常用扫描器白电平调整说明

常用扫描器白电平调整说明

常用扫描器白电平调整说明

来源:武汉伟事达电气科技有限公司发布时间:2009-06-18 查看次数:40

一.理光300系列扫描器白电平调整<适合理光所有使用此扫描器机种>

1. 从原稿出纸口放入A4白纸覆盖扫描器,注意白纸不要接触到原稿传感器;

2. 按功能键;

3. 按数字键2;

4. 按启动键;

5. 拿出白纸回到待机状态.

二.兄弟190/275系列扫描器白电平调整<适合兄弟所有使用该种扫描器机种>

1. 快速按功能"米-2-8-6-4"进入调试模式

2. 从原稿入口放A4白纸一张

3. 按55进行调整,白纸会自动走动

4. 走完白纸后,按数字键99回到待机状态

三.声宝系列扫描器白电平调整<适合声宝所有使用扫描器机种>

1. 按功能"9-米-8-#-7"进入维修模式

2. 按#字键选择到"Shaidng Mode"

3. 从原稿入纸口放A4白纸一张

4. 按启动键白纸会走动

5. 走完白纸后,按停止键回到待机状态

常用电平及接口电平

常用电平及接口电平

目录 一.常用逻辑电平标准 (3) 1.1 COMS电平 (4) 1.2 LVCOMS电平 (5) 2.1 TTL电平 (5) 2.2 LVTTL电平 (5) 3.1 LVDS电平 (6) 4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平 (7) 5.1 CML电平 (7) 6.1 VML电平 (7) 7.1 HSTL电平 (8) 7.2 SSTL电平 (8) 二.常用接口电平标准 (9) 1. RS232、RS485、 RS422 (9) 2 DDR1 ,DDR2,DDR3 (10) 3 PCIE2. 0、PCIE3.0 (11) 4 USB2.0, USB3.0 (13) 5 SATA2.0, SATA3.0 (14) 6 GTX高速接口 (14)

一.常用逻辑电平标准 附图1: 附图2:

附图3: 附图4: 1.1 COMS电平 电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V 输入高压(VIH) 3.5 V 输入低压(VIL) 1.5 V 输出高压(VOH) 4.44 V 输出低压(VOL)0.5 V 共模电压(VT) 2.5 V

传输延迟时间(25-50ns) 最高速率 耦合方式 1.2 LVCOMS电平 LVCOMS电平参数条件最大值典型值最小值单位备注电源电压(VCC) 3.6 3.3 2.7 V 输入高压(VIH)0.7VCC V 输入低压(VIL) 0.2VCC V 输出高压(VOH) VCC-0.1 V 输出低压(VOL)0.1 V 共模电压(VT)0.5VCC V 最高速率 耦合方式 2.1 TTL电平 电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V 输入高压(VIH) 2 V 输入低压(VIL) 0.8 V 输出高压(VOH) 2.4 V 输出低压(VOL)0.5 V 共模电压(VT) 1.5 V 传输延迟时间(5-10ns), 最高速率 耦合方式 2.2 LVTTL电平 电平参数条件最大值典型值最小值单位备注

MAX232芯片可以完成TTL与EIA双向电平转换

TTL/CMOS INPUTS 端.这个端口是的作用是输入TLL或CMOS信号的...一般为0-5V... 低电平为零,高电平为VCC. TTL/CMOS OUTPUTS端,这个端口的作用是输出TLL或CMOS信号...输出电压一般为0-5V...低电平为零..高电平为VCC. RS232 OUTPUTS 这端口是把TTL或CMOS的信号转为RS232的信号输出...输出为正负12V...到电脑.... RS232 INPUTS 这个端口是接收到电脑发出的正负12伏...由232输出转为TTL或CMOS信号...这个信号也为正负12V... MAX232内部有二组232转换电路... 使用的时候...一般是11------ 14 13----12为一组. 10-----7 8----9为一组... 51单片机要与PC机进行串口通信,通常使用MAX232芯片来作电平转换。下面把MAX232与51单片机的接口电路贴出来供大家参考。(此电路图已经过实际验证) MAX232芯片可以完成TTL与EIA双向电平转换,MAX232提供两路串口电平转换,现在只用一路串口,所以另一路悬空不使用,MAX232与51单片机接口电路如下图所示。(单击图片可放大)

