体之间的相互作用。
l各类催化效应——协同效应、溢流效应、合金化效应、助催化效应、载体效应等。
l催化剂失活与再生。
程序升温分析技术具体、常见的技术要紧有:u程序升温脱附(TPD)将预先吸附了某种气体分子的催化剂在程序升温下,通过稳固流速的气体(通常为惰性气体),使吸附在催化剂表面上的分子在一定温度下脱附出来,随着温度升高而脱附速度增大,通过一个最大值后逐步脱附完毕,气流中脱附出来的吸附气体的浓度能够用各类适当的检测器(如热导池)检测出其浓度随温度变化的关系,即为TPD技术。
催化剂程序升温技术课件

技术原理和基本流程
基本流程 1. 准备阶段:选择合适的催化剂和反应物,设定升温程序。
2. 升温阶段:按照设定的程序,将催化剂和反应物加热至设定温度。
技术原理和基本流程
3. 反应阶段
在设定温度下,测量催化剂对反应物的催化活性。
4. 数据记录与分析
记录不同温度下的催化活性数据,并进行分析,绘制催化剂活性与 温度的关系曲线。
5. 结果评估与应用
根据分析结果,评估催化剂的性能,并应用于实际生产中。
03 催化剂程序升温数据清洗
在进行分析前,需要对原 始数据进行清洗,去除特 殊值和噪声,确保数据的 准确性和可靠性。
数据预处理
对清洗后的数据进行预处 理,包括数据平滑、归一 化等操作,以便于后续的 数据分析和处理。
特征提取
根据催化剂程序升温技术 的特点,提取与催化剂性 能相关的特征参数,如升 温速率、峰值温度等。
历史发展
自20世纪初催化剂被发现并应用于工业以来,催化剂程序升温技术逐渐发展起 来。随着计算机技术的进步,现代化的催化剂程序升温技术可以实现更精确的 温度控制和数据采集。
技术优点和应用范围
优点 • 高效性:可以在较短时间内评估催化剂的活性,提高研发效率。
• 精确性:通过程序控制温度,可以精确测量催化剂在不同温度下的活性。
根据实验需求,设定催化剂程序升温的温度程序,包括初始温度 、升温速率、最终温度等参数。
5. 反应气体供应
打开反应气体供应系统,控制反应气体的流量,使反应气体进入 催化剂床层。
程序升温还原法ppt课件

TPR法研究催化剂的实例
灼烧过的新鲜Re2O3/Al2O3,其TPR高峰温度 Tr=500~550℃。还原过的Re2O3/Al2O3,随着再氧化 温度的升高,TPR的高峰温度也逐渐接近新鲜 Re2O3/Al2O3的TPR高峰温度。
10
TPR法研究催化剂的实例
图18表明,由于Pt的作用使 Re2O3更易还原,使它在低 温时就能部分还原。随着 Re含量增加,TPR峰面积 增加。这说明Pt和Re有相 互作用。但这些结果还不 能说明Pt和Re形成合金。 把上述还原过的催化剂,在 100℃时再氧化,后作TPR, 得到图19的结果。
程序升温还原法
1
定义
程序升温还原法(TPR)是一种在等速升 温的条件下进行的还原过程。在升温过程 中如果试样发生还原,气相中的氢气浓度 随温度变化而发生浓度变化,把这种变化 过程记录下来就得氢气浓度随温度变化的 TPR图。
2
影响TPR的因素
载气流速:载气流速增加,TM降低,从 10ml/min 增加到20ml/min, TM降低1530℃。
12
4
负载型催化剂金属分散度测定
应用化学吸附和表面反应相结合的的方法,可以 确定各种负载型过度经书(如Pt、Pd、Ni、Co、Fe 等)催化剂的金属分散度。
金属分散度系指分布在载体上的表面金属原子数 和载体上总的金属原子数之比,用D表示。金属分散 度常常和金属的比表面S或者金属粒子的大小相联系。
5
测定金属分散度最普及的方法是设备简单的选 择性化学吸附法
实验证明,氢在Pt 上呈原子态吸附,见式(1)
所以被消耗的H原子数等于催化剂表面活性金 属Pt 的原子数。H 原子与Pt 表示样品消耗H2 气的总体积, 则根据金属分散度的定义,即可以直接计算出 Pt/Al2O3催化剂上金属Pt 的分散度D见式(2)
程序升温技术-..

