高中数学初升高衔接教材 专题12 一元二次不等式的解法(解析版)
3.2.2含参数的一元二次不等式的解法(例题精讲)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。
解:∵()044222>+=-+=∆a a a 解得方程 ()0122=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,()00652≠>+-a a ax ax解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(mm -=+--=∆,所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
(完整版)高中数学一元二次不等式及其解法-知识点剖析

一元二次不等式及其解法-知识点剖析一、一元二次不等式及一元二次不等式的解集1.一元二次不等式经过变形,可以化成以下两种标准形式: (1)ax 2+bx+c>0(a>0); (2)ax 2+bx+c<0(a>0).上述两种形式的一元二次不等式的解集,可通过方程ax 2+bx+c=0的根确定.设Δ=b 2-4ac ,则: ①Δ>0时,方程ax 2+bx+c=0有两个不相等的解x 1、x 2,则不等式(1)的解集为{x|x>x 2或x<x 1},不等式(2)的解集为{x|x 1<x<x 2};②Δ=0时,方程ax 2+bx+c=0有两个相等的解,即x 1=x 2,则不等式(1)的解集为{x|x≠x 1},不等式(2)的解集为;③Δ<0时,方程ax 2+bx+c=0无实数解,则不等式(1)的解集为R ,不等式(2)的解集为. 2.解一元二次不等式的一般步骤:当a>0时,解形如ax 2+bx+c>0(≥0)或ax 2+bx+c<0(≤0)的一元二次不等式,一般可分为三步: (1)确定对应方程ax 2+bx+c=0的解; (2)画出对应函数图象的简图; (3)由图象得出不等式的解集.二、一元二次函数图象、一元二次方程的根、一元二次不等式的解集之间的关系 由下表可以看出ax 2+bx+c>0对一切x ∈R 都成立的条件为⎩⎨⎧<∆>,,00a ax 2+bx+c<0对一切x ∈R 都成立的条件为⎩⎨⎧<∆<.00a ,判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c (a>0)的图象一元二次方程ax 2+bx+c=0(a>0)的根 有两相异实根x 1,2=aacb b 242-±-有两相等实根x 1=x 2=-a b 2 没有实根一元二次不等式的解集 ax 2+bx+c >0(a>0) {x|x>x 2或x<x 1}{x ∈R |x≠-ab2} Rax 2+bx+c <0(a>0){x|x 1<x<x 2}φφ三、简单的分式不等式的解法 分式不等式同解不等式四、简单的一元高次不等式的解法一元高次不等式f (x )>0用穿根法(或称根轴法、区间法)求解,其步骤是: (1)将f (x )最高次项的系数化为正数;(2)将f (x )分解为若干个一次因式的积或二次不可分因式之积;(3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过);(4)根据曲线显现出的f (x )值的符号变化规律,写出不等式的解集. 例:解不等式(x+2)(x+1)2(x-1)3(x-2)≤0.解:原不等式变为(x+2)(x-1)(x-2)≤0或x=-1,各因式的根为-2,1,2,利用穿根法,原不等式的解集为{x|x≤-2或1≤x≤2或x=-1}. 知识探究问题1:解一元二次不等式应该注意哪些问题?探究:①要将二次项系数化为正,例如:解不等式-x 2-2x-1<0,需首先转化为x 2+2x+1>0求解. ②若一元二次不等式中二次项系数含字母,一般需要对二次项系数进行讨论,当两根的大小不确定时,还应对两根的大小进行讨论.例如:解关于x 的不等式ax 2-(a+1)x+1<0.首先对a 进行讨论,若a=0,原不等式⇔-x+1⇔{x|x>1};若a<0,原不等式⇔(x-a 1)(x-1)>0⇔{x|x<a 1或x>1}; 若a>0,原不等式⇔(x-a1)(x-1)<0.①其解的情况应由a1与1的大小关系进行确定,故当a=1时,式①⇔{x|x ∈};当a>1时,式①⇔{x|a1<x<1};当0<a<1时,式①⇔{x|1<x<a1}.注:对上述类型的二次不等式要搞清楚讨论的依据. 问题2:解简单的分式不等式应该注意哪些问题?探究:对于简单的分式不等式不能直接去分母,要把不等号的一边化为0,然后用商的符号法则化为不等式(组)求解.例如:解不等式1x 15x ++<3,应先将不等式转化为1x 15x ++-3<0,即1x 1)2(x +-<0,可化为⎩⎨⎧>+<-0101x ,x 或⎩⎨⎧<+>-0101x ,x ,(即化为不等式①),也可直接等价于2(x-1)(x+1)<0(转化为不等式)来求.还应注意对含等号的分式不等式,首先保证分母不为0. 例如:解不等式1x 15x ++≤1⇔1x 1)2(x +-≤0⇔⎩⎨⎧>+≤-0101x ,x 或⎩⎨⎧<+≥-0101x ,x 或直接等价于()()⎩⎨⎧≠+≤+-.010112x ,x x 练习请你和你的同学根据下面所给的材料,探究、讨论窗户应设计成怎样的尺寸.要在墙上开一个上半部为半圆形,下部为矩形的窗户(如图3-2-4所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?图3-2-4。
归纳与技巧:一元二次不等式及其解法(含解析)