图中DB9为串口的插头(母接头),插座共有9个引线. MAX232的12脚接单片机的P3.0(RXD) MAX232的12脚接单片机的P3.1(TXD) MAX232还带有4个电容,都是容量都是104,为了减少电路板体积,可以用无极电容代替极性电容。 VCC 是5V DC 提示:串口插座有公母两种类型其中 公的串口插座是带有插针的(有针) 母的串口插座是不带有插针的(有洞) 如下图所示 由以上分析可知,DB9为母接头,而电脑PC的串口接头一般是分接头。 所以此电路与PC相连时,所用的串口线应该是一公一母的串口线。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL 电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。这是由于可靠性和成本两面的原因。因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。

详解电平种类与电平转换

详解电平种类与电平转换 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作3.3V→5V电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。 廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表 示 TTL 兼容)。 (4) 超限输入降压法(5V→3.3V,3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采 用 3.3V 供电,就可以实现5V→3.3V电平转换。 (5) 专用电平转换芯片 最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

串口电平转换芯片数据手册SP3222_3232E

DESCRIPTION s Meets true EIA/TIA-232-F Standards from a +3.0V to +5.5V power supply s 235KBps Transmission Rate Under Load s 1μA Low-Power Shutdown with Receivers Active (SP3222E ) s Interoperable with RS-232 down to +2.7V power source s Enhanced ESD Specifications: ±15kV Human Body Model ±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact Discharge The SP3222E/3232E series is an RS-232 transceiver solution intended for portable or hand-held applications such as notebook or palmtop computers. The SP3222E/3232E series has a high-efficiency, charge-pump power supply that requires only 0.1μF capacitors in 3.3V operation. This charge pump allows the SP3222E/3232E series to deliver true RS-232performance from a single power supply ranging from +3.3V to +5.0V. The SP3222E/3232E are 2-driver/2-receiver devices. This series is ideal for portable or hand-held applications such as notebook or palmtop computers. The ESD tolerance of the SP3222E/3232E devices are over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge test methods. The SP3222E device has a low-power shutdown mode where the devices' driver outputs and charge pumps are disabled. During shutdown, the supply current falls to less than 1μA. SELECTION TABLE L E D O M s e i l p p u S r e w o P 232-S R s r D e v i r 232-S R s r e v i e c e R l a n r e t x E s t n e n o p m o C n w o d t u h S L T T a S -3e t t f o .o N s n i P 2223P S V 5.5+o t V 0.3+224s e Y s e Y 02,812 323P S V 5.5+o t V 0.3+2 2 4 o N o N 6 1

电平转换方法

5V-3.3V电平转换方法 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换 首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图: CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。如果CP接入的是5V 的信号VCC=3.3V,则该电路是将5V信号转换成3.3V信号。优点:电路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。缺点:对输入信号的频率有一定的限制。 方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。 电路如下图: 其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电平。同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退饱和时间。 优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路是很好的选择。 缺点:输出波形不是很良好。 方案三:电阻分压 这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平的区别。 TTL电平:输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容限是0.4V。 CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且有很宽的噪声容限。 下面的电路是将5V的TTL电平转换成3V的TTL电平

几种常用逻辑电平电路的特点及应用

几种常用逻辑电平电路的特点及应用 2007-08-13 来源: 作者: LVDS(Low Voltage Differential Signal)低电压差分信号、ECL(EmitterCoupled Logic)即射极耦合逻辑、CML电平等各种逻辑电平的特点以及接口应用。 在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。 1 几种常用高速逻辑电平 1.1LVDS电平 LVDS(Low V oltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。 LVDS的典型工作原理如图1所示。最基本的LVDS器件就是LVDS驱动器和接收器。LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。LVDS 接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。 图1LVDS驱动器与接收器互连示意 LVDS技术在两个标准中被定义:ANSI/TIA/EIA644 (1995年11月通过)和IEEE P1596.3 (1996年3月通过)。这两个标准中都着重定义了LVDS的电特性,包括:①低摆幅(约为350 mV)。低电流驱动模式意味着可实现高速传输。ANSI/TIA/EIA644建议了655 Mb/s的最大速率和1.923 Gb/s的无失真通道上的理论极限速率。 ②低压摆幅。恒流源电流驱动,把输出电流限制到约为3.5 mA左右,使跳变期间的尖峰干扰最小,因而产生的功耗非常小。这允许集成电路密度的进一步提高,即提高了PCB板的效能,减少了成本。 ③具有相对较慢的边缘速率(dV/dt约为0.300 V/0.3 ns,即为1 V/ns),同时采用差

