山东省实验中学高考等差数列专题及答案百度文库

合集下载

新高考数学(理)之数列 专题03 等差数列(等差数列的和与性质)(解析版)

新高考数学(理)之数列 专题03 等差数列(等差数列的和与性质)(解析版)

新高考数学(理)数列03 等差数列(等差数列的和与性质)一、具体目标:等差数列 (1) 理解等差数列的概念.(2) 掌握等差数列的通项公式与前n 项和公式.(3) 能在具体的问题情境中识别数列的等差关系关系,并能用有关知识解决相应的问题. (4) 了解等差数列与一次函数的关系.等差数列的和与二次函数的关系及最值问题. 二、知识概述: 一)等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示.用递推公式表示为或.2.等差数列的通项公式:;()d m n a a m n-+=.说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列.3.等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项,其中 . ,,成等差数列. 4.等差数列的前和的求和公式:. 5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与2d 1(2)n n a a d n --=≥1(1)n n a a d n +-=≥1(1)n a a n d =+-A P d 0>0d =0d <a A b A a b 2a bA +=a Ab ⇔2a bA +=n 11()(1)22n n n a a n n S na d +-==+【考点讲解】它前一项的差是同一个常数,那么此数列不是等差数列. 6.注意区分等差数列定义中同一个常数与常数的区别. 二)方法规律:1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔是等差数列;(5)是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+; 四个数成等差数列,一般设为3,,,3a d a d a d a d --++. 这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式:若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a , 公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 三)等差数列的性质: 1.等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;1(1)n a a n d =+-11()(1)22n n n a a n n S na d +-==+{}n a(2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①-S S nd =奇偶; ②;(Ⅱ)若项数为奇数,设共有项,则①S S -偶奇(中间项);②. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 四)方法规律:1. 等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和 灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用, 故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n 项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略. 五)等差数列的和1. 等差数列的前n 项和公式{}n a 1a 3a 5a 7a 3a 8a 13a 18a {}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n 1n n S a S a +=奇偶21n -n a a ==中1S nS n =-奇偶{}n a若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 2.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值.六)求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =L 依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =-B . 310n a n =-C .228n S n n =- D .2122n S n n =- n a n a 【真题分析】【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【答案】A2.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =( )A .12-B .10-C .10D .12【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B . 【答案】B3.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D .8【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【答案】A4.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【答案】C5.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【答案】1006.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 【答案】47.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n的最小值为___________.【解析】法一:等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.法二:等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,可得()()22224n a a n d n n =+-=-+-=-,()()()12818222n n a a n n n S n n +-===-,所以结合题意可知,n S 的最小值为4S 或5S ,即为10-. 【答案】 0,10-.8.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【答案】169.【2017课标II ,理15】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ 。

高考数学复习历年考点题型专题讲解38--- 数列中的通项公式(解析版)

高考数学复习历年考点题型专题讲解38--- 数列中的通项公式(解析版)

高考数学复习历年考点题型专题讲解38数列中的通项公式一、题型精讲 解题方法与技巧 题型一、由S a n n 与的关系求通项公式例1、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N *=+∈,且12a =.求数列{}n a 的通项公式;【解析】因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==,所以2n a n =例2、(2020届山东省枣庄、滕州市高三上期末)已知等比数列{}n a 满足1,a 2,a 31a a -成等差数列,且134a a a =;等差数列{}n b 的前n 项和2(1)log 2nn n a S +=.求:(1),n a n b ;【解析】设{}n a 的公比为q. 因为1,a 2,a 31a a -成等差数列, 所以()21312a a a a =+-,即232a a =.因为20a ≠,所以322a q a ==. 因为134a a a =,所以4132a a q a ===. 因此112n n n a a q-==.由题意,2(1)log 2n n n a S +=(1)2n n+=.所以111b S ==,1223b b S +==,从而22b =.所以{}n b 的公差21211d b b =-=-=.所以1(1)1(1)1n b b n d n n =+-=+-⋅=.例3、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.求数列{}n a 的通项公式;【解析】当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; 题型二、由a a n n 与1+的递推关系求通项公式例3、【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21nn a b n -=-. 所以111[()()]222n n n n n na ab a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.例4、(2020届山东省德州市高三上期末)对于数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中()*1n n n a a a n +∆=-∈N ,对自然数()2k k ≥,规定{}kn a ∆为数列{}n a 的k 阶差分数列,其中111k k k n n n a a a --+∆=∆-∆.若11a =,且()2*12n n n n a a a n +∆-∆+=-∈N ,则数列{}n a 的通项公式为()A .212n n a n -=⨯ B .12n n a n -=⨯C .()212n n a n -=+⨯D .()1212n n a n -=-⨯【答案】B【解析】根据题中定义可得()()2*1112n n n n n n n n a a a a a a n a +++∆-∆+=∆-∆-∆+=-∈N ,即()1122nn n n n n n n a a a a a a a ++-∆=--=-=-,即122nn n a a +=+,等式两边同时除以12n +,得111222n n n n a a ++=+,111222n n n n a a ++∴-=且1122a =, 所以,数列2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列,()1112222n n a n n ∴=+-=, 因此,12n n a n -=⋅.故选:B.例5、【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221nna c -的通项公式;【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯. (2)(i )()()()()22211321321941nnnn n n n a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221nna c -的通项公式为()221941nnn a c -=⨯-.题型三、新定义题型中通项公式的求法例6、【2020年高考江苏】已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk k n nn S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a”数列,且0n a >,求数列{}n a 的通项公式; 【解析】(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=,也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-,这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列*{}()n a n ∈N是“”数列,==.因为0n a >,所以10n n S S +>>1-=.n b,则1n b -=221(1)(1)(1)3n n n b b b -=->. 解得2n b =,即2=,也即14n nS S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩例7、【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12mi i i a a a <<⋅⋅⋅<,则称新数列12mi i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列; (2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【解析】(1)1,3,5,6.(答案不唯一)(2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得1pq r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a ,又12,,,pr r r a a a 是{}n a 的长度为p 的递增子列,所以0pm r a a ≤.所以0m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数).假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m . 因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件.所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.二、达标训练1、(2020届浙江省温州市高三4月二模)已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =()A .16B .17C .18D .19【答案】B【解析】当6n ≥时,()1211111n n n n n a a a a a a a +--==+-,即211n n n a a a +=-+,且631a =.故()()()222677687116......55n n n n a a a a a a a a a n a a n +++++=-+-++-+-=-+-,2221211...161k k k a a a a k a +++++=+-=+,故17k =.故选:B .2、(2020届山东省潍坊市高三上学期统考)设数列{}n a 的前n 项和为n S ,且21n S n n =-+,在正项等比数列{}n b 中22b a =,45b a =.求{}n a 和{}n b 的通项公式;【解析】当1n =时,111a S ==, 当2n ≥时,1n n n a S S -=- =22(1)[(1)(1)1]n n n n -+----+=22n -,所以1(1)22(2)n n a n n =⎧=⎨-≥⎩.所以22b =,48b =于是2424b q b ==,解得2q 或2q =-(舍)所以22n n b b q-=⋅=12n -.3、(2020届山东省日照市高三上期末联考)已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项; 【解析】证明:因为n n b a n -=,所以n n b a n =+.因为121n n a a n +=+- 所以()()112n n a n a n +++=+ 所以12n n b b +=.又12b =,所以{}n b 是首项为12b =,公比为2的等比数列,所以1222n n n b -=⨯=.4、(2020·山东省淄博实验中学高三上期末)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列.求数列{}n a 的通项公式;【解析】对任意*n ∈N ,有()()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.② ①-②并整理得()()1130n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,13n n a a -∴-=. 当11a =时,()13132n a n n =+-=-,此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .5、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S ,满足424S S =,917a =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足1212112n n n b b b a a a +++=-…,求数列{}n b 的通项公式 【解析】(1)设等差数列{}n a 首项为1a ,公差为d .由已知得11914684817a d a d a a d +=+⎧⎨=+=⎩,解得112a d =⎧⎨=⎩.于是12(1)21n a n n =+-=-.(2)当1n =时,1111122b a =-=. 当2n ≥时,1111(1)(1)222n n n n nb a -=---=, 当1n =时上式也成立.于是12n n nb a =. 故12122n n n n n b a -==. 6、(2020·浙江温州中学3月高考模拟)已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,n a =*n N ∈,且2n ≥)求数列{}n a 的通项公式;【解析】由n a =1n n S S --=+1(2)n =≥,所以数列1==为首项,以1为公差的等差数列,1(1)1n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时,111a S ==,也满足上式,所以21n a n =-;7、【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==. 从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .8、【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n项和.①求数列{b n }的通项公式;【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n nb b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .。