化学吸附
• 化学吸附在多相催化中占有非常重要的地位。 因为多相催化反应是多步骤过程,其中某些步 骤是在吸附相中进行的。分子在吸附相中的行 为决定着催化过程的本质。 • 多相催化反应的实现要通过五个步骤:(1) 反应 物向催化剂表面扩散;(2) 反应物在催化剂表面 吸附;(3) 在吸附层中进行表面反应;(4) 反 应生成物由催化剂表面脱附;(5) 生成物扩散后 离开邻近催化剂的表面区。
征该氧化物的性质。
两种氧化物混合在一起,如果在TPR过程中每一种氧化 物保持自身还原温度不变,则彼此没有发生作用。 反 之,发生了固相反应的相互作用,原来的还原温度也要 变化。
TPR应用1
CeO2-ZrO2间的 固相反应
随着球磨时间增加, 高温峰下降,低温 峰上升且向高温移 动 XRD:长时间球磨 后,CeO2-ZrO2间发 生相互作用 固熔体Ce0.5Zr0.5O2 形成
TPR应用2
5%,两个TPR峰 5%,出现第三个峰, 表示 和不变, 峰温和强度随 负载量剧增。
15% 10% 5% 3%
XRD:5%后出现晶相CuO
和峰为小晶粒CuO,高分 散,CeO2相互作用大 是大晶粒CuO,还原温度高
2%
CuO/CeO2催化剂的TPR谱
20oC(5%O2 )再
在反应升温速率受控的条件下,连续检测反应体系
输出变化的一种表征方法
一种较为简易可行的动态分析技术
技术前提:程序升温技术、即时检测技术
作用
在研究催化剂表面上分子在升温时的脱附行为和各种反 应行为的过程中,可以获得以下重要信息: 表面吸附中心的类型、密度和能量分布;吸附分子和 吸附中心的键合能和键合态 催化剂活性中心的密度和能量分布;反应分子的动力 学行为和反应机理 活性组分和载体、活性组分和活性组分、活性组分和 助催化剂、助催化剂和载体之间的相互作用 各种催化效应——协同效应、溢流效应、合金化效应、 助催化效应、载体效应等
程序升温反应演示文稿

• 热分析仪的组成系统:加热单元、检测单元、样品支撑 单元,气氛控制单元
• 检测单元:差示热电偶,差示功率补偿加热器,天平, 应力与位移检测器
第51页,共80页。
DTA:T~T 测量试样与参比之间的
离子源
第36页,共80页。
化学电离离化过程示意图
常用反应气体:氢气,低碳烷烃,氨等
第37页,共80页。
激光溅射离化过程示意图
蒸发作用
光致正离子发射
离子源
第38页,共80页。
锎252等离子解吸离化作用示意图
252Cf 142Ba+18 + 106Tc+22 + ……
生物大分子,如多肽、氨基酸、核苷酸等
温度差随温度的变化
DSC:dH/dt~T 测量试样与参比之间的
焓变速率随温度的变化
功率补偿型DSC
热流型DSC
第52页,共80页。
下皿式
上皿式
侧皿式
热天平的几种结构
第53页,共80页。
DTA曲线 特征值
峰 峰值温度 峰宽 峰高
Pd/Al O 23
100
200
300
400
500
Temperature/ 0C
同位素捕获
干扰信号主峰排除
第49页,共80页。
外标定量方式 CO2-TPD测量表面酸性位密度
脉冲法
饱 和 吹 扫 法
第50页,共80页。
3.6 热分析技术的基本原理
• 热分析:在程序升温控制的条件下,测量物质的物 理性质与温度关系的一类技术
• 释放型速率曲线 • 检测对象浓度增加
程序升温

