聚类分析算法解析
聚类分析方法概述及应用

聚类分析方法概述及应用聚类分析是一种常用的数据分析方法,用于将相似的数据点聚集在一起,形成有意义的群组。
它可以帮助我们理解数据的内在结构和模式,揭示隐藏在数据背后的信息。
本文将对聚类分析方法进行概述,并探讨其在不同领域的应用。
一、聚类分析方法概述聚类分析方法有多种类型,其中最常用的是原型聚类、层次聚类和密度聚类。
1. 原型聚类原型聚类是一种利用原型向量(即代表一个簇的中心点)来表示和分类数据的方法。
最常见的原型聚类算法是K均值聚类,它通过迭代过程将数据分成K个簇。
2. 层次聚类层次聚类是一种基于树状结构的聚类方法,它将数据点逐步合并为越来越大的簇,直到所有数据点都合并为一个簇。
层次聚类可以分为凝聚型和分裂型两种。
3. 密度聚类密度聚类是一种基于数据点之间密度的聚类方法。
它通过计算每个数据点周围的密度,将密度较高的数据点归为一类,从而形成簇。
DBSCAN是最常用的密度聚类算法之一。
二、聚类分析的应用聚类分析方法在各个领域都有广泛的应用,以下是其中几个典型的应用示例:1. 市场细分聚类分析可帮助企业将潜在消费者细分为不同的市场群体,根据不同群体的需求进行针对性的市场推广。
例如,一家保险公司可以利用聚类分析将客户分为不同的风险类别,制定相应的保险套餐。
2. 医学研究在医学领域,聚类分析可用于帮助识别患者的疾病风险、预测疾病进展、选择最佳治疗方案等。
通过分析患者的基因数据、病历记录和临床表现等信息,医生可以将患者分为不同的疾病类型,为个体化治疗提供指导。
3. 社交网络分析社交网络中存在着庞大的用户群体和复杂的网络关系。
聚类分析可以帮助我们理解社交网络中的用户群体结构,发现潜在的兴趣群体和社区,并为个性化推荐、社交媒体营销等提供支持。
4. 图像分析聚类分析可以应用于图像分析领域,如图像压缩、图像分类等。
通过对图像中的像素点进行聚类,可以将相似的像素点合并为一个簇,从而实现图像的压缩和分类。
5. 网络安全对于网络安全领域来说,聚类分析可以帮助识别异常网络流量、发现潜在的攻击者并采取相应的安全防护措施。
聚类分析原理

聚类分析原理
聚类分析是一种无监督学习算法,它将数据集中的对象分
成相似的组或簇。
其原理基于以下几个关键步骤:
1. 选择合适的相似性度量:聚类算法需要定义一个衡量对
象之间相似性的度量方式。
常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。
2. 初始化聚类中心:聚类算法通常需要提前指定簇的数量K。
然后可以随机选取K个样本作为初始的聚类中心,或者通过某种启发式方法选择初始聚类中心。
3. 分配样本到簇:将每个样本分配到最接近的聚类中心所
属的簇。
这个过程可以通过计算每个样本与每个聚类中心
之间的距离,并选择距离最小的聚类中心来完成。
4. 更新聚类中心:根据当前簇中的样本重新计算聚类中心
的位置,通常是取簇内所有样本的均值作为新的聚类中心。
5. 重复步骤3和步骤4,直到簇的分配结果不再变化或达
到预定的停止条件。
6. 输出最终的聚类结果。
聚类分析的目标是在不知道样本的真实标签的情况下,将
样本聚类成相似的组。
它可以帮助发现数据的内在结构,
识别相似的样本和异常值,以及进行数据压缩和预处理等
任务。
数据挖掘中的聚类分析方法

数据挖掘中的聚类分析方法数据挖掘是一种通过智能计算和算法挖掘数据价值的技术。
而数据挖掘中的聚类分析方法则是其中的一个重要分支。
聚类分析是指将相似的数据组合在一起,不同的数据分开,形成不同的类别。
聚类分析在机器学习、数据分析、数据挖掘、图像处理等领域有广泛的应用。
本文将从聚类分析的定义、算法、分类等方面进行讲解。
一、聚类分析的定义聚类分析是一种无监督学习算法,它主要用于将样本根据各自的相似性分成若干类别。
聚类分析主要有两种方法:层次聚类和划分聚类。
层次聚类是一种自下而上的聚类方法,将每个样本视为一个初始聚类,然后将聚类依次合并,形成更大的聚类,直到所有样本都组成一个聚类。
层次聚类的结果是一个聚类树状结构,通过剪枝可以获得不同的聚类结果。
划分聚类是一种自上而下的聚类方法,将所有样本看作一个大的聚类,然后逐渐将其划分成更小的聚类,最终得到所需的聚类数目。
划分聚类主要有K均值聚类和高斯混合模型聚类二、聚类分析的算法(一) 层次聚类算法层次聚类常用的算法是自底向上的聚合算法和自顶向下的分裂算法。
自底向上的聚合算法是指先构造n个初始聚类,然后迭代合并最接近的两个聚类,直到达到某个停止条件。
这个停止条件可以是达到了所需的聚类数目,也可以是聚类之间距离的最大值。
自顶向下的分裂算法则是从所有样本开始,将其划分成两个聚类,然后逐步分裂聚类,得到所需的聚类数目。
(二) K均值聚类K均值聚类是一种划分聚类算法,它需要先指定K个聚类中心,然后根据距离来将样本点分配给不同的聚类中心。
然后将每个聚类内部的样本的均值作为该聚类的新中心,重新计算每个样本点和聚类中心的距离,直到聚类中心不再改变或达到一定的迭代次数。
K均值聚类的优势在于简单快速,具有很好的可扩展性和聚类效果。
但是这种算法需要预先确定聚类中心数,且对初始聚类中心的选择比较敏感。
(三) 高斯混合模型聚类高斯混合模型聚类是一种基于概率密度估计的算法,它假设每个聚类的密度函数是一个高斯分布。
聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。
