高中数学必修三所有知识点总结和常考题型练习精选

合集下载

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结一、函数的概念与性质1. 函数的定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,记作$y=f(x)$。

2. 函数的表示法:列表法、图像法、解析式法。

3. 函数的性质:单调性、奇偶性、周期性、有界性。

4. 反函数:如果一个函数$y=f(x)$在其定义域内是单射的,那么它有反函数。

5. 函数的运算:和、差、积、商以及复合函数。

二、指数与对数1. 指数函数:形如$y=a^x$的函数,其中$a>0$且$a\neq 1$。

2. 对数函数:形如$y=log_a(x)$的函数,其中$a>0$且$a\neq 1$。

3. 指数与对数的关系:$a^y=x$等价于$y=log_a(x)$。

4. 指数函数和对数函数的性质:增减性、特殊点、图像特征。

5. 指数方程和对数方程的解法。

三、三角函数1. 角的概念:任意角、象限角、轴线角。

2. 正弦、余弦、正切函数:定义、性质、图像。

3. 三角函数的周期性:$T=\frac{2\pi}{\omega}$。

4. 三角函数的增减性:在不同象限的行为。

5. 三角恒等式:基本恒等式、和差公式、倍角公式、半角公式。

四、平面向量1. 向量的概念:有序实数对,可以表示为$\vec{a}=(x,y)$。

2. 向量的加法、减法、数乘。

3. 向量的模:长度,计算公式为$|\vec{a}|=\sqrt{x^2+y^2}$。

4. 向量的数量积(点积):$\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$。

5. 向量的线性运算:线性组合、线性相关与线性无关。

五、数列与数学归纳法1. 数列的概念:按照一定顺序排列的一列数$a_1, a_2, a_3,\ldots$。

2. 等差数列与等比数列:定义、通项公式、求和公式。

3. 数列的极限:数列的收敛与发散。

4. 数学归纳法:证明方法,包括奠基步骤和归纳步骤。

六、概率与统计1. 随机事件:可能发生的事件,具有不确定性。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点总结一、直线与圆1. 直线的方程直线的方程有点斜式、斜截式和截距式。

其中,点斜式方程是通过直线上的一个点和直线的斜率来确定直线的方程;斜截式方程是通过直线的斜率和截距来确定直线的方程;截距式方程是通过直线在坐标轴上的两个截距来确定直线的方程。

2. 圆的方程圆的方程有标准方程和一般方程。

标准方程是圆心在原点的圆的方程,一般为x²+y²=r²;一般方程是圆心不在原点的圆的方程,一般为(x-a)²+(y-b)²=r²。

3. 直线与圆的位置关系直线与圆的位置关系有相离、相切和相交三种情况。

相离是指直线与圆没有公共点;相切是指直线与圆有且仅有一个公共点;相交是指直线与圆有两个交点。

4. 直线与圆的交点直线与圆有两个交点的情况下,求交点的方法可以通过联立直线方程和圆方程,再使用判别式来判断交点的情况。

5. 切线与法线圆上一点的切线和法线是确定的。

切线的斜率等于点到圆心的连线的斜率的相反数,法线的斜率等于切线的斜率的相反数。

二、平面向量1. 平面向量的定义平面向量是向量的一种,平面向量的定义是以有向线段为代表的,具有大小和方向的量。

平面向量通常用有向线段的起点和终点来表示。

2. 平面向量的加法与减法平面向量的加法与减法可以通过平行四边形法则进行计算,即两个向量相加时,将它们的起点放在一起,而两个向量的终点也放在一起,然后从起点到终点的有向线段即为它们的和。

3. 平行四边形法则平行四边形法则是求两个向量的和或差的方法。

在平行四边形中,对角线的和为两个向量的和,差为两个向量的差。

4. 数量积与向量积数量积也叫点积,是两个向量的数量乘积,定义为:a·b=|a|*|b|*cosθ,其中a、b为两个向量,|a|、|b|为它们的模,θ为它们的夹角。