解逻辑电平知识集合

要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。 4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。 5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平 Vih > Vt > Vil > Vol。 6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。 7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。 8:Iih:逻辑门输入为高电平时的电流(为灌电流)。 9:Iil:逻辑门输入为低电平时的电流(为拉电流)。 门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件: (1):RL < (VCC-Voh)/(n*Ioh+m*Iih) (2):RL > (VCC-Vol)/(Iol+m*Iil) 其中n:线与的开路门数;m:被驱动的输入端数。 :常用的逻辑电平 ·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。 ·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。 ·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。 ·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。 ·低电压的逻辑电平还有2.5V和1.8V两种。 ·ECL/PECL和LVDS是差分输入输出。 ·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。1.电平的上限和下限定义不一样,CMOS具有更大的抗噪区域。 同是5伏供电的话,ttl一般是1.7V和3.5V的样子,CMOS一般是 2.2V,2.9V的样子,不准确,仅供参考。 2。电流驱动能力不一样,ttl一般提供25毫安的驱动能力,而

常见TTL电平转换电路

常见TTL电平转换电路 ------设计参考 1.二、三级管组成的TTL/CMOS电平转换电路,优点是价格非常低,缺点是要求使用在 信号频率较低的条件下。 建议上拉电阻为10K时,可使用在信号频率为几百Khz以下的环境中,曾经在960Khz 的串口通信中做过测试。上拉电阻越小,速率越高,但是电路的功耗也越高,在低功耗要求高的电路中需要慎重考虑。在选择二、三极管时,尽量选用结电容小,开关速率高的。 A ) 图1所示电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V。二极管选用高速肖特基二极管,并且V F尽量小,例如RB521S。 图1 B ) 图2电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V,否则PNP管可能关不断。如果对输出低电平电压幅度有较严格的要求,PNP管则选用饱和压降小些的管子。PNP管也不如NPN的通用。VCC_OUT是输出信号的电源电压。 图2

C ) 图3是NPN管组成的转换电路,对输入和输出电平的谁高谁低没有要求,适用性很好。其中VCC_IN是输入信号的电源电压,VCC_OUT是输出信号的电源电压。转换后输出的低电平VOL=Vin_Lmax+Vsat,Vin_Lmax为输入信号低电平的最高幅值,Vsat为NPN管的饱和压降,如果对输出低电平电压幅度有较严格的要求,NPN管则选用饱和压降小些的管子,以满足一般电路中VOL<0.8V的要求。 图3 2.OC/OD输出的反相器组成的电平转换电路。 图4,由2级反相器组成,反相器必须是OC/OD输出的。反相器的电源与输入信号的电平相同或者相匹配,最后的输出电平由上拉电阻上拉到输出信号的目标电平上。上拉电阻的取值直接影响功耗和可适用的信号频率。 图4

选择正确的电平转换方案英文

Application Report SCEA044–June2010 A Guide to Voltage Translation With TXS-Type Translators Dave Moon,Aeysha Sultana High Volume Linear ABSTRACT Modern trends are driving the need for lower supply voltages across many system-level designs.As most processor voltage levels continue to decrease in the interest of achieving the lowest possible power consumption,peripheral devices maintain a need for higher voltage levels,creating potential for voltage discontinuities within a system.To remedy this mixed voltage system incompatibility,a voltage translator can be used. Texas Instruments High Volume Linear group offers a wide-range of voltage level translators.A variety of architectures provide solutions for different application environments including dual-supply direction-controlled,auto-direction sensing,and application-specific memory card interface translators. The information in this application report is intended to help system designers understand the architecture and operation of the TXS-type auto-direction sensing translator family Contents 1The Need For Voltage-Level Translation (2) 2Auto-Direction Sensing Voltage Translator Architecture (2) 3Input Driver Requirements With TXS-Type Translators (6) 4Driving External Loads With TXS-Type Translators (7) 5Output Enable Control (7) 6Conclusion (7) List of Figures 1Digital Switching Levels (2) 2Basic TXS0101,TXS0102,and TXS0104Architecture (3) 3Transfer Characterisitics of an N-Channel Transistor (3) 4Basic TXS0108E Architecture (4) 5TXS0108E During Low-to-High Signal Transition (5) 6TXS0108E During High-to-Low Signal Transition (6) 1 SCEA044–June2010A Guide to Voltage Translation With TXS-Type Translators Copyright?2010,Texas Instruments Incorporated