它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。
一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。
在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。
基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。
2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。
常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。
簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。
4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。
算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。
层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。
3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。
核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。
聚类分析算法实验报告(3篇)

第1篇一、实验背景聚类分析是数据挖掘中的一种重要技术,它将数据集划分成若干个类或簇,使得同一簇内的数据点具有较高的相似度,而不同簇之间的数据点则具有较低相似度。
本实验旨在通过实际操作,了解并掌握聚类分析的基本原理,并对比分析不同聚类算法的性能。
二、实验环境1. 操作系统:Windows 102. 软件环境:Python3.8、NumPy 1.19、Matplotlib 3.3.4、Scikit-learn0.24.03. 数据集:Iris数据集三、实验内容本实验主要对比分析以下聚类算法:1. K-means算法2. 聚类层次算法(Agglomerative Clustering)3. DBSCAN算法四、实验步骤1. K-means算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的KMeans类进行聚类,设置聚类数为3。
(3)计算聚类中心,并计算每个样本到聚类中心的距离。
(4)绘制聚类结果图。
2. 聚类层次算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的AgglomerativeClustering类进行聚类,设置链接方法为'ward'。
(3)计算聚类结果,并绘制树状图。
3. DBSCAN算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的DBSCAN类进行聚类,设置邻域半径为0.5,最小样本数为5。
(3)计算聚类结果,并绘制聚类结果图。
五、实验结果与分析1. K-means算法实验结果显示,K-means算法将Iris数据集划分为3个簇,每个簇包含3个样本。
从聚类结果图可以看出,K-means算法能够较好地将Iris数据集划分为3个簇,但存在一些噪声点。
2. 聚类层次算法聚类层次算法将Iris数据集划分为3个簇,与K-means算法的结果相同。
从树状图可以看出,聚类层次算法在聚类过程中形成了多个分支,说明该算法能够较好地处理不同簇之间的相似度。
聚类分析之k-prototype算法解析

聚类分析之k-prototype算法解析K-prototype是处理混合属性聚类的典型算法。
继承Kmean算法和Kmode算法的思想。
并且加⼊了描述数据簇的原型和混合属性数据之间的相异度计算公式。
常规定义:X={X1,X2,X3………Xn}表⽰数据集(含有n个数据),其中数据有m个属性。
数据Xi={X11,X12,X13……….X1m}Aj表⽰属性jdom(Aj) 表⽰属性j的值域:对于数值属性,值域dom(Aj)表⽰是取值范围;对于分类属性,值域dom(Aj)表⽰集合Xij 表⽰数据I 的第j个属性。
同样,数据Xi也可表⽰为数据总共有m个属性,不妨设前p个属性为数值属性(r代表),后m-r个属性为分类属性(c代表)K-prototype算法是设定了⼀个⽬标函数,类似于kmean的SSE(误差平⽅和),不断迭代,直到⽬标函数值不变。
同时,K-prototype算法提出了混合属性簇的原型,我们可以理解原型就是数值属性聚类的质⼼。
混合属性中存在数值属性和分类属性,其原型的定义是数值属性原型⽤属性中所有属性取值值的均值,分列属性原型是分类属性中选取属性值取值频率最⾼的属性。
合起来就是原型。
相异度距离: ⼀般来说,数值属性的相异度⼀般选⽤欧式距离,在K-prototype算法中混合属性的相异度分为属性属性和分类属性分开求,然后相加。
对于分类属性:我们使⽤海明威距离,即属性值相同,为0 ;属性值不同,为1。
对于分类属性:对于数值属性:计算数值属性对应的欧式距离则数据和簇的距离(相异度)为:其中前P个数值属性,后m个是分类属性,是簇Q的原型的j属性,u是分类属性的权重因⼦其K-prototype的⽬标函数是:⽬标函数这个定义对于算法来说很重要,都是作者⾃⼰想出来的。