归纳与技巧:一元二次不等式及其解法基础知识归纳一元二次不等式的解集二次函数y =ax 2+bx +c 的图象、一元二次方程ax 2+bx +c =0的根与一元二次不等式ax 2+bx +c >0与ax 2+bx +c <0的解集的关系,可归纳为:判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a ≠0)的根有两相异实根x =x 1或x=x 2 有两相同实根x=x 1 无实根 一元 二次不等式的解集 ax 2+bx +c >0(a >0){x |x <x 1或x >x 2}{x |x ≠x 1}Rax 2+bx +c <0(a >0){x |x 1<x <x 2}∅∅若a <0时,可以先将二次项系数化为正数,对照上表求解.基础题必做1.(教材习题改编)不等式x (1-2x )>0的解集是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎝⎛⎭⎫12,+∞D.⎝⎛⎭⎫12,+∞ 答案:B2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13D .R答案:B3. 若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.4. 已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 15.不等式1x -1<1的解集为________.解析:由1x -1<1得1-1x -1>0,即x -2x -1>0,解得x <1,或x >2.答案:{x |x <1,或x >2}解题方法归纳解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x 轴交点的横坐标相同.一元二次不等式的解法典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [自主解答] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1,或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .解题方法归纳1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式: (1)-3x 2-2x +8≥0; (2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43.(2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.一元二次不等式恒成立问题典题导入[例2] 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1. 综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].本题中的“x ∈[-1,+∞)改为“x ∈[-1,1)”,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0或⎩⎪⎨⎪⎧Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .解题方法归纳1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是: a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是: a <0且b 2-4ac <0.以题试法2. 若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0; 由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2. 答案:(-4,0) (-∞,-6]∪[2,+∞)一元二次不等式的应用典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. [自主解答] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.解题方法归纳解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x 小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为x (35-x )20元.若能够保证选择A 比选择B 费用少,则 x (35-x )20>1.5x (0<x <17), 整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少.1. 不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1).2. 不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B ①当x -2>0即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4. ②当x -2<0即x <2时,原不等式等价于(x -2)2≤4, 解得0≤x <2.3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.5.已知函数f (x )的定义域为(-∞,+∞),f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(2,3)∪(-3,-2)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由导函数图象知,当x <0时,f ′(x )>0,即f (x )在(-∞,0)上为增函数;当x >0时,f ′(x )<0,即f (x )在(0,+∞)上为减函数,故不等式f (x 2-6)>1等价于f (x 2-6)>f (-2)或f (x 2-6)>f (3),即-2<x 2-6≤0或0 ≤x 2-6<3,解得x ∈(2,3)∪(-3,-2).6. 