等差数列高考真题及答案

等差数列高考真题及答案

等差数列高考真题及答案一、选择题1.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 2.已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0 B.b≤0 C.c=0 D.a﹣2b+c=0 3.已知数列{a n}满足a n+a n+4=a n+1+a n+3(n∈N*),那么必有()A.{a n}是等差数列B.{a2n﹣1}是等差数列C.{a2n}是等差数列D.{a3n}是等差数列4.设等差数列{a n}的前n项和为S n,若a1=﹣11,a4+a6=﹣6,则当S n取最小值时,n等于()A.6 B.7 C.8 D.95.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且,则使得为整数的正整数n的个数是()A.2 B.3 C.4 D.56.若等差数列{a n}的前5项和S5=25,且a2=3,则a7=()A.12 B.13 C.14 D.157.设{a n}是等差数列,若a2=3,a7=13,则数列{a n}前8项的和为()A.128 B.80 C.64 D.568.设等差数列{a n}的前n项和为S n,a1=4,S5≥S4≥S6,则公差d的取值范围是()A.B.C.D.[﹣1,0] 9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>011.已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.40012.已知等差数列{a n}中,a2+a8=8,则该数列前9项和S9等于()A.18 B.27 C.36 D.4513.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值14.在小于100的正整数中,能被3整除的所有各数之和为()A.1632 B.1683 C.3264 D.3366 15.设已知等差数列{a n}满足a1+a2+…+a101=0,则有()A.a1+a101>0 B.a2+a102<0 C.a3+a99=0 D.a51=51 16.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42 C.43 D.4517.若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=()A.4 B.2 C.﹣2 D.﹣4二、填空题18.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0,则d的取值范围是.19.已知{a n}为等差数列,a3+a8=22,a6=7,则a5=.20.设等差数列{a n}的前n项和为S n,若a6=S3=12,则=.21.在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为.22.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=.23.S n为等差数列a n的前n项和,S2=S6,a4=1则a5=.24.在等差数列{a n}中,a5=3,a6=﹣2,则a4+a5+…+a10=.25.已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.26.在数列{a n}中,a n=4n﹣,a1+a2+…+a n=an2+bn,n∈N*,其中a,b为常数,则ab=.27.已知等差数列{a n}的前n项和为S n,若S12=21,则a2+a5+a8+a11=.28.设数列{a n}的首项a1=﹣7,且满足a n+1=a n+2(n∈N),则a1+a2+…+a17=.29.设等差数列{a n}的公差d是2,前n项的和为S n,则=.30.设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.三、解答题31.记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.32.已知数列{a n}是公差为2的等差数列.(1)a1,a3,a4成等比数列,求a1的值;(2)设a1=﹣19,数列{a n}的前n项和为S n.数列{b n}满足,记c n=S n+2n﹣1•b n(n∈N*),求数列{c n}的最小项(即≤c n对任意n∈N*成立).33.记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.34.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.35.已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.36.设公差不为零的等差数列{a n},S n是数列{a n}的前n项和,且S32=9S2,S4=4S2,求数列{a n}的通项公式.37.已知等差数列{a n}中,a2=9,a5=21.(1)求{a n}的通项公式;(2)令b n=,求数列{b n}的前n项和S n.38.设等差数列{a n}的首项a1及公差d都为整数,前n项和为S n.(Ⅰ)若a11=0,S14=98,求数列{a n}的通项公式;(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{a n}的通项公式.39.已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=a n x n(x∈R),求数列{b n}前n项和的公式.40.(1)设a1,a2,…,a n是各项均不为零的n(n≥4)项等差数列,且公差d≠0,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当n=4时,求的数值;(ii)求n的所有可能值.(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,b n,其中任意三项(按原来的顺序)都不能组成等比数列.参考答案与试题解析一、选择题1.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 【分析】根据题意,设等差数列{a n}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n﹣5,,故选:A.2.已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0 B.b≤0 C.c=0 D.a﹣2b+c=0 【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k+x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.3.已知数列{a n}满足a n+a n+4=a n+1+a n+3(n∈N*),那么必有()A.{a n}是等差数列B.{a2n﹣1}是等差数列C.{a2n}是等差数列D.{a3n}是等差数列【分析】通过a n+a n+4=a n+1+a n+3(n∈N*)可知a n+4﹣a n+1=a n+3﹣a n,进而可得a n+6﹣a n+3=a n+3﹣a n,从而数列{a3n}是等差数列.【解答】解:∵a n+a n+4=a n+1+a n+3(n∈N*),∴a n+4﹣a n+1=a n+3﹣a n,∴a n+5﹣a n+2=a n+4﹣a n+1,a n+6﹣a n+3=a n+5﹣a n+2,∴a n+6﹣a n+3=a n+3﹣a n,∴数列{a3n}是等差数列,故选:D.4.设等差数列{a n}的前n项和为S n,若a1=﹣11,a4+a6=﹣6,则当S n取最小值时,n等于()A.6 B.7 C.8 D.9【分析】条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,S n取最小值.故选:A.5.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且,则使得为整数的正整数n的个数是()A.2 B.3 C.4 D.5【分析】由等差数列的性质和求和公式,将通项之比转化为前n项和之比,验证可得.【解答】解:由等差数列的性质和求和公式可得:======7+,验证知,当n=1,2,3,5,11时为整数.故选:D.6.若等差数列{a n}的前5项和S5=25,且a2=3,则a7=()A.12 B.13 C.14 D.15【分析】利用等差数列的通项公式和前n项和公式,结合已知条件列出关于a1,d 的方程组,解出a1,d,然后代入通项公式求解即可.【解答】解:设{a n}的公差为d,首项为a1,由题意得,解得,∴a7=1+6×2=13,故选:B.7.设{a n}是等差数列,若a2=3,a7=13,则数列{a n}前8项的和为()A.128 B.80 C.64 D.56【分析】利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求出a1,d,代入等差数列的前n项和公式即可求解.或利用等差数列的前n项和公式,结合等差数列的性质a2+a7=a1+a8求解.【解答】解:解法1:设等差数列{a n}的首项为a1,公差为d,由等差数列的通项公式以及已知条件得,解得,故s8=8+=64.解法2:∵a2+a7=a1+a8=16,∴s8=×8=64.故选:C.8.设等差数列{a n}的前n项和为S n,a1=4,S5≥S4≥S6,则公差d的取值范围是()A.B.C.D.[﹣1,0] 【分析】由,能求出公差d的取值范围.【解答】解:∵等差数列{a n}的前n项和为S n,a1=4,S5≥S4≥S6,∴,∴,∴,解得﹣1≤d≤﹣.∴公差d的取值范围是[﹣1,﹣].