然后进⾏实验验证的。
看论⽂最难学的就是⽬标函数。
⼈家想出来的很⽜,但是⾃⼰却没有能⼒想出来,还是得多看论⽂。
有了相异度和原型的定义。
算法的步骤是:输⼊:聚类簇的个数k,权重因⼦输出:产⽣好的聚类。
聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。
数据分析中的聚类算法与案例分析

数据分析中的聚类算法与案例分析随着互联网时代的到来,数据已经成为了我们生活中一个不可或缺的部分,数据量不断的增加,如何从这大量的数据中发现蕴含在其中的规律是数据分析中最重要的工作之一。
而聚类算法恰恰是很好的一种数据探索方法。
在这篇文章中,我们将介绍聚类算法的概念、分类、应用场景以及如何使用聚类算法进行案例分析。
一、聚类算法聚类算法是一种机器学习中非常重要的方法,它的主要作用是将相似的数据对象分配到同一个簇中。
在聚类问题中,目标是将数据分成若干个组,而每个组(称为簇)应包含类似的数据对象。
聚类算法经常用于数据挖掘与统计分析,并被广泛应用于市场分析、模式识别、图像处理和社会网络分析等领域。
二、聚类算法的分类聚类算法可以分为几种不同的方法。
根据聚类算法的输出,我们通常有两种不同类型的聚类算法:分层聚类和非分层聚类。
1. 分层聚类分层聚类通常被视为更专业的聚类方法之一,它是一种层次化的聚类方法,它基于将数据集递归地分割成更小、更小的子集。
这个过程通常被称为树形聚类或层次聚类。
我们可以从下向上或从上向下处理聚类层次。
在自底向上的聚类方式中,每一个数据点首先被视为单独的簇,然后不断地将它们相似的数据点合并,直到得到最终的多个聚类簇;而在从上向下的聚类方式中,我们首先把所有数据点视为一个整体,然后不断地将它们按照相似度分成几个小组,最终得到多个聚类簇。
分层聚类算法的主要优点是具有很强的可视化效果,可以生成树形结构来更容易地解释算法的聚类结果。
2. 非分层聚类非分层聚类算法也被称为 k-means 聚类算法,是其中最常见的一种聚类方法。
其主要思想是要将数据点分为几个簇,以使得簇内的数据点相似度尽可能高而簇间的数据点相似度尽可能低。
通俗的说,k-means 聚类算法的主要目标是将 n 个数据点分配到 k 个簇中,以使簇的数量最小化。
三、聚类算法的应用场景聚类算法应用到了许多领域,主要是因为它可以用于不同类型的数据集以及不同类型的数据挖掘任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析算法解析一、不相似矩阵计算1.加载数据data(iris)str(iris)分类分析是无指导的分类,所以删除数据中的原分类变量。
iris$Species<-NULL2. 不相似矩阵计算不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。
dist()函数的基本形式是dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。
默认是计算欧式距离,所有的属性必须是相同的类型。
比如都是连续类型,或者都是二值类型。
dd<-dist(iris)str(dd)距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。
Iris数据共150例样本间距离矩阵为150行列的方阵。
下面显示了1~5号样本间的欧式距离。
dd<-as.matrix(dd)二、用hclust()进行谱系聚类法(层次聚类)1.聚类函数R中自带的聚类函数是hclust(),为谱系聚类法。
基本的函数指令是结果对象<- hclust(距离对象, method=方法)hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法"median" 和重心法"centroid"。
下面采用平均距离法聚类。
hc <- hclust(dist(iris), method="ave")2.聚类函数的结果聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。
str(hc)下面列出了聚类结果对象hc包含的merge和height结果值的前6个。
其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。
比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。
再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。
head (hc$merge,hc$height)下面显示的聚类结果对象hc包含的merge和height结果值的50~55步的结果。
第50步结果表明样本43与13类(即第13步的聚类合类结果)合并。
所有的类编号负数j 表示原数据的样本编号,正数i表示聚类过程的第i步形成的新类。
再如54步,表示聚类过程第7步和第37步形成的类合并为新类,新类成为第54类,其类间距离是0.2641715。
data.frame(hc$merge,hc$height)[50:55]3.绘制聚类图聚类完成后可以使用plot()绘制出聚类的树图。