已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1.答案:18.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________. 解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9. 若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.解析:由已知得f (3)=6-m ,①当m ≤3时,6-m ≥3,则f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,则f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5) 10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).解:(1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2 ≥0,则x ∈R , 故原不等式的解集为R .(2)原不等式转化为(x +a )(x -3a )<0, ∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500.由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .1.若关于x 的不等式x 2+12x -⎝⎛⎭⎫12n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,则实数λ的取值范围是________.解析:由题意得x 2+12x ≥⎝⎛⎭⎫12n max =12,解得x ≥12或x ≤-1.又x ∈(-∞,λ],所以λ的取值范围是(-∞,-1]. 答案:(-∞,-1]2. 已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:93.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,其种型号汽车的刹车距离s (m)与汽车的车速v (km/h)满足下列关系:s=n v 100+v 2400(n 为常数,且n ∈N ),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<8,14<s 2<17. (1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?解:(1)依题意得⎩⎨⎧6<40n 100+1 600400<8,14<70n 100+4 900400<17,解得⎩⎪⎨⎪⎧5<n <10,52<n <9514.又n ∈N ,所以n =6. (2)s =3v 50+v 2400≤12.6⇒v 2+24v -5 040≤0⇒-84≤v ≤60.因为v ≥0,所以0≤v ≤60,即行驶的最大速度为60 km/h.1.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( )归纳与技巧:一元二次不等式及其解法(含解析)A.⎝⎛⎭⎫32,152B .[2,8]C .[2,8)D .[2,7]解析:选C 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8.2. 不等式x 2-9x -2>0的解集是________. 解析:由x 2-9x -2>0,得(x +3)(x -3)(x -2)>0,利用数轴穿根法易得-3<x <2或x >3. 答案:{x |-3<x <2,或x >3}3. 若圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,则实数m 的取值范围是( )A .m >-6B .m >3或-6<m <-2C .m >2或-6<m <-1D .m >3或m <-1解析:选B 依题意,令x =0得关于y 的方程y 2+2my +m +6=0有两个不相等且同号(均不等于零)的实根,于是有⎩⎪⎨⎪⎧Δ=(2m )2-4(m +6)>0,m +6>0, 由此解得m >3或-6<m <-2.。
(初中到高中衔接)一元二次不等式及其解法

四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集.
3.2 一元二次不等式
及其解法
一元二次不等式
定义:只含有一个未知数,未知数的最高次 数是2的不等式,叫一元二次不等式。
即:ax bx c 0 或 ax bx c (a 0 0)
2 2
函数 、方程、不等式之间的关系
判别式 △=b2- 4ac y=ax2+bx+c △>0 y
知识概要
(1)二次不等式a x2 +bx +c > 0恒成立
a 0 2 b 4ac 0 (2)二次不等式a x2 +bx +c < 0恒成立 a 0 2 b 4ac 0
例题:已知关于x的不等式:
(a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
三、课堂小结
一、内容分析
1 、解含参数的不等式 2、已知不等式的解集,求参数的值或范围
、 函数 1 2、 分离参数后用最值 3 、 用图象
不等式中的恒成立问题
二、运用的数学思想
1、分类讨论的思想 2、数形结合的思想 3、等与不等的化归思想
小结:
一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于 a 2 0 a 2 即 2 ( a 2) 4( a 2) 0 (a 2)(a 6) 0
(3)二次不等式a x2 +bx +c ≥ 0恒成立 a 0 2 b 4ac 0 (4)二次不等式a x2 +bx +c ≤ 0恒成立