故选:A.9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.8【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为==﹣24.故选:A.10.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0【分析】由等差数列的求和公式可得S n=na1+d=n2+(a1+)n,可看作关于n的二次函数,由二次函数的性质逐个选项验证可得.【解答】解:由等差数列的求和公式可得S n=na1+d=n2+(a1﹣)n,选项A,若d<0,由二次函数的性质可得数列{S n}有最大项,故正确;选项B,若数列{S n}有最大项,则对应抛物线开口向下,则有d<0,故正确;选项C,若对任意n∈N*,均有S n>0,对应抛物线开口向上,d>0,可得数列{S n}是递增数列,故正确;选项D,若数列{S n}是递增数列,则对应抛物线开口向上,但不一定有任意n∈N*,均有S n>0,例如:是递增数列,但S1<0,故错误.故选:D.11.已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.400【分析】由第二项和第四项的值可以求出首项和公差,写出等差数列前n项和公式,代入n=10得出结果.【解答】解:d=,a1=3,∴S10==210,故选:B.12.已知等差数列{a n}中,a2+a8=8,则该数列前9项和S9等于()A.18 B.27 C.36 D.45【分析】根据等差数列的求和公式可知,要求s9,只需求出a1+a9,而已知a2+a8=8,利用等差数列的性质即可求解.【解答】解:已知等差数列{a n}中,a2+a8=8,∴a1+a9=8,则该数列前9项和S9==36,故选:C.13.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值【分析】利用结论:n≥2时,a n=s n﹣s n﹣1,易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.【解答】解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,又∵S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,∵d=a7﹣a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确;故选:C.14.在小于100的正整数中,能被3整除的所有各数之和为()A.1632 B.1683 C.3264 D.3366【分析】在小于100的正整数中,能被3整除的数是等差数列3,6,9,…,99,由a1=3,d=3,a n=99,得n=33,由此能求出能被3整除的所有各数之和.【解答】解:在小于100的正整数中,能被3整除的数是等差数列3,6,9, (99)a1=3,d=3,a n=99,∴a n=3+(n﹣1)×3=3n=99,解得n=33,∴在小于100的正整数中,能被3整除的所有各数之和:=1683.故选:B.15.设已知等差数列{a n}满足a1+a2+…+a101=0,则有()A.a1+a101>0 B.a2+a102<0 C.a3+a99=0 D.a51=51 【分析】根据特殊数列a n=0可直接得到a3+a99=0,进而看得到答案.【解答】解:取满足题意的特殊数列a n=0,即可得到a3+a99=0选C.16.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42 C.43 D.45【分析】先根据a1=2,a2+a3=13求得d和a5,进而根据等差中项的性质知a4+a5+a6=3a5求得答案.【解答】解:在等差数列{a n}中,已知a1=2,a2+a3=13,得d=3,a5=14,∴a4+a5+a6=3a5=42.故选:B.17.若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=()A.4 B.2 C.﹣2 D.﹣4【分析】因为a,b,c成等差数列,且其和已知,故可设这三个数为b﹣d,b,b+d,再根据已知条件寻找关于b,d的两个方程,通过解方程组即可获解.【解答】解:由互不相等的实数a,b,c成等差数列,可设a=b﹣d,c=b+d,由题设得,,解方程组得,或,∵d≠0,∴b=2,d=6,∴a=b﹣d=﹣4,故选:D.二、填空题18.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0,则d的取值范围是.【分析】由题设知(5a1+10d)(6a1+15d)+15=0,即2a12+9a1d+10d2+1=0,由此导出d2≥8,从而能够得到d的取值范围.【解答】解:因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,整理得2a12+9a1d+10d2+1=0,此方程可看作关于a1的一元二次方程,它一定有根,故有Δ=(9d)2﹣4×2×(10d2+1)=d2﹣8≥0,整理得d2≥8,解得d≥2,或d≤﹣2则d的取值范围是.故答案案为:.19.已知{a n}为等差数列,a3+a8=22,a6=7,则a5=15.【分析】根据等差中项的性质可知a3+a8=a5+a6,把a3+a8=22,a6=7代入即可求得a5.【解答】解:∵{a n}为等差数列,∴a3+a8=a5+a6∴a5=a3+a8﹣a6=22﹣7=1520.设等差数列{a n}的前n项和为S n,若a6=S3=12,则=1.【分析】先用数列的通项公式表示出a6和S3,进而求得a1和d,根据等差数列求和公式求得S n,代入到答案可得.【解答】解:依题意可知,解得a1=2,d=2∴S n=n(n+1)∴=∴==1故答案为121.在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为(﹣1,﹣).【分析】根据题意当且仅当n=8时S n取得最大值,得到S7<S8,S9<S8,联立得不等式方程组,求解得d的取值范围.【解答】解:∵S n=7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).22.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=35.【分析】根据等差数列的通项公式,可设数列{a n}的公差为d1,数列{b n}的公差为d2,根据a1+b1=7,a3+b3=21,可得2(d1+d2)=21﹣7=14.最后可得a5+b5=a3+b3+2(d1+d2)=2+14=35.【解答】解:∵数列{a n},{b n}都是等差数列,∴设数列{a n}的公差为d1,设数列{b n}的公差为d2,∴a3+b3=a1+b1+2(d1+d2)=21,而a1+b1=7,可得2(d1+d2)=21﹣7=14.∴a5+b5=a3+b3+2(d1+d2)=21+14=35故答案为:3523.S n为等差数列a n的前n项和,S2=S6,a4=1则a5=﹣1.【分析】由S2=S6,a4=1,先求出首项和公差,然后再求a5的值.【解答】解:由题设知,∴a1=7,d=﹣2,a5=7+4×(﹣2)=﹣1.故答案为:﹣1.24.在等差数列{a n}中,a5=3,a6=﹣2,则a4+a5+…+a10=﹣49.【分析】先根据a5=3,a6=﹣2,进而根据等差数列的求和公式根据a4+a5+…+a10=S10﹣S3求得答案.【解答】解:由题意知,解得a1=23,d=﹣5∴a4+a5+…+a10=S10﹣S3=﹣=﹣49故答案为﹣4925.已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.【分析】由a1,a3,a9成等比数列求得a1与d的关系,再代入即可.【解答】解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1•(a1+8d),∴a1=d,∴=,故答案是:.26.在数列{a n}中,a n=4n﹣,a1+a2+…+a n=an2+bn,n∈N*,其中a,b为常数,则ab=﹣1.【分析】由题意可知,数列{a n}为等差数列,故根据等差数列的前n项和公式可得s n的表达式,又已知a1+a2+…+a n=an2+bn,利用对应系数相等进行求解.【解答】解:∵a n=4n﹣,∴数列{a n}为等差数列,a1=,d=4,∴,∴,∴ab=﹣1.故答案为﹣1.27.已知等差数列{a n}的前n项和为S n,若S12=21,则a2+a5+a8+a11=7.【分析】由s12解得a1+a12,再由等差数列的性质得出结果.【解答】解:由题意得,.故答案是728.设数列{a n}的首项a1=﹣7,且满足a n+1=a n+2(n∈N),则a1+a2+…+a17=153.【分析】根据a n+1=a n+2得到a n+1﹣a n=2,根据等差数列的定义可知此数列为等差数列,根据首项与公差,利用等差数列的前n项和的公式即可求出值.【解答】解:根据a n+1=a n+2得到此数列为首项a1=﹣7,公差d=a n+1﹣a n=2的等差数列,则S17=a1+a2+…+a17=17×(﹣7)+×2=153故答案为:15329.设等差数列{a n}的公差d是2,前n项的和为S n,则=3.【分析】由首项a1和公差d等于2,利用等差数列的通项公式及前n项和的公式表示出a n和S n,然后把表示的式子代入到极限中,求出极限的值即可.【解答】解:由公差d=2,得到a n=a1+2(n﹣1)=2n+a1﹣2,S n=na1+×2=n2+n(a1﹣1)则===3故答案为3.30.设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.【分析】利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.