各种逻辑电平标准

各种逻辑电平标准 在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。 5V TTL和5V CMOS逻辑电平是通用的逻辑电平。·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。·低电压的逻辑电平还有2.5V和1.8V两种。·ECL/PECL和LVDS是差分输入输出。·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入 常用电平标准 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL 等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。 CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。 Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。 相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

RS232接口芯片双电荷泵电平转换器原理

RS232接口芯片双电荷泵电平转换器 原理 电子工业协会Electronic Industries Association Electronic Industries Association(EIA)电子工业协会(EIA) 1924年成立的EIA是美国的一个电子制造商组织。 EIA-232,就是众所周知的RS-232,它定义了数据终端设备(DTE)和数据通信设备(DCE)之间的串行连结。这个标准被广泛采用。 EIA-RS-232C电气特性: 在TxD和RxD上:逻辑1=-3V~-15V 逻辑0=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V RS-232-C电平采用负逻辑,即逻辑1:-3~-15V,逻辑0:+3~+15V。 注意,单片机使用的CMOS电平中,高电平(3.5~5V)为逻辑1,低电平(0~0.8V)为逻辑0。 单片机的SCI口要外接电平转换电路芯片把与TTL兼容的CMOS高电平表示的1转换成RS-232的负电压信号,把低电平转换成RS-232的正电压信号。典型的转换电路给出-9V和+9V。

典型的电平转换电路MAXx2xx系列芯片因单电源+5V供电,均有电荷泵电平转换器产生±10V电源,以供RS232电平所需。 一般是接4个泵电容,采用双电荷泵进行电平转换。标准接法如下图。 图1 芯片内带振荡器驱动双电荷泵,分双相四步工作,如下图。 图2电荷泵框图

第一步:S1、S3闭合,电源+5V向C1充电(图3)。C1电压最高可至5V。 图3 第二步:S2、S4闭合,C1所储电荷经S2、S4转移至C3,C3电压最高也可至5V。 C1电荷转移充电途径如红色虚线所示。 C3电压和电源+5V迭加起来提供10V的V+电源。 这时C1负端电位应等于电源+5V,所以C1负端电压波形应是0-+5V 的方波。 第三步:S5、S7闭合,C3所储电荷和电源+5V迭加经S5、S7向C2充电。 C2电压最高可至10V。充电途径如棕色虚线所示。 第二、三步实际同时进行(图4)。

TI-选择正确的电平转换方案

1. 简介 在今天的电子电路系统中电压电平的转换基本成为了必须。例如:一 个ASIC的供电为VccA,而I/O器件的供电为VccB。为了使它们之间正常通信,就需要一个如图1的电平转换(level-translation)方案。 输入电平限值和器件的输出电平主要根据器件采用的工艺技术和供电 。图2显示了不同的供电和元件技术的限值范围。为了成功的实现两个 器件的接口,一定要保证以下的条件: ■驱动器件的Voh必须大于接收器件的Vih ■驱动器件的Vol必须小于接收器件的Vil ■驱动器件的输出电压范围不能超过接收器件的可容忍的I/O电 压范围

2. 双电源电平转换器件(Dual-Supply Level Translators) 2.1 特性 双电源的器件是为了满足两类总线或不同供电器件之间的异步通讯的 。这类器件采用双电源:VccA为A端(A side)供电,VccB为B端供电。对于数据从A到B或B到A都能传输的双向的电平转换器件,方向取决于输入pin DIR的逻辑电平。如果器件有OE控制,在OE有无效时 A端和B端的总线隔离。 TI的双电源器件有各种位宽的应用并几乎覆盖了当前出现的全部的供 电应用。这些器件灵活,易用并能实现双向转换,对于许多电平转换 的应用都是理想的选择(译者注:强!)。它们的电流驱动能力可以 使其适合长线及重载的应用。 SN74AVCB324245是一种32位双电源电平转换器件(由四组8位端口组成)。图3显示了SN74AVCB324245的1.8V转3.3V的一个端口,同