向量积也叫叉积,是两个向量的向量乘积,定义为:a×b=|a|*|b|*sinθ*n,其中n为一个单位向量,垂直于a、b所确定的平面,并符合右手螺旋定则。

高考数学必修三知识点大全总结

高考数学必修三知识点大全总结

高考数学必修三知识点大全总结一、数列与数学归纳法1.数列的概念:数列是由按照一定顺序排列的数构成的序列。

2.等差数列与等差数列的通项公式:等差数列是指数之间差值相等的数列,通项公式为an=a1+(n-1)d。

3.等比数列与等比数列的通项公式:等比数列是指数之间比值相等的数列,通项公式为an=a1*q^(n-1)。

4. Fibonacci数列:每一项数等于前两项之和的数列,通项公式为f1=1,f2=1,fn=fn-1+fn-25.通项公式的求解过程:利用已知的数列的第一项和公差或公比,推导出通项公式。

6.数学归纳法:数学归纳法是指通过验证数学命题对第一项成立,并且推导出对n+1项成立,从而推导出对所有自然数成立。

二、函数与导数1.函数的定义与性质:函数是一种对应关系,每一个自变量都对应唯一的一个因变量。

2. 一次函数与一次函数的性质:一次函数是指由一次幂组成的函数,表达式为y=kx+b,k代表斜率,b代表截距。

3. 二次函数与二次函数的性质:二次函数是指由x的二次幂组成的函数,表达式为y=ax^2+bx+c,a>0。

4.导数的定义与性质:导数是函数变化的速率,也是函数在其中一点的切线斜率。

5.导函数的求解方法:利用导数的定义和性质,通过求导的各种规则,求解导函数。

6.利用导函数解决实际问题:通过求解导函数,并结合问题的意义,解决实际问题。

三、三角函数1.三角函数的基本关系:三角函数包括正弦函数、余弦函数、正切函数等,它们之间存在一些基本的关系。

2.三角函数的图像与性质:正弦函数与余弦函数的图像是周期函数,在0到2π的区间内交替上下波动。

3.三角函数的基本公式:包括和差公式、倍角公式、半角公式等,用来简化三角函数的运算。

4.三角函数在解三角形中的应用:通过利用三角函数的性质,解决三角形的各种问题。

四、统计与概率1.统计的概念与基本统计量:统计是指对大量数据进行收集、整理、分析和解释的过程;基本统计量包括平均数、中位数、众数、标准差等。

高三数学必修三知识点总结

高三数学必修三知识点总结

高三数学必修三知识点总结高三数学必修三是学习数学的重要阶段,这一阶段主要学习代数、函数、立体几何等知识点。

下面将对这些知识点进行总结和梳理,以帮助同学们更好地复习和掌握。

一、代数部分代数是数学中的基础部分,它涉及到方程、不等式、函数等内容。

在高三数学必修三中,重点掌握以下几个知识点:1. 二次函数:掌握二次函数的基本概念,包括顶点、对称轴、开口方向等。

同时还要掌握二次函数图像的绘制和基本性质的运用。

2. 一次函数与二次函数的关系:了解一次函数和二次函数的基本区别,并能够通过分析二次函数与一次函数之间的关系来解决实际问题。

3. 复数:掌握复数的基本概念和运算法则,包括复数的加减乘除运算及共轭复数的概念。

同时还要能够将复数表示为二元方程的解。

4. 等差数列与等比数列:熟练掌握等差数列与等比数列的定义和通项公式,能够根据已知条件求解问题。

二、函数部分函数是高三数学必修三的重要内容之一,它是数学中的基本工具之一。

在这个部分,我们需要重点掌握以下几个知识点:1. 函数的基本概念:了解函数的定义和性质,包括定义域、值域、单调性以及奇偶性等。

2. 指数函数与对数函数:掌握指数函数与对数函数的基本性质,能够运用指数函数和对数函数解决实际问题。

3. 三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义及性质,能够运用三角函数解决相关的几何问题。

4. 组合函数与反函数:了解组合函数和反函数的定义及性质,能够计算组合函数和找到反函数。

三、立体几何部分立体几何是数学必修三的另一个重要内容,它与平面几何密切相关。

在高三数学必修三中,我们需要重点掌握以下几个知识点:1. 空间几何图形的投影:了解空间几何图形在不同平面上的投影方法,能够根据已知条件求解问题。

2. 空间几何图形的位置关系:掌握直线与平面、两平面的位置关系,包括相交、平行和垂直等。

3. 空间几何图形的计算:能够计算空间几何图形的体积、表面积等相关参数,能够应用相关的计算公式解决实际问题。

高考数学必修三知识点大全总结

高考数学必修三知识点大全总结

高考数学必修三知识点大全总结高考数学必修三知识点同学们总结归纳过吗?如果没有请来小编这里瞧瞧。

下面是由小编为大家整理的“高考数学必修三知识点大全总结”,仅供参考,欢迎大家阅读。

高考数学必修三知识点大全总结一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。

必修三数学考试知识点总结

必修三数学考试知识点总结