plot(hc, hang = -1, labels=iris$Species)4.指定分类和类中心聚类通过观察树形图,可见由于数据例很多,使图形很乱,不容易确定合理的分类,为简化图形,使用cutree()来确定最初的分类结果,先初步确定各个样本的最初分类的类数后,然后用hclust()再次聚类,重新聚类后,得出最后的分类结果。
memb <- cutree(hc, k = 10) #确定10个分类table(memb) #各类中的样本数为了进行重新聚类,需要计算各类的类中心的类中心,这里用各类的均向量来代表各类的类中心,计算程序如下。
cent <- NULLfor(k in 1:10){cent <- rbind(cent, colMeans(irisSample[memb == k, , drop = FALSE]))}有了各类的类中心后,再次使用hclust()函数,从10类起重新开始聚类。
hclust()函数这时需要指定各类的类中心,并采用中心法来聚类。
hc1 <- hclust(dist(cent), method = "centroid", members = table(memb))plot(hc1)hc1再次聚类的树形图就很精简了。
从树形图上看,确定为三类是比较合适的。
4.输出最终分类结果使用cutree()来确定输出各个样本的最后分类。
memb <- cutree(hc, k =3 #确定3个分类table(memb) #各类中的样本数下面将聚类结果和原始的分类比较可见聚类结果是不错的。
错误率约为14/150=9.33%。
5.直接数据距离阵聚类可以直接输入距离矩阵,然后用as.dist()函数转为hclust()可以使用的距离阵对象,然后再用hclust()再进行聚类分析。
x<-read.table(text="id BA FI MI VO RM TOBA 0 662 877 255 412 996FI 662 0 295 468 268 400MI 877 295 0 754 564 138VO 255 468 754 0 219 869RM 412 268 564 219 0 669TO 996 400 138 869 669 0 ", header=T) s(x)<-x$idx$id<-NULLx转换为距离阵。
x<-as.dist(x)hc <-hclust(x)显示聚类过程。
data.frame(hc$merge,hc$height)绘制聚类图。
plot(hc2)从聚类图可见聚为两类比较合适。
cutree(hc2,2)所以BA、VO、RM聚为1类而TO、FI、MI聚为另一类。
四、使用cluster包进行聚类分析1.计算距离矩阵除了可以使用dist()函数外,加载了cluster包后还可以使用daisy()函数,该函数可以使用的数据类型更多一些。
当原始数据表中包含的数据是混合型即属性变量既有有连续又有分类的时候,dist()计算就不够完美,而采用daisy()函数就可以毫无问题。
使用daisy()必须加载cluster包。
第一次使用还必须安装。
install.packages(‘cluster’,repos=’htt//192.168.3.225/rpkg)library(cluster)daisy()函数的形式和dist()相似,可以采用的距离包含欧式距离"euclidean", 绝对值距离和"manhattan", "gower"。
dd2<-daisy(iris)dd2<-as.matrix(dd1)2.使用agens()聚类cluster包提供了两种层次聚类的方法,一种是a bottom-up 自底而上,采用先将数据样本先各自看成一类,然后通过合并法的聚类过程,最终形成一个大类,包含全部样本,agnes()函数完成这个功能,这个称为合并层次聚类。
而diana()则采用相反的方法,即a top-down 自顶而下,先将所有样本看成一类,然后通过分裂类的过程将样品最终分为各自样本类,这个称为分裂法。
agens()函数的形式是agnes(x, diss = TRUE|FALSE, metric = "euclidean", stand = FALSE|TRUE,method = "average", par.method, keep.diss = n < 100, keep.data = !diss) 其中的diss指定x对象是否是不相似矩阵对象,与hclust()函数不同,agnes()既可以使用原始数据也可以采用距离阵。
stand是要求对数据进行标准化,而可以采用的类间距离计算方法有“average”平均法,“UPGMA”,“single”最短距离法,“complete”最大距离法,“ward”离差法,“weighted”权重平均距离法和“flexible”弹性法。
keep.diss 和keep.data指定在结果中是否保留不相似矩阵和数据,保留这些结果需要更多的存。
ag <- agnes(iris, diss=F, metric="euclidean", stand=F, method ="single")data.frame(ag$merge,ag$height)[50:55,]plot(ag, ask = FALSE, which.plots = NULL)cutree(ag,k=3)装载数据load'adultuci.rdata')str(AdultUCI)删除原来的目标变量AdultUCI$income<-NULL删除原始据中数据缺失的数据例AdultUCI<-na.omit(AdultUCI)。