时另一个端口实现3.3V到1.8V的转换。 双电源器件的优点: ●可以在不同电压结点间灵活的转换 ●具有电流驱动的能力 ●具有不同的位宽 2.2 产品列表

常用逻辑电平简介讲解学习

常用逻辑电平简介(转载) 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,

常用的电平转换方案

常用的电平转换方案 TTL、CMOS、ECL等电路的高低电平阀值不同,他们之间逻辑连接需要电平转换;还有,就是接口与接口之间的,如RS232与485之间,USB与串口之间等等,由于这些接口协议里面定义的电平不同,所以也需要电平转换。 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 图1. 电阻-二极管拓扑,是在同一根信号线上实现双向转换的可选技术之一

图2. 分立/数字晶体管是实现双向转换的另外一种选择 (数据入和数据出也被称为主入从出(MISO)和主出从入(MOSI)。SPI能够使用超过20Mbp的时钟信号,使用CMOS推挽逻辑。由于SPI是单向的,没有必要在同一根信号线上实现双向转换。这使电平转换变得简单一些,因为 可以采用电阻与二极管(图1)或分立/数字晶体管(图2)等简单方案。I2C、SMBusTM和1-Wire 接口为双向、漏极开路拓?扑。I2C有3个速度范围:≤ 100kbps的标准模式,≤ 400kbps的快速模式,≤ 3.4Mbps的高速模式。双向总线的电平转换更加困难,因为必须在同一根数据线上进行双向转换。基于电阻-二极管或集电极/漏极开路的单级晶体管转换器的简单拓扑由于固有的单向性,无法满足要求。 ) (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作 3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。

几种常用逻辑电平电路的特点及应用

几种常用逻辑电平电路的特点及应用 发布时间:2005-12-25 来源:应用领域:邮电 ONT face=Verdana> 引言 在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。 1 几种常用高速逻辑电平 1.1LVDS电平 LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。 LVDS的典型工作原理如图1所示。最基本的LVDS器件就是LVDS驱动器和接收器。LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。LVDS接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。 LVDS技术在两个标准中被定义:ANSI/TIA/EIA644 (1995年11月通过)和IEEE P1596.3 (1996年3月通过)。这两个标准中都着重定义了LVDS的电特性,包括: ①低摆幅(约为350 mV)。低电流驱动模式意味着可实现高速传输。 ANSI/TIA/EIA644建议了655 Mb/s的最大速率和1.923 Gb/s的无失真通道上的理论极限速率。 ②低压摆幅。恒流源电流驱动,把输出电流限制到约为3.5 mA左右,使跳变期间的尖峰干扰最小,因而产生的功耗非常小。这允许集成电路密度的进一步提高,即提高了PCB 板的效能,减少了成本。 ③具有相对较慢的边缘速率(dV/dt约为0.300 V/0.3 ns,即为1 V/ns),同时采用差分传输形式,使其信号噪声和EMI都大为减少,同时也具有较强的抗干扰能力。 所以,LVDS具有高速、超低功耗、低噪声和低成本的优良特性。 LVDS的应用模式可以有四种形式: ①单向点对点(point to point),这是典型的应用模式。 ②双向点对点(point to point),能通过一对双绞线实现双向的半双工通信。可以由标准的LVDS的驱动器和接收器构成;但更好的办法是采用总线LVDS驱动器,即BLVDS,这是为总线两端都接负载而设计的。 ③多分支形式(multidrop),即一个驱动器连接多个接收器。当有相同的数据要传给多个负载时,可以采用这种应用形式。④多点结构(multipoint)。此时多点总线支持多个驱动器,也可以采用BLVDS驱动器。它可以提供双向的半双工通信,但是在任一时刻,