必修三数学考试知识点总结一、集合与函数1. 集合的概念、表示方法2. 集合的运算:并集、交集、差集3. 函数的概念、表示方法4. 函数的性质:定义域、值域、单调性、奇偶性5. 函数的运算:复合函数、反函数6. 初等函数与反常函数二、数列与数学归纳法1. 等差数列与等差数列的通项公式2. 等比数列与等比数列的通项公式3. 数学归纳法的基本思想和应用4. 数列的求和公式三、三角函数1. 弧度制与角度制的相互转换2. 正弦函数、余弦函数、正切函数的概念与性质3. 周期性、奇偶性、单调性4. 三角函数的图像、性质与变形四、解析几何1. 坐标系的概念与性质2. 点、直线、圆、抛物线、椭圆、双曲线的基本性质3. 直线与平面的方程4. 空间几何中的点、直线、平面、空间直角坐标系的概念与性质五、图形的变换1. 平移、旋转、翻折、放缩的概念与性质2. 图形的对称性与对称中心、轴、面的判定3. 图形的变换公式六、导数与微分1. 导数的概念与性质2. 导数的运算法则3. 高阶导数、隐函数与参数方程的导数4. 微分的概念与性质5. 函数的增减性与极值、凹凸性与拐点6. 常用函数的导数与微分七、积分1. 频数和频率的概念2. 统计调查的基本方法3. 统计图表的组织与分析4. 概率的概念与性质5. 概率的计算公式6. 事件的相互独立性八、统计与概率1. 不定积分与定积分的概念2. 不定积分与定积分的性质3. 定积分与定积分的应用4. 牛顿-莱布尼兹公式5. 函数的定积分总结:以上是必修三数学考试的主要知识点总结,希朇同学们能够认真复习,加强练习,相信大家一定能够在数学考试中取得优异的成绩!。

高中数学必修三知识点归纳

高中数学必修三知识点归纳

高中数学必修三知识点归纳一、函数与方程1. 函数的定义与性质- 函数是一个或多个变量间的依赖关系。

- 定义域、值域、图像、奇偶性、单调性等。

2. 一元二次函数- 基本形式:f(x) = ax² + bx + c (a≠0)- 参数a、b、c对函数图像的影响- 顶点坐标、对称轴- 判别式和根的关系- 单调性、最大值最小值- 图像的平移、伸缩、翻转3. 幂函数、指数函数和对数函数- 幂函数:f(x) = x^a (a为实数,a≠0)- 指数函数:f(x) = a^x (a > 0, a ≠ 1)- 对数函数:f(x) = loga(x) (a > 0, a ≠ 1)- 特性和性质- 图像和变化规律4. 三角函数和三角方程- 正弦函数、余弦函数、正切函数、余切函数的定义- 周期和振幅- 正弦定理、余弦定理和正切定理- 三角方程的解法和应用二、数列与数学归纳法1. 数列的概念和性质- 数列是按照一定规律排列的一组数。

- 等差数列、等比数列、等差数列的前n项和- 通项公式、递推公式- 数列图像的性质2. 数列的极限- 数列趋于无穷的极限- 数列的收敛与发散- 等差数列、等比数列的极限- 极限的运算性质3. 数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用三、数学推理与证明1. 几何证明方法- 直接证明、间接证明、反证法、数学归纳法- 常见几何定理的证明2. 合理推理方法- 演绎推理、归纳推理、直觉推理、假设-验证法 - 合理推理的特点和要求3. 几何证明- 平行线证明- 三角形的证明- 圆的证明。

人教版高中数学【必修三】[知识点整理及重点题型梳理]_古典概型_提高

人教版高中数学【必修三】[知识点整理及重点题型梳理]_古典概型_提高

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC 的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 必修3知识点第一章 算法初步一,算法与程序框图1,算法的概念:按一定规则解决某一类问题的明确和有限的步骤。

2,算法的三个基本特征:明确性,有限性,有序性。

(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。

(3)循环结构:直到型循环结构,当型循环结构。

一个完整的循环结构,应该包括三个内容:1)循环体;2)循环判断语句;3)与循环判断语句相关的变量。

二,基本算法语句(一定要注意各种算法语句的正确格式)1,输入语句2,输出语句3,赋值语句 注意:“=”的含义是赋值,将右边的值赋予左边的变量4,条件语句5,循环语句: 直到型 当型注意:提示内容用双引号标明,并与变量用分号隔开。

三,算法案例1,辗转相除法: 例:求2146与1813的最大公约数2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0 ..............余数为0时计算终止。

为最大公约数2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

3,秦九韶算法:将1110()n nn n f x a x a x a x a 改写成1210()(()))n n n f x a x a x a x a x a 再由内及外逐层计算。