【解答】解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.三、解答题31.记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.【分析】(Ⅰ)直接利用等差数列的性质和前n项和的应用求出数列的通项公式;(Ⅱ)直接利用作差法的应用和数列的分解因式的应用求出结果.【解答】解:(Ⅰ)数列S n是公差d不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.根据等差数列的性质,a3=S5=5a3,故a3=0,根据a2a4=S4可得(a3﹣d)(a3+d)=(a3﹣2d)+(a3﹣d)+a3+(a3+d),整理得﹣d2=﹣2d,可得d=2(d=0不合题意),故a n=a3+(n﹣3)d=2n﹣6.(Ⅱ)a n=2n﹣6,a1=﹣4,S n=﹣4n+×2=n2﹣5n,S n>a n,即n2﹣5n>2n﹣6,整理可得n2﹣7n+6>0,当n>6或n<1时,S n>a n成立,由于n为正整数,故n的最小正值为7.32.已知数列{a n}是公差为2的等差数列.(1)a1,a3,a4成等比数列,求a1的值;(2)设a1=﹣19,数列{a n}的前n项和为S n.数列{b n}满足,记c n=S n+2n﹣1•b n(n∈N*),求数列{c n}的最小项(即≤c n对任意n∈N*成立).【分析】(1)利用等差数列通项公式和等比数列性质能求出首项a1的值.(2)由已知利用累加法能求出b n=2﹣()n﹣1.从而能求出c n﹣c n﹣1=2n﹣19+2n,由此能求出数列{c n}的最小项.【解答】解:(1)∵数列{a n}是公差为2的等差数列.a1,a3,a4成等比数列,∴.解得d=2,a1=﹣8(2)b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+==2﹣()n﹣1.,,=2n﹣19+2n由题意n≥5,上式大于零,即c5<c6<…<c n,进一步,2n+2n是关于n的增函数,∵2×4+24=24>19,2×3+23=14<19,∴c1>c2>c3>c4<c5<…<c9<c10<…<c n,∴.33.记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).34.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.【分析】(I)根据附加条件,先求得s6再求得a6分别用a1和d表示,再解关于a1和d的方程组.(II)所求问题是d的范围,所以用“a1,d”法.【解答】解:(Ⅰ)由题意知S6==﹣3,a6=S6﹣S5=﹣8所以解得a1=7所以S6=﹣3,a1=7;(Ⅱ)因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,整理得,即,因为,所以,解得d≤﹣2或d≥2故d的取值范围为d≤﹣2或d≥2.35.已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.【分析】(1)由题意可知2a3=a1+a2,根据等比数列通项公式代入a1和q,进而可求得q.(II)讨论当q=1和q=﹣,时分别求得S n和b n,进而根据S n﹣b n与0的关系判断S n与b n的大小,【解答】解:(1)由题意可知,2a3=a1+a2,即a1(2q2﹣q﹣1)=0,∴q=1或q =﹣;(II)q=1时,S n=2n+=,∵n≥2,∴S n﹣b n=S n﹣1=>0当n≥2时,S n>b n.若q=﹣,则S n=,同理S n﹣b n=.∴2≤n≤9时,S n>b n,n=10时,S n=b n,n≥11时,S n<b n.36.设公差不为零的等差数列{a n},S n是数列{a n}的前n项和,且S32=9S2,S4=4S2,求数列{a n}的通项公式.【分析】设出等差数列的首项和公差,利用等差数列的前n项和的公式由S32=9S2,S4=4S2列出关于首项和公差的方程,解出首项和公差即可得到等差数列的通项公式.【解答】解:设数列{a n}的公差为d(d≠0),首项为a1,由已知得:.解之得:或(舍)∴.37.已知等差数列{a n}中,a2=9,a5=21.(1)求{a n}的通项公式;(2)令b n=,求数列{b n}的前n项和S n.【分析】(1)设出数列的公差,分别根据等差数列的通项公式表示出a2和a5联立方程求得和a1和d,则数列的通项公式可得.(2)把(1)中求得的a n代入b n=2an中求得b n,判断出数列{b n}为等比数列,进而利用等比数列的求和公式求得前n项的和.【解答】解:(1)设数列{a n}的公差为d,由题意得解得a1=5,d=4,∴{a n}的通项公式为a n=4n+1.(2)由a n=4n+1得b n=24n+1,∴{b n}是首项为b1=25,公比q=24的等比数列.∴S n=.38.设等差数列{a n}的首项a1及公差d都为整数,前n项和为S n.(Ⅰ)若a11=0,S14=98,求数列{a n}的通项公式;(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{a n}的通项公式.【分析】(Ⅰ)本题是关于等差数列的基本量的运算,设出题目中的首项和公差,根据第十一项和前十四项的和两个数据列出方程组,解出首项和公差的值,写出数列的通项.(Ⅱ)根据三个不等关系,写出关于首项和公差的不等式组,解不等式组,得到一个范围,根据{a n}的首项a1及公差d都为整数得到所有可能的结果,写出通项公式.【解答】解:(Ⅰ)由S14=98得2a1+13d=14,又a11=a1+10d=0,∴解得d=﹣2,a1=20.∴{a n}的通项公式是a n=22﹣2n,(Ⅱ)由得即由①+②得﹣7d<11.即d>﹣.由①+③得13d≤﹣1即d≤﹣于是﹣<d≤﹣又d∈Z,故d=﹣1 ④将④代入①②得10<a1≤12.又a1∈Z,故a1=11或a1=12.∴所有可能的数列{a n}的通项公式是a n=12﹣n和a n=13﹣n,39.已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=a n x n(x∈R),求数列{b n}前n项和的公式.【分析】(1)本题是一个数列的基本量的运算,根据题目所给的首项和前连续三项的值,写出关于公差的方程,解方程可得结果.(2)构造一个新数列,观察这个数列是有一个等差数列和一个等比数列的积构成的,这种结构要用错位相减法求的结果,解题时注意等比数列的公比与1的关系,进行讨论.【解答】解:(1)设数列{a n}的公差为d,则a1+a2+a3=3a1+3d=12.又a1=2,得d=2.∴a n=2n.(2)当x=0时,b n=0,S n=0,当x≠0时,令S n=b1+b2+…+b n,则由b n=a n x n=2nx n,得S n=2x+4x2++(2n﹣2)x n﹣1+2nx n,①xS n=2x2+4x3++(2n﹣2)x n+2nx n+1.②当x≠1时,①式减去②式,得(1﹣x)S n=2(x+x2++x n)﹣2nx n+1=﹣2nx n+1.∴S n=﹣.当x=1时,S n=2+4++2n=n(n+1).综上可得,当x=1时,S n=n(n+1);当x≠1时,S n=﹣.40.(1)设a1,a2,…,a n是各项均不为零的n(n≥4)项等差数列,且公差d≠0,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当n=4时,求的数值;(ii)求n的所有可能值.(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,b n,其中任意三项(按原来的顺序)都不能组成等比数列.【分析】(1)根据题意,对n=4,n=5时数列中各项的情况逐一讨论,利用反证法结合等差数列的性质进行论证,进而推广到n≥4的所有情况.(2)利用反证法结合等差数列的性质进行论证即可.【解答】解:(1)①当n=4时,a1,a2,a3,a4中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.若删去a2,则a32=a1•a4,即(a1+2d)2=a1•(a1+3d)化简得a1+4d=0,得若删去a3,则a22=a1•a4,即(a1+d)2=a1•(a1+3d)化简得a1﹣d=0,得综上,得或.②当n=5时,a1,a2,a3,a4,a5中同样不可能删去a1,a2,a4,a5,否则出现连续三项.若删去a3,则a1•a5=a2•a4,即a1(a1+4d)=(a1+d)•(a1+3d)化简得3d2=0,因为d≠0,所以a3不能删去;当n≥6时,不存在这样的等差数列.事实上,在数列a1,a2,a3,…,a n﹣2,a n﹣1,a n中,由于不能删去首项或末项,若删去a2,则必有a1•a n=a3•a n﹣2,这与d≠0矛盾;同样若删去a n﹣1也有a1•a n=a3•a n﹣2,这与d≠0矛盾;若删去a3,…,a n﹣2中任意一个,则必有a1•a n=a2•a n﹣1,这与d≠0矛盾.(或者说:当n≥6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,n=4.(2)假设对于某个正整数n,存在一个公差为d的n项等差数列b1,b2,b n,其中b x+1,b y+1,b z+1(0≤x<y<z≤n﹣1)为任意三项成等比数列,则b2y+1=b x+1•b z+1,即(b1+yd)2=(b1+xd)•(b1+zd),化简得(y2﹣xz)d2=(x+z﹣2y)b1d(*)由b1d≠0知,y2﹣xz与x+z﹣2y同时为0或同时不为0当y2﹣xz与x+z﹣2y同时为0时,有x=y=z与题设矛盾.故y2﹣xz与x+z﹣2y同时不为0,所以由(*)得因为0≤x<y<z≤n﹣1,且x、y、z为整数,所以上式右边为有理数,从而为有理数.于是,对于任意的正整数n(n≥4),只要为无理数,相应的数列就是满足题意要求的数列.例如n项数列1,,,…,满足要求.。