电平转换资料

74AVC1T145 1、概述 74AVC1T145是一款具有双向电压转换和3态输出的单位双电源收发器。它的功能端口有1位输入输出端口(A和B),一个方向控制输入(DIR)和双电源引脚(V CC(A)和V CC(B))。同时V CC(A)和V CC(B)可以输入介于0.8 V 到3.6 V的电压实现器件在任意低电压节点之间的转换(0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V 和3.3 V)。引脚A和DIR由V CC(A)供电,引脚B由V CC(B)供电。在DIR上的高电平允许从A传输到B,也允许在DIR上的低电平从B传输到A。 该器件明确规定在局部省电模式时使用I OFF。I OFF将使输出失能,防止在电源关闭时破坏性的回路电流通过器件。当VCC(A)或VCC(B)处于地电平电压时处于挂起模式,同时A和B 将处于高阻态。 2、功能与优点 ?电源电压范围宽: ◆ ◆ ?噪声抑制能力强 ?符合JEDEC标准: ◆-12 (0.8 V to 1.3 V) ◆-11 (0.9 V to 1.65 V) ◆-7 (1.2 V to 1.95 V) ◆-5 (1.8 V to 2.7 V) ◆-B (2.7 V to 3.6 V) ?静电保护: ◆HBM JESD22-A114E类3 b超过8000 V ◆MM JESD22-A115-A超过200 V ◆CDM JESD22-C101C超过1000 V ?最大数据速率: ◆500 Mbit / s(1.8 V至3.3 V的转换) ◆320 Mbit / s(< 1.8 V至3.3 V转换) ◆320 Mbit / s(转换为2.5 V和2.5 V) ◆280 Mbit / s(转换到1.5 V) ◆240 Mbit / s(转换到1.2 V) 挂起模式或睡眠模式; ?锁存性能超过100 mA / JESD 100 II级 ?输入接受电压最高达3.6 V ?低噪声时过冲和欠冲小于VCC的10% ?I OFF电流提供部分省电模式操作 ?多种封装选择 ?指定使用温度范围从-40°C到+ 85°C和?40°C到+ 125°C 3、订购信息(略) 4、标记(略) 5、逻辑图

5V-3.3V电平转换方案

2013年1月8日 15:17 源文档 整理By caowent@ https://www.360docs.net/doc/2a17435231.html, 近年来,半导体制造工艺的不断进步发展,为便携式电子工业产品的广泛应用提供了动力和保证,便携式设备要求使用体积小,功耗低,电池耗电小的器件,因低电压器件的成本比传统5V器件更低,功耗更小,性能更优,加上多数器件的I/O脚可以兼容5V/3.3vTTL电平,可以直接使用在原有的系统中,所以各大半导体公司都将3.3,2.5v等低电平集成电路作为推广重点。但是,目前市场上仍有许多5V电源的逻辑器件和数字器件,因此在许多设计中3.3V(含3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在同一电路板中混用,随着更低电压标准的引进,不同电源电压和不同逻辑电平器件间的接口问题将在很长一段时间内存在.MSP430系列单片机的供电电压在1.8~3.6V这间,因此在使用它的过程中不可避免要碰到不同电压,电平的接口问题. 在混合电压系统中,不同的电源电压的逻辑器件相互连接时会存在以下三个主要问题: 1:加到输入和输出引脚上的最大允许电压限制问题; 器件对加到输入或者输出脚上的电压通常是有限制的.这些引脚有二极管或者分离元件接到Vcc。如果接入的电压过高,则电流将会通过二极管或者分离元件流向电源。例如在3.3V器件的输入端加上5V的信号,则5V电源会向3.3V电源充电,持续的电流将会损坏二极管和其他电路元件. 2:两个电源间电流的互串问题 在等待或者掉电方式时,3.3V电源降落到0V,大电流将流通到地,这使得总线上的高电压被下拉到地,这些情况将引起数据丢失和元件损坏.必须注意:不管在3.3V的工作状态还是在0V的等待状态下都不允许电流流向Vcc. 3:必须满足输入转换门限电平的问题. 用5V的器器件来驱动3.3V的器件有很多不同的情况,同样TTL和CMOS间的转换电平也存在着不同的情况.驱动器必须满足接收器的输入转换电平,并且要有足够的容限以保证不损坏电路元件. 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如 6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图:

相关文档
最新文档