4,进位制:注意K 进制与十进制的互化。

1)例:将三进制数(3)10212化为十进制数10212(3)=2+1×3+2×32+0×33+1×34=104 2)例:将十进制数104化为三进制数 104=3×34+2 ....... 最先出现的余数是三进制数的最右一位 34=3×11+1 11=3×3+2 3=3×1+01=3×0+1 ............ 商数为0时计算终止104=(3)10212第二章 统计一,随机抽样1,简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本,如果每次抽取时总体内的各个个体被抽取到的机会都相等,就把这种抽样方法叫做简单随机抽样。

(关键词)逐个,不放回,机会相等 2,随机数表法的步骤:1)编号; 2)确定起始数字;3)按一定规则读数(所读数不能大于最大编号,不能重复)。

3,系统抽样的步骤:1)编号; 2)分段(若样本容量为n ,则分为n 段);分段间隔N kn ,若Nn不是整数,则剔除余数,再重新分段; 3)在第一段用简单随机抽样确定第一个个体编号; 4)按照一定的规则在后面每段内各取一个编号,组成整个样本。

4,分层抽样的步骤:1)确定抽样比; 2)根据个体差异分层,确定每层的抽样个体数(抽样比乘以各层的个体数,如果不是整数,则通过四舍五入取近似值);3)在每一层内抽取样本(个体数少就用简单随机抽样,个体数多则用系统抽样),组成整个样本。

5,三种抽样方法的异同点直到型和当型循环可以相互演变,循环体相同,条件恰好互补。

二,用样本估计总体1,用样本的频率分布估计总体:通过对样本的分析,得到个体的频率分布的情况,进而对总体中个体的频率分布情况进行估计。

总体中的个体分布的频率约等于样本中的个体分布的频率;样本容量越大,这种估计的精确程度越高。

2,绘制频率分布直方图的步骤:1)求样本中数据的极差(最大值与最小值的差); 2)确定组距与组数;(当样本容量不超过100时,按照数据多少,一般分成5~12组) 组数=极差/组距 (若商不是整数,则取其的整数部分再加1作为组数) 3)将样本中的数据分组; 4)列频率分布表; 应包含内容5)画频率分布直方图。

(注意横轴表示个体数据所表示的量,纵轴表示频率除...以组距...;每一个矩形框都是相连的;把纵标所对的值用虚线标明)3,频率分布折线图:将频率分布直方图中各小长方形上端的中点连接,得到的图形称为频率分布折线图。

若样本容量增加,组数增加,组距减小,相应的频率分布折线图就越来越接近一条光滑曲线,称之为总体密度曲线。

4,茎叶图:将样本中的数据按位数进行比较,将大小基本不变或变化不大的数位的数作为主干(茎),将变化大的数位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

优点:直观,能够保留原始信息,可以随时补充记录; 缺点:精度不高,数据较多时不方便记录。

5,用样本的数字特征估计总体的数字特征通过频率分布直方图,可以对总体的数字特征进行估计。

1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

直方图中众数的估计值是直方图中最高的矩形的中点的横坐标;2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

直方图中中位数的估计值是直方图使两边面积相等的平分线的横坐标; 3)平均数:一组数据的算术平均数,即121()n x x x x n=++⋯+ 直方图中平均数的估计值是频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和。

6,标准差:()()()nx xx s n 22221x ......x x -++-+-=方差是标准差的平方:()()()nx x x s n 222212x ......x x -++-+-=方差与标准差都是衡量样本数据分散程度的重要参数,方差(或标准差)越小,数据越稳定;方差(或标准差)越大,数据越离散。

三,变量间的相关关系:1,相关关系:当一个变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。

变量间的这种相互关系,称为两变量的相关关系。

2,散点图:将有相关关系的两变量的数据作为点的坐标,在平面直角坐标系中表示出来,所得到的图称之为散点图。

散点图直观上是一些分散的点。

正相关:散点散布在从左下角到右上角的区域时,这样的两变量的相关关系,称为正相关; 负相关:散点散布在从左上角到右下角的区域时,这样的两变量的相关关系,称为负相关。

3,线性相关:如果散点图中各点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系。

这条直线称之为回归直线。

直线的方程称之为回归直线方程。

4,最小二乘法求回归直线方程:ˆˆˆybxa,其中:回归直线必过一个定点:,x y 。

当一个变量已知时,由回归直线方程可以估算出另一个变量的近似值。

5,线性相关系数r :r 为正时,表明正相关;r 为负时,表明负相关。

r 的绝对值越接近1,相关程度越强;r 的绝对值越接近0,相关程度越弱。

第三章 概率一,随机事件的概率1,事件的分类:必然事件,不可能事件,随机事件。

必然事件与不可能事件合称为确定事件。

2,事件A 出现的频率:相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例An n f n为事件A 出现的频率。