山东省实验中学2024届高三下学期2月调研考试数学试卷含答案解析

山东省实验中学2024届高三下学期2月调研考试数学试卷含答案解析

山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.123.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.2554.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24- B.3- C.3D.85.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.497.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z= D.2320240z z z z ++++= 10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为411.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积263PMN S =△,则点P 的轨迹长度为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,12AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e x g x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-【答案】C 【解析】【分析】根据B A ⊆,可得24x =或22x x =,结合集合元素性质分别求解即可.【详解】由B A ⊆得24x =或22x x =,即0x =或2x =或2x =-,当0x =时,{}{}1,4,0,1,0A B ==,符合题意;当2x =时,{}{}1,4,4,1,4A B ==,不符合元素的互异性,舍去;当2x =-时,{}{}1,4,4,1,4A B =-=,符合题意;综上,0x =或2x =-.故选:C .2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.12【答案】B 【解析】【分析】利用二项式系数的性质直接求解即可.【详解】因为22nx ⎫+⎪⎭的展开式中只有第6项的二项式系数最大,所以展开式一共有11项,即10n =.故选:B3.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.D.【答案】B 【解析】【分析】根据向量的坐标运算即可求解.【详解】因为()()1,3,2,2a b ==,所以()()3,5,1,1a b a b +=-=-,所以()()·cos ,17a b a b a b a b a b a b+-+-==+-.故选:B.4.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24-B.3- C.3D.8【答案】A【解析】【分析】设等差数列{}n a 的公差()0d d ≠,由236,,a a a 成等比数列求出d ,代入6S 可得答案.【详解】设等差数列{}n a 的公差()0d d ≠,∵等差数列{}n a 的首项为1,236,,a a a 成等比数列,∴2326a a a =⋅,∴()()()211125+=++a d a d a d ,且11a =,0d ≠,解得2d =-,∴{}n a 前6项的和为61656566122422()⨯⨯=+=⨯+-=-S a d .故选:A.5.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位【答案】A 【解析】【分析】先用诱导公式把正弦型函数化为余弦型函数,然后根据图象的平移变换的解析式的特征变化,得到答案.【详解】sin 2sin 2cos 2cos[2(326612y x x x x πππππ⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此该函数图象向左平移12π个单位,得到函数cos 2y x =的图象,故本题选A.【点睛】本题考查了已知变化前后的函数解析式,求变换过程的问题,考查了余弦函数图象变换特点.6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.49【答案】B 【解析】【分析】分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.先证NN '⊥平面PAC ,则可得到//BB NN '',再证//MM CC ''.由三角形相似得到13MM CC ''=,'2'3NN BB =,再由P AMN N PAMP ABC B PACV V V V ----=即可求出体积比.【详解】如图,分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.因为BB '⊥平面PAC ,BB '⊂平面PBB ',所以平面PBB '⊥平面PAC .又因为平面PBB ' 平面PAC PB '=,NN PB ''⊥,NN '⊂平面PBB ',所以NN '⊥平面PAC ,且//BB NN ''.在PCC '△中,因为,MM PA CC PA ''⊥⊥,所以//MM CC '',所以13PM MM PC CC '==',在PBB '△中,因为//BB NN '',所以23PN NN PB BB '==',所以11123231119332PAM P AMN N PAMP ABC B PACPAC PA MM NN S NN V V V V S BB PA CC BB ----⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭====⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭.故选:B7.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -【答案】C 【解析】【分析】根据已知条件,求得5,4x z ==,进而代入回归方程可求得ˆ2a=-,从而得出ˆ 1.22zx =-,联立ln z y =,即可求得本题答案.【详解】由已知可得,346754x +++==,2 2.5 4.5744z +++==,所以,有ˆ4 1.25a =⨯+,解得ˆ2a =-,所以,ˆ 1.22zx =-,由ln z y =,得ln 1.22y x =-,所以, 1.222 1.2e e e x x y --==⋅,则2e c -=.故选:C .8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2【答案】D【解析】【分析】由题意9mn mn+利用均值定理可得3mn =,再利用双曲线的几何性质求解即可.【详解】设(,0),(,0),(,),(,)A a B a C x y D x y --,则ACy m k x a ==+,BD y n k x a -==-,所以222y mn x a-=-,将曲线方程22222x a y a b -=代入得22b mn a=-,又由均值定理得996mn mn mn mn +=+≥,当且仅当9mn mn =,即223bmn a==时等号成立,所以离心率2e ==,故选:D.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z = D.2320240z z z z ++++= 【答案】BC【解析】【分析】设()i ,z a b a b =+∈R ,代入题干方程求解判断A ,求复数的模判断B ,根据复数乘方运算及共轭复数的定义判断C ,利用复数的周期性求和判断D.【详解】设()i ,z a b a b =+∈R ,由210z z ++=得()()2i i 10a b a b ++++=,即()()2212i 0a b a ab b -++++=,所以221020a b a ab b ⎧-++=⎨+=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩或1232a b ⎧=-⎪⎪⎨⎪=-⎪⎩,所以1i 22z =-+或122z =--,故选项A 错误;由13i 22z =-+,所以1z ==,由122z =--,所以1z ==,故选项B 正确;当13i 22z =-+时,所以2211i 2222z ⎛⎫=-+=-- ⎪ ⎪⎝⎭,13i 22z =--,所以2z z =,当122z =--时,所以221313i i 2222z ⎛⎫=--=-+ ⎪ ⎪⎝⎭,13i 22z =-+,所以2z z =,故选项C 正确;因为321(1)(1)0z z z z -=-++=,所以31z =,所以()()()2320242345620202021202220232024z z z z z z z z z z z z z z z ++++=+++++++++++ ()()()232201722111z z z z z z z z z z =+++++++++++ ()00011=++++-=- ,故选项D 错误.故选:BC10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为4【答案】BCD 【解析】【分析】设(),4P a a -,则可求AB 的方程为(4)40ax a y +--=.结合,,,O A P B 四点共圆可判断A 的正误,求出OP 的最小值后可判断B 的正误,求出AB 所过的定点后可判断C 的正误,结合AB 的方程可求OM ON +,利用二次函数的性质可求其最小值,故可判断D 的正误.【详解】设(),4P a a -,因为AB 与,x y 轴均相交,故04a <<,连接,OA OB ,设线段:4(04)l x y x +=<<,则,,,O A P B 四点共圆,且此圆以OP 为直径,而以OP 为直径的圆的方程为:()()40x x a y y a -+-+=,整理得到:22(4)0x y ax a y +---=,故AB 的方程为:4(4)0ax a y ---=,整理得到:(4)40ax a y +--=.对于A ,若O 在以线段AB 为直径的圆上,则90AOB ∠=︒,由,,,O A P B 四点共圆可得90APB ∠=︒,而90∠=∠=︒PAO PBO ,2AO BO ==,故四边形OAPB 为正方形,故OP =,但P 为动点且OP 长度变化,故O 不恒在以线段AB 为直径的圆上,故A 错误.对于B ,四边形PAOB 面积为122S OA AP =⨯⨯⨯=而PO ≥=,当且仅当OP ⊥l 即()2,2P 时等号成立,故S 的最小值为4,故B 成立.对于C ,因为AB 的方程为:(4)40ax a y +--=,整理得到:()440a x y y -+-=,令0440x y y -=⎧⎨-=⎩得11x y =⎧⎨=⎩,故AB 过定点()1,1Q ,设O 到AB 的距离为d ,则d OQ ≤=故AB =≥,当且仅当d =OQ AB ⊥时等号成立,故AB 的最小值为,故C 成立.对于D ,由AB 的方程为(4)40ax a y +--=可得44,0,0,4M N a a ⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭,故()24416,04424OM ON a a a a +=+=<<---+,而20(2)44a <--+≤,故4OM ON +≥,当且仅当2a =等号成立,故OM ON +的最小值为4,故D 成立.故选:BCD .11.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-【答案】ACD 【解析】【分析】选项A ,先求原函数的导函数,再判断其导函数的符号即可;选项B ,取譬如“点(1,(1))f --和点(1,(1))f ”的特殊值判断即可;选项C ,||x x >=≥,11x +>,进而判断即可;选线D ,先构造函数()()()F x f x f x mx =---,将不等式的恒成立问题转化为函数的最值,即可判断.【详解】已知函数())ln 1f x x =+,||x x >=≥0x ->,故函数()f x 的定义域为R ,对于选项A ,函数()f x 的导函数为:()f x '=,0x ->,得()0f x '<,所以()f x 在其定义域上是单调递减函数,选项A 正确;对于选项B ,取特值:(1)ln f =(1)2)f -=+,且(1)(1)ln 2ln(22)ln(222)1222f f +-++==≠,即函数图象上存在点(1,(1))f --和点(1,(1))f 不关于()0,1对称,选项B 错误;对于选项C 0x ->11x -+>,得())ln1ln10f x x =-+>=,当x →+∞111x -+=+→,当x →-∞1x -+→+∞,同时()f x 在其定义域上是单调递减函数,故()f x 的值域是()0,∞+选项C 正确;对于选项D ,定义()()()F x f x f x mx =---,0x >,则))()ln1ln1F x x x mx =-+-++-,)()ln 1ln1F x x mx ⎛⎫=-++-⎪⎭,)()ln ln1F x x mx ⎛⎫=-+-,故)()lnF x x mx =-+-,其导函数()F x m m'==-,若,()0x ∈+∞,()()f x f x mx --≥恒成立,即函数()0F x ≥恒成立,由于(0)0F =,则(0)0F '≥在()0,x ∈+∞上恒成立,即(0)10F m '=--≥,得1m ≤-,当1m =-时,)()lnG x x x =-++,,()0x ∈+∞()1G x '=+,由于,()0x ∈+∞,则1>1<,()10G x '=+>,所以函数()G x 在区间(0,)+∞上单调递增,且(0)ln100G =-+=,则,()0x ∈+∞时,()0G x >恒成立,同时,()0x ∈+∞,由于1m ≤-,mx x -≥则))()lnln()0F x x mx x x G x =--≥-++=>,显然()0F x >恒成立,,()0x ∈+∞时,()()f x f x mx --≥恒成立,则m 的最大值为1-正确;选项D 正确;故选:ACD.