方式简介程序升温气相色谱分析中,色谱柱的温度控制方式分为恒温和程序升温两种。
程序升温色谱法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。
各组分的保留值可用色谱峰最高处的相应温度即保留温度表示。
基本理论保留温度程序升温在程序升温中,组分极大点浓度流出色谱柱时的柱温叫保留温度,其重要性相当于恒温中的tR,VR。
对每一个组分在一定的固定液体系中,TR是一个特征数据,即定性数据,不受加热速度、载气流速、柱长和起始温度影响。
1、保留温度及其它保留值线性升温时 TR = T0 + rtrtr = ( TR – T0 ) / r 程序升温中某组分的保留时间VP = tr F 保留体积程序升温中某组分的保留温度,相当于恒温色谱中保留值的对数,因此,在恒温色谱中保留值的对数遵守的规律,在程序升温中也成立。
(1)保留温度与碳数关系TR = aN + bTR = cTb + d(2)保留温度与沸点关系初期冻结程序升温在程序升温色谱分析中,当一多组分宽沸程混合物进样后,由于起始温度很低,因此,对少数低沸点组分为最佳柱温,得到良好的分离。
对于大多数组分,这个起始温度是太低了,因为k’值很大,蒸气压很低,大都溶解在固定液里,所以,这些组分的蒸气带(色谱带)的移动速度非常慢,几乎停在柱入口不动,这种现象是程序升温色谱中所特有的,叫初期冻结。
随着柱温的升高,某些组分的蒸气带便开始以可观的速度移动,柱温越接近保留温度,即越接近出口处,色谱带速度增加的越快。
一般来说,从(TR–30oC)——TR色谱带通过柱的后半段,TR-300C时,恰好位于柱子的中央。
TR-300C 1/2LTR-600C 1/4LTR-900C 1/8L有效柱温T’= 0.92TR 也有T’ = TR – 450C注意事项有效柱温是获得一定理论板数和分离度的特征温度,对两个相邻难分离组分,它是实现分离的最佳恒温温度,在此恒温温度下,两组分的分离可达到与程序升温同样的柱效和分离度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Temperature Programmed Techniques (Part 2)
Temperature Programmed Reduction (TPR)
H2-TPR
Temperature-programmed reduction (TPR) is a technique for the characterization of solid materials and is often used in the field of heterogeneous catalysis to find the most efficient reduction conditions, determine the reducibility of a catalyst and the degree of oxidaton of the active phase.
➢characterisation of oxidic catalysts and other reducible catalysts ➢qualitative information on oxidation state ➢quantitative kinetic data ➢optimization of catalyst pretreatment
During a TPR experiment, the catalyst under investigation is placed in a fixed-bed reactor and exposed to a reducing mixture that continuously perfuses the catalyst bed, while the temperature is increased according to a linear temperature programme. The difference between the inlet and outlet concentration of the gas mixture is measured as function of time using a.
See next slide for Detail Process
The resulting TPR pro qualitative information on the oxidation state of the reducible species present and, in that sense, it is a fingerprint. The technique is intrinsically quantitative and the information obtained is of a kinetic nature and, as a consequence, directly correlated with catalytic behavior. On the other hand, information on the structure of the species present is less straightforward than for instance that obtained by spectroscopic methods.
Typical process description
A simple container (U-tube) is filled with a solid or catalyst. This sample vessel is positioned in a furnace with temperature control equipment. A thermocouple is placed in the solid for temperature measurement. To remove the present air the container is filled with an inert gas (nitrogen, argon). Flow controllers are used to add hydrogen (for example, 5-10Vol% hydrogen in nitrogen). The composition of the gaseous mixture is measured at the exit of the sample container with appropriate detectors (thermal conductivity detector, mass spectrometer). Now, the sample in the oven is heated up on predefined values. Heating values are usually between 1 K/min and 20K/min. If a reduction takes place at a certain temperature, hydrogen is consumed which is recorded by the detector. In practice the production of water is a more accurate way of measuring the reduction. This is due to the potential for varying hydrogen concentrations at the inlet, so the decrease in this number may not be precise, however as the starting concentration of water will be zero, any increase can be measured more accurately.