3,对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率n f A 稳定在某个常数上,把这个常数记作P(A),称为事件A 的概率,简称为A 的概率。

4,频率与概率的区别与联系:1)联系:实验次数增加时,频率无限接近概率;一般可以用频率来估计概率;2)区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同;而概率是一个客观存在的确定数,与每次试验无关.5,极大似然法:如果我们面临着从多个可选答案中挑选出正确答案的决策任务,那么“使得事件出现的可能性最大”可以作为决策的准则,即哪一个答案能够使事件发生的可能性最大,这个答案即为正解答案。

6,事件的关系与运算:1)包含关系:如果事件A 发生,则事件B 一定发生,称事件B 包含事件A ;记作。

不可能事件记作Φ,任何事件都包含不可能事件。

2)相等关系:如果事件A 包含事件B ,且事件B 包含事件A ,那么称事件A 和事件B 相等,记作A=B 。

3)把“事件A 发生或事件B 发生”看作一个事件C ,则事件C 为事件A 和事件B 的并事件(或和事件),记作AB A B 或。

4)把“事件A 发生且事件B 发生”看作一个事件D ,则事件D 为事件A 和事件B 的交事件(或积事件),记作AB AB 或。

5)若两事件A 和B 不能同时发生,即Φ=B A ,那么称事件A 与事件B 互斥。

6)若A B 是不可能事件,A B 是必然事件,则称事件A 与事件B 为对立事件。

即任何一次实验中发生的事件不是事件A ,就是事件B ,没有第三种可能。

I B A B A =Φ= ,。

7)定义:⎩⎨⎧件叫做对立事件个发生的事件两互斥事对立事件:其中必有一斥事件发生的两个事件叫做互互斥事件:不可能同时互斥事件与对立事件集合角度的理解:(互斥事件): (对立事件)7,概率的几个基本性质:1)0≤P(A)≤12)必然事件的概率为1,概率为1的事件不一定是必然事件; 3)不可能事件的概率为0,概率为0的事件不一定是不可能事件; 4)如果两事件A 与B 互斥,则P A B P A P B ;5)若两事件A 与B 对立,则1P AP B。

二,古典概型1,古典概型:在试验中,所有可能出现的基本事件只有有限个,且每个基本事件出现的可能性相等,我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

2,古典概型的概率公式:()A P A 所包含的基本事件的个数基本事件的总数=三,几何概型1,几何概型:在试验中,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为几何概型。

2,几何概型的概率公式:区长面积或体积试验结区长(面积或体积)构成事件A的域度()P(A)的全部果所构成的域度,3,一般情况下,如果事件的发生与一个变量有关,则几何概型的概率公式为长度之比;如果事件的发生与两个变量有关,则几何概型的概率公式为面积之比;如果事件的发生与三个变量有关,则几何概型的概率公式为体积之比;常考题型1.最小二乘法的原理是 ( ) A .使得∑ni =1[y i -(a +bx i )]最小 B .使得∑n i =1[y i-(a +bx i )2]最小 C .使得∑n i =1[y 2i -(a +bx i )2]最小 D .使得∑n i =1[y i -(a +bx i )]2最小2.用秦九韶算法求一元n 次多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0当x =x 0时的值时,一个反复执行的步骤是 ( )A.⎩⎨⎧ v 0=a 0v k =v k -1x +a n -k(k =1,2,…,n ) B. ⎩⎨⎧ v 0=a n v k =v k -1x +a k (k =1,2,…,n )C.⎩⎨⎧ v 0=a n v k =v k -1x +a n -k (k =1,2,…,n )D.⎩⎨⎧v 0=a 0v k =v k -1x +a k (k =1,2,…,n )3.某车间生产一种玩具,为了要确定加工玩具所需要的时间,进行了10次若回归方程的斜率是b ,则它的截距是 ( ) A.a ^=11b ^-22 B.a ^=22-11b ^C.a ^=11-22b ^D.a ^=22b ^-114.为了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为 ( )A.715B.415C.815D.355.当x=2时,下面的程序段结果是________.5.某校举行运动会,高二一班有男乒乓球运动员4名、女乒乓球运动员3名,现要选一男一女运动员组成混合双打组合代表本班参赛,若某女乒乓球运动员为国家一级运动员,则她参赛的概率是多少?6.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0(1)(2)估计使用年限为10年时,维修费用是多少?7.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

相关文档
最新文档