【点睛】关键点点睛:本题D 选项的关键是转化为(0)0F '≥在()0,x ∈+∞上恒成立,从而得到1m ≤-,最后验证得到1m =-时符合题意即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.【答案】13【解析】【详解】试题分析:直接利用二项分布的期望与方差列出方程求解即可.解:随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,可得np=30,npq=20,q=,则p=,故答案为.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.【答案】【解析】【分析】当直线l 的斜率不存在时,写出直线l 的方程,求出||4AB =,不合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立抛物线的方程,由12||8AB x x p =+=+,求出k ,根据锐角三角函数表达边长,再进一步求出PAB 的面积.【详解】由22143x y +=的右焦点为()1,0,所以抛物线的焦点为(1,0)F ,故12p=,则2p =,因此抛物线24y x =,当直线l 的斜率不存在时,直线l 的方程为1x =,代入抛物线的方程,得2y =±,所以(1,2)A ,(1,2)B -,所以||4AB =,不合题意,当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立2(1)4y k x y x =-⎧⎨=⎩,得2222(24)0k x k x k -++=,所以212224k x x k ++=,所以221212222444||2822p p k k AB x x x x p k k ++=+++=++=+==,所以1k =±,由对称性不妨设1k =,则45AFx ∠=︒,因为ABN ∠和BAM ∠的平分线相交于点P ,//AM BN ,所以PA PB ⊥,45ABN ∠=︒,22.5ABP ∠=︒,所以在Rt ABP 中,sin 22.58sin 22.5AP AB =︒=︒,cos 22.58cos 22.5BP AB =︒=︒,所以18sin 22.58cos 22.52ABP S =⋅︒⋅︒ 32sin 22.58cos 22.516sin 45=︒︒=︒=,故答案为:14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积3PMN S =△,则点P 的轨迹长度为___________.【答案】263π【解析】【分析】由题意求出P 到MN 的距离,又易证1BD ⊥面1AB C ,进而得到P 点在1AB C V 所在平面的轨迹是以263为半径的圆,因为1AB C V 3<,所以该圆一部分位于三角形外,作出图形即可求解.【详解】因为正方体的棱长为16BD =,所以123BD MN ==,设P 到MN 的距离为d ,由1||2PMN S d MN ==263d =,11A D ⊥平面11ABB A ,1AB ⊂平面11ABB A ,∴111A D AB ⊥,又11AB A B ⊥,1111A D A B A = ,∴1AB ⊥平面11A D B ,11BD AB ∴⊥,同理可证1BD AC ⊥,又1AB AC A = ,1BD ∴⊥面1AB C ,P ∴点在1AB C V 所在平面的轨迹是以263为半径的圆,1AB C V内切圆的半径为123=,∴该圆一部分位于三角形外,如图有22226(2)()3x +=,解得63x =,∴6HOB π∠=,∴圆在三角形内的圆弧为圆周长的一半,∴1262622l π=⋅⋅,故答案为:263π.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.【答案】(1)6(2)π2θ=【解析】【分析】(1)过点P 作PQ AM ⊥,利用圆的性质求得PQ ,代入面积公式直接求解即可;(2)设AOP 的面积为1,S APM 的面积为2S ,结合三角形面积公式建立方程,利用辅助角公式化简求解即可.【小问1详解】过点P 作PQ AM ⊥交AM 于点Q ,如图:因为圆O 的半径为2,由题意π2π22sin 22cos 22cos 323PQ θθ⎛⎫=+-=-=-= ⎪⎝⎭,又4AM =,所以APM △的面积为14362⨯⨯=.【小问2详解】连接AP ,设AOP 的面积为1,S APM 的面积为2S ,又1122sin 2sin 2S θθ=⨯⨯⨯=,()()211421cos 41cos 22S AM PQ θθ=⋅=⨯⨯⨯-=-,由题意212S S =,所以()41cos 4sin θθ-=,即sin cos 1θθ+=,所以π2sin 42θ⎛⎫+= ⎪⎝⎭,因为()0,πθ∈,所以ππ5π,444θ⎛⎫+∈ ⎪⎝⎭,所以π3π44θ+=,所以π2θ=,所以当π2θ=时,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.【答案】(Ⅰ)见解析(Ⅱ)63【解析】【分析】(Ⅰ)利用三角形中位线定理可得1//DF BC ,由线面平行的判定定理可得结果;(Ⅱ)由122AA AC CB AB ===,可设:AB=2a ,可得AC BC ⊥,以点C 为坐标原点,分别以直线1,,CA CB CC 为x 轴、y 轴、z 轴,建立空间直角坐标系如图,利用向量垂直数量积为零列方程分别求出平面1A CD 的法向量、平面1A CE 的一个法向量,再由空间向量夹角余弦公式可得结果.【详解】(Ⅰ)如图,连结1AC ,交1AC 于点F ,连结DF ,因为D 是AB 的中点,所以在1ABC 中,DF 是中位线,所以1DF / / BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD ;(Ⅱ)因为2AC CB AB ==,所以90ACB ︒∠=,即ACBC ⊥,则以C 为坐标原点,分别以1,,CA CB CC为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,设1AA =AC=CB=2,则1(0,0,0),(1,1,0),(0,2,1),(2,0,2)C D E A ,则1(1,1,0),(0,2,1),(2,0,2)CD CE CA ===,设()111,,m x y z =r是平面1DA C 的一个法向量,则,即11110220x y x z +=⎧⎨+=⎩,取11x =,则111,1=-=-y z ,则(1,1,1)n =--同理可得平面1EA C 的一个法向量,则(2,1,2)n =-,所以,3cos ,3m n 〈〉=,所以sin ,3m n 〈〉=,即二面角D AC E --的正弦值为.63【点睛】本题主要考查线面平行的判定定理、利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.【答案】(1)815(2)分布列见解析,169【解析】【分析】(1)根据超几何分布概率公式求解即可;(2)根据超几何分布概率公式求得分布列,进而求得数学期望即可.【小问1详解】由题意可知当比赛使用1个新球,1个旧球时,盒中恰有3个新球,使用一局比赛后盒中恰有3个新球的概率112642C C 8C 15P ==.【小问2详解】由题意可知X 的可能取值为0,1,2,3,4,()22422266C C 60C C 225P X ==⋅=,()22111134424222226666C C C C C C 721+C C C C 225P X ==⋅⋅=,()1122112233444224222222666666C C C C C C C C 1142++C C C C C C 225P X ==⋅⋅⋅=,()22111132424222226666C C C C C C 323+C C C C 225P X ==⋅⋅=,()22222266C C 14C C 225P X ==⋅=,所以X 的分布列为X01234P622572225114225322251225()67211432116012342252252252252259E X =⨯+⨯+⨯+⨯+⨯=.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e xg x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.【答案】(1)答案见解析(2)①(){},0e -∞ ;②证明见解析【解析】【分析】(1)对()f x 求导得到()2x a f x x='-,根据导数与函数单调性间的关系,对a 分类讨论,即可得出结果;(2)①法一:直接对a 进行分类讨论,利用(1)的结果,即可得出结果;法二:分离常量得到21ln 2x a x=,构造函数()2ln xx x ϕ=,将问题转化成函数图象交点个数来解决问题;②构造函数()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,从而将问题转化成证明()()22e 1e 4e 0x x --++>,即可证明结果.【小问1详解】()f x 的定义域为()0,∞+,()2a x af x x x x='-=-,当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,令()0f x '>得x >()0f x '<得0x <<;此时()f x 单调递减区间为(;单调递增区间为)∞+,综上,当0a ≤时,()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,()f x 单调递减区间为(,单调递增区间为)∞+.【小问2详解】①法一;当0a =时,()f x 没有零点,不符合题意;当a<0时,由(1)知函数()f x 在()0,∞+单调递增,因为()()2211ln 122f x x a x x a x =-<--,取0m a =>,则()21((1)(3)02f m a a a a a <+-+-=++<,又()1102f =>,故存在唯一()0,1x m ∈,使得()00f x =,符合题意;当0a >时,由(1)可知,()f x 有唯一零点只需0f =,即ln 022a aa -=,解得e a =,综上,a 的取值范围为(){},0e ∞-⋃.法二:当0a =时,()f x 没有零点,不符合题意;由()0f x =,得到21ln 2x a x =,令()2ln x x x ϕ=,则()312ln xx x ϕ-'=,当(x ∈时,()0x ϕ'>,则()x ϕ在区间(单调递增,当)x ∞∈+时,()0x ϕ'<,则()x ϕ在区间)∞+单调递减,又lim ()0x x ϕ→+∞=,()0lim x x ϕ∞+→=-,所以102a <或1122ea ϕ==,即a<0或e a =,综上,a 的取值范围为(){},0e ∞-⋃.②由①得出e a =,令()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,则()()1e 2e xh x x '=+-,令()()1e 2e xg x x =+-,则()()2e 0xg x x =+>'恒成立,所以()h x '单调递增,又()10h '=,故当()0,1x ∈时,()0h x '<,则()h x 在区间()0,1上单调递减,当()1,x ∞∈+时,()0h x '>,则()h x 在区间()1,∞+上单调递增;故()()10h x h ≥=,所以()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,要证()()4g x f x >'+,只需证明()1e2e 442x f x x x⎛⎫->+=-⎪'+ ⎝⎭,即证()()22e 1e 4e 0x x --++>,由22229595Δ12e 167e 12e e 16e e 12e 16e 2222⎛⎫=+-=-+-=-+- ⎪⎝⎭95e 12 2.7167.2022⎛⎫<-⨯+-⨯< ⎪⎝⎭,所以()()22e 1e 4e 0x x --++>成立,故不等式得证.【点睛】关键点点晴:本题的关键在于第(2)问中的②,构造函数()1e 2e (0)2x h x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,通过放缩,将问题转化成证明()()22e 1e 4e 0x x --++>,从而解决问题.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

高考等差数列专题及答案 百度文库

高考等差数列专题及答案 百度文库

一、等差数列选择题1.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21SB .20SC .19SD .18S2.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .803.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .454.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .05.数列{}n a 为等差数列,11a =,34a =,则通项公式是( )A .32n -B .322n - C .3122n - D .3122n + 6.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或207.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .248.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24B .36C .48D .649.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( ) A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n13.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .814.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9 B .5 C .1 D .5915.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<16.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >D .70S <,且80S <17.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2118.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )A .3、8、13、18、23B .4、8、12、16、20C .5、9、13、17、21D .6、10、14、18、2219.已知数列{x n }满足x 1=1,x 2=23,且11112n n nx x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 20.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .9二、多选题21.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列22.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列23.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列25.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202226.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥27.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+28.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列29.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系1392a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392a d =-. 又10a >,所以0d <,因此222120(20)2002222n d d d dS n a n n dn n d ⎛⎫=+-=-=-- ⎪⎝⎭, 所以20S 最大. 故选:B. 2.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 3.B由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 4.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 5.C根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 6.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 7.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 8.B利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120nn n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确;B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 11.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 13.A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A 14.B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠, ∴995S a =. 故选:B 15.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 16.A 【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】依题意,有170a a +>,180a a +< 则()177702a a S +⋅=>()()188188402a a S a a +⋅==+<故选:A . 17.B 【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B. 18.C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C 19.C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C 20.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C二、多选题21.BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断. 22.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 23.ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题. 24.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD 25.BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 26.AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.27.ABD 【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果. 【详解】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题. 28.ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 29.ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2d n n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 30.ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

等差数列证明专题

等差数列证明专题
例20.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取最大值的正整数n是( )
(A)4或5 (B)5或6(C)6或7 (D)8或9
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、等差数列求和公式:
2、等比数列求和公式:
3、 4、
5、
[例1]已知 ,求 的前n项和.
(A)n2+1- (B)2n2-n+1-
(C)n2+1- (D)n2-n+1-
例6.求和:
知识概括、方法总结与易错点分析
1.数列{ }的前 项和 与通项 的关系:
例1.当 时, ,当 时, ,经检验 时 也适合 ,∴
2.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
关键是找数列的通项结构。
Tn为数列{ }的前n项和,求Tn.
例17.三数成等比数列,若将第三个数减去32,则成等差数列,若再将这等差数列的第二个数减去4,则又成等比数列,求原来三个数.
例18.在5和81之间插入两个正数,使前三个数成等差数列,后三个数成等比数列,求这两个数的和.
例19.设{an}是等差数列, ,已知b1+b2+b3= ,b1b2b3= ,求等差数列的通项an.
解:由
由等比数列求和公式得 (利用常用公式)
= = =1-
[例2]设Sn=1+2+3+…+n,n∈N*,求 的最大值.
解:由等差数列求和公式得 , (利用常用公式)
∴ =
= =
∴当 ,即n=8时,
二、错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{ an}、{ bn}分别是等差数列和等比数列.

高考复习:等差数列含解析答案(教师版+学生版)

高考复习:等差数列含解析答案(教师版+学生版)

等差数列一、知识梳理1.数列的定义:按照_________排列的一列数称为数列,数列中的每一个数叫做这个数列的________ 2、已知数列{a n}的前n项和S n,则a n=________3.等差数列的定义:4、等差数列的通项公式:5.等差数列的前n项和公式:6、等差数列的前n项和公式与函数的关系:(1)(2)7、等差数列的常用性质(1)通项公式的推广:a n=a m+________(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则________.(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为________.(4)若{a n},{b n}是等差数列,则{pa n+qb n}是________数列.(5)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为________的等差数列.8.等差数列的前n项和的最值在等差数列{a n}中,a1>0,d<0,则S n存在最值;若a1<0,d>0,则S n存在最值.试一试1.若数列{a n}满足:a1=19,a n+1=a n-3(n∈N*),而数列{a n}的前n项和数值最大时,n 的值为.2.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6=.3.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1= .4.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= .题型一 由数列的前几项求数列的通项 例1 写出下面各数列的一个通项公式:(1)3,5,7,9,…; (2)12,34,78,1516,3132; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3333,….题型二 由数列的前n 项和S n 求数列的通项例2 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ; (2)S n =3n +b .题型三 等差数列基本量的运算例3 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为 .(2)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m = .跟踪训练 (1)若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7= . (2)记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6= .(3)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是 .题型四 等差数列的性质及应用例2 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9= . (2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为 .(3)S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 016= .题型五 等差数列的判定与证明例3 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.课堂练习:1.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为.2、已知数列{a n}的前n项和S n=3n2-2n+1,则其通项公式为.3、设数列{a n}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7=.4、已知等差数列{a n}的前n项和为S n,且S10=10,S20=30,则S30=.5、已知数列{a n}的前n项和为S n,且满足:a n+2S n S n-1=0(n≥2,n∈N*),a1=12,判断⎩⎨⎧⎭⎬⎫1S n与{a n}是否为等差数列,并说明你的理由.6、在等差数列{a n}中,2(a1+a3+a5)+3(a7+a9)=54,则此数列前10项的和S10=.7、在等差数列{a n}中,S10=100,S100=10,则S110=.8、已知等差数列{a n}的首项a1=20,公差d=-2,则前n项和S n的最大值为.9、若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大.6.1等差数列作业1.已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10= .2.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37= .3.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则当{a n }的前n 项和S n 取到最大值时n 为 .4、在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18= 12,则数列{|a n |}的前18项和T 18的值是 .5.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n = .6、等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是 .7.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= .8、已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n的最大值为 .9.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为 .10.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式; (2)若数列{a n }的前k 项和S k =-35,求k 的值.11.设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0.(1)求S n 的最小值及此时n 的值; (2)求n 的取值集合,使其满足a n ≥S n .12.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.13.已知数列{a n }中,a 1=12,a n +1=3a n a n +3.(1)求a n ; (2)设数列{b n }的前n 项和为S n ,且b n ·n (3-4a n )a n =1,求证:12≤S n <1.数列的概念及简单表示法一、知识梳理 1.数列的定义按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2、已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2).3.等差数列的定义如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最 大 值;若a 1<0,d >0,则S n 存在最 小 值.试一试1.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),而数列{a n }的前n 项和数值最大时,n的值为 . 答案 7解析 ∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . ∵a 7=22-21=1>0,a 8=22-24=-2<0, ∴n =7时,数列{a n }的前n 项和最大.1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6= . 答案 12解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12.2.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1= . 答案 20解析 因为S 10=S 11,所以a 11=0. 又因为a 11=a 1+10d ,所以a 1=20.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= . 答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.题型一 由数列的前几项求数列的通项 例1 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….解 (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn.也可写为a n=⎩⎨⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…, 所以a n =13(10n -1).思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.题型二 由数列的前n 项和S n 求数列的通项例2 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ; (2)S n =3n +b .解 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为 .答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为 .(2)(2013·课标全国Ⅰ改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m = .答案 (1)52(2)5 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)由题意得a m =S m -S m -1=2,a m +1=S m +1-S m =3,故d =1,因为S m =0,故ma 1+m (m -1)2d =0, 故a 1=-m -12, 因为a m +a m +1=S m +1-S m -1=5,故a m +a m +1=2a 1+(2m -1)d=-(m -1)+2m -1=5,即m =5.思维升华 (1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.(1)若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7= .(2)记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6= . (3)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是 . 答案 (1)13 (2)48 (3)2解析 (1)由题意得S 5=5(a 1+a 5)2=5a 3=25,故a 3=5,公差d =a 3-a 2=2,a 7=a 2+5d =3+5×2=13.(2)∵S 4=2+6d =20,∴d =3,故S 6=3+15d =48.(3)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的性质及应用例2 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9= .(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为 .(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 016= .答案 (1)45 (2)13 (3)2 016解析 (1)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列.即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45.(2)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2,所以3(a 1+a n )=180,从而a 1+a n =60,所以S n =n (a 1+a n )2=n ·602=390,即n =13. (3)由等差数列的性质可得{S n n}也为等差数列,设其公差为d . 则S 2 0142 014-S 2 0082 008=6d =6,∴d =1. 故S 2 0162 016=S 11+2 015d =-2 014+2 015=1, ∴S 2 016=1×2 016=2 016.思维升华 在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列;{S n n}也是等差数列.等差数列的性质是解题的重要工具.(1)设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7= .(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30= . 答案 (1)28 (2)60解析 (1)∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,∴2(S 20-S 10)=S 10+S 30-S 20,∴40=10+S 30-30,∴S 30=60.题型三 等差数列的判定与证明例3 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.思维升华 等差数列的四个判定方法:(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断⎩⎨⎧⎭⎬⎫1S n 与{a n }是否为等差数列,并说明你的理由. 解 因为a n =S n -S n -1(n ≥2),又因为a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2),所以1S n -1S n -1=2(n ≥2), 又因为S 1=a 1=12, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. 所以1S n =2+(n -1)×2=2n ,故S n =12n. 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1), 而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.综上,可知⎩⎨⎧⎭⎬⎫1S n 是等差数列,{a n }不是等差数列.等差数列的前n 项和及其最值典例:(1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10= .(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110= .(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为 .(4)(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n = 时,{a n }的前n 项和最大.思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-(n -212)2+(212)2, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.(4)∵a 7+a 8+a 9=3a 8>0,∴a 8>0.∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0.∴数列的前8项和最大,即n =8.答案 (1)45 (2)-110 (3)110 (4)8温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.方法与技巧1.等差数列的判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.失误与防范1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.课堂练习:4.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103. 两式相减得a 15-a 10=103=5d , ∴d =23,a 1=-3. ∴nS n =n ·⎝ ⎛⎭⎪⎫na 1+n (n -1)2d =n 3-10n 23=f (n ), 令f (x )=x 3-10x 23,x >0, f ′(x )=13x (3x -20). 令f ′(x )=0得x =0(舍)或x =203. 当x >203时,f (x )是单调递增的; 当0<x <203时,f (x )是单调递减的. 故当n =7时,f (n )取最小值,f (n )min =-49.∴nS n 的最小值为-49.A 组 专项基础训练(时间:40分钟)1.已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d = . 答案 -3解析 方法一 由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得a 1=5,d =-3.方法二 a 1+a 7=2a 4=-8,∴a 4=-4,∴a 4-a 2=-4-2=2d ,∴d =-3.2.已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10= . 答案 1021 解析 依题意,将(3m +1)x +(1-m )y -4=0化为(x +y -4)+m (3x -y )=0,令⎩⎪⎨⎪⎧ x +y -4=0,3x -y =0,解得⎩⎪⎨⎪⎧x =1y =3,所以直线(3m +1)x +(1-m )y -4=0过定点(1,3),所以a 1=1,a 2=3,所以公差d =2,a n =2n -1,所以b n =1a n ·a n +1=12(12n -1-12n +1),T 10=12×(11-13+13-15+…+120-1-120+1)=12×(11-121)=1021. 3.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37= . 答案 100解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100,∴{a n +b n }为常数列,∴a 37+b 37=100.4.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则当{a n }的前n 项和S n 取到最大值时n 为 .答案 5解析 ∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.5.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是 .答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.6.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n = . 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.7.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n的值是 .答案 6解析 依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= . 答案 14解析 由已知1a 10=1a 1+(10-1)×13=1+3=4, ∴a 10=14. 9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0.(1)求S n 的最小值及此时n 的值;(2)求n 的取值集合,使其满足a n ≥S n .解 (1)设公差为d ,则由S 2 015=0⇒2 015a 1+2 015×2 0142d =0⇒a 1+1 007d =0, d =-11 007a 1,a 1+a n =2 015-n 1 007a 1, ∴S n =n 2(a 1+a n )=n 2·2 015-n 1 007a 1=a 12 014(2 015n -n 2). ∵a 1<0,n ∈N *,∴当n =1 007或1 008时,S n 取最小值504a 1.(2)a n =1 008-n 1 007a 1, S n ≤a n ⇔a 12 014(2 015n -n 2)≤1 008-n 1 007a 1. ∵a 1<0,∴n 2-2 017n +2 016≤0,即(n -1)(n -2 016)≤0,解得1≤n ≤2 016.故所求n 的取值集合为{n |1≤n ≤2 016,n ∈N *}.B 组 专项能力提升(时间:25分钟)1.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为 .答案 19解析 ∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0,∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.2.(2013·辽宁改编)下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列. 其中,真命题为 .答案 p 1,p 4解析 由于p 1:a n =a 1+(n -1)d ,d >0,∴a n -a n -1=d >0,命题p 1正确.对于p 2:na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关. 故数列{na n }不一定递增,命题p 2不正确.对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+d n (n -1), 当d -a 1>0,即d >a 1时,数列{a n n}递增, 但d >a 1不一定成立,则p 3不正确.对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确.综上,正确的命题为p 1,p 4.3.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a9b5+b7+a3b8+b4的值为.答案19 41解析∵{a n},{b n}为等差数列,∴a9b5+b7+a3b8+b4=a92b6+a32b6=a9+a32b6=a6b6.∵S11T11=a1+a11b1+b11=2a62b6=2×11-34×11-3=1941,∴a6b6=1941.4.已知数列{a n}的各项均为正数,前n项和为S n,且满足2S n=a2n+n-4(n∈N*).(1)求证:数列{a n}为等差数列;(2)求数列{a n}的通项公式.(1)证明当n=1时,有2a1=a21+1-4,即a21-2a1-3=0,解得a1=3(a1=-1舍去).当n≥2时,有2S n-1=a2n-1+n-5,又2S n=a2n+n-4,两式相减得2a n=a2n-a2n-1+1,即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为等差数列.(2)解 由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)×1=n +2, 即a n =n +2.5.已知数列{a n }中,a 1=12,a n +1=3a n a n +3. (1)求a n ;(2)设数列{b n }的前n 项和为S n ,且b n ·n (3-4a n )a n =1,求证:12≤S n <1. (1)解 由已知得a n ≠0则由a n +1=3a n a n +3, 得1a n +1=a n +33a n , 即1a n +1-1a n =13,而1a 1=2, ∴{1a n }是以2为首项,以13为公差的等差数列. ∴1a n =2+13(n -1)=n +53, ∴a n =3n +5. (2)证明 ∵b n ·n (3-4a n )a n=1, 则由(1)得b n =1n (n +1),∴S n=b1+b2+…+b n=(1-12)+(12-13)+(13-14)+…+(1n-1n+1)=1-1n+1关于n单调递增,∴12≤S n<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题1.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .852.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .213.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤4.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .05.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( )A .34000米B .36000米C .38000米D .40000米 6.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=27.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 8.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1629.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( )A .3415B .2310C .317D .622711.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24B .39C .104D .5212.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .713.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .24014.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .4515.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46516.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .517.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2118.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 19.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=20.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个二、多选题21.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >22.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列23.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=024.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .225.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .326.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 27.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .828.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++=D .2222123202020202021a a a a a a ++++=29.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项30.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题1.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C . 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 4.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 5.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==,因此通项公式为()33111222n a n n =+-=-. 故选:C. 8.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯.故选:D 11.D 【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D . 12.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 13.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 14.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =.故该女子织布每天增加45尺. 故选:D 15.B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 16.A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 17.B 【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B. 18.C 【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +, 则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C . 19.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 20.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由100n n a a +≥⎧⎨≤⎩求得.二、多选题21.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可. 22.BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断. 23.ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 24.AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 25.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 26.AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断. 27.BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 28.BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形. 29.ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nn S a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题. 30.AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。

相关文档
最新文档