初中升高中数学衔接:第11讲 一元二次不等式的解法(解析版)

【第11讲】 一元二次不等式的解法【根底知识回忆】知识点1 一元二次不等式形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式. 知识点2 “三个二次〞之间的关系设()00022≠<++>++a c bx ax c bx ax 或相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,那么不等式的解的各种情况如下表:c bx ax y ++=2c bx ax y ++=2cbx ax y ++=2一般地,一元二次不等式可以结合相应的二次函数、一元二次方程求解,步骤如下: (1) 化二次项系数为正;(2) 假设二次三项式能分解成两个一次因式的积,那么求出两根12,x x .那么“0>〞型的解为12x x x x <>或(俗称两根之外);“0<〞型的解为12x x x <<(俗称两根之间);(3) 否那么,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.【合作探究】探究一 因式分解后分类讨论解一元二次不等式【例1-1】解不等式260x x +->.【解析】:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩333222x x x x x x <->-⎧⎧⇒⇒<->⎨⎨<>⎩⎩或或所以,原不等式的解集是{|32}x x x <->或.归纳总结:当把一元二次不等式化为20(0)ax bx c ++><或的形式后,只要左边可以分解为两个一次因式,即可运用此题的解法. 【练习1-1】解以下不等式〔1〕2320x x -+< 〔2〕2654x x +< 〔3〕2320x x +-≥ 〔4〕2210x x -->【解析】:(1) 不等式可化为(1)(2)0x x --< ,∴ 不等式的解集是{|12}x x <<;(2) 不等式可化为(21)(34)0x x -+<,∴ 不等式的解集是41{|}32x x -<<;(3) 不等式可化为2230x x --≤,即(1)(3)0x x +-≤,∴ 不等式的解集是{|13}x x -<<;〔4〕不等式可化为(21)(1)0x x +-> ∴ 不等式的解是112{|}x x x <->或.【例1-2】解以下不等式:(1) 2120x x --<(2) 240x x -+≤【分析】:要先将不等式化为20(0)ax bx c ++><或的形式,通常使二次项系数为正数. 【解析】:(1) 原不等式可化为:2120x x --<,即(3)(4)0x x +-<于是:3030344040x x x x x +>+<⎧⎧⇒-<<⎨⎨-<->⎩⎩或, 所以原不等式的解是34x -<<.(2) 原不等式可化为:240x x -+≤,即240(4)0x x x x -≥⇒-≥于是:00044040x x x x x x ≤≥⎧⎧⇒≤≥⎨⎨-≤-≥⎩⎩或或所以原不等式的解是04x x ≤≥或.【练习1-2】解以下不等式〔1〕24410x x -+>; 〔2〕2530x x -+<.【解析】:(1) 不等式可化为2(21)0x -> ,∴ 不等式的解集是1{|}2x x ≠; 〔2〕2530x x -+=的根为x =,∴不等式的解集是{|x x <<;【例1-3】不等式()221200x ax a a --<<的解是_____________.【答案】:{|43}x a x a <<-【练习1-3】假设01a <<,那么不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是_____________.【答案】:1{|}x a x a <<探究二 利用“三个二次〞之间的关系解一元二次不等式 【例2-1】解以下不等式:(1) 2280x x --<(2) 2440x x -+≤ (3) 220x x -+<〔4〕260x x --≥【解析】:(1) 不等式可化为(2)(4)0x x +-<∴ 不等式的解集是{|24}x x -<<.(2) 不等式可化为2(2)0x -≤∴ 不等式的解集是{2}.(3) 不等式可化为217()024x -+<, 所以无解.〔4〕不等式可化为(2)(3)0x x +-≥ ∴ 不等式的解集是{|23}x x x ≤-≥或.归纳总结:假设1x ,2x 是一元二次方程的两个根,且12x x <,那么有:〔1〕1212()()0x x x x x x x --<⇔<< 〔2〕121()()0x x x x x x -->⇔<或2x x >【例2-2】不等式210ax bx ++>的解为1123x -<<,求a 和b 的值,并解不等式250bx x a --≤.【解析】:依题意,12-和13是方程210ax bx ++=的两根,方法1:由韦达定理,∴ 1123b a -+=-,11123a -⨯=,解得6a =-,=1b -. 方法2:直接代入方程得,2211()()102211()()1033a b a b ⎧⨯-+⨯-+=⎪⎪⎨⎪⨯+⨯+=⎪⎩,解得6a =-,=1b -∴ 不等式250bx x a --≤为2560x x +-≥,解得1x >或6x <-. ∴ 不等式250bx x a --≤的解集为{|16}x x x ><-或. 【练习2-1】设一元二次不等式210ax bx ++>的解为113x -<<,那么ab 的值是〔 〕A .6-B .5-C .6D .5【答案】:C探究三 恒成立问题【例3】对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围. 【解析】:显然0k =时,不合题意,于是:222000111(2)4010k k k k k k k k >>>⎧⎧⎧⇒⇒⇒>⎨⎨⎨<->--<->⎩⎩⎩或.归纳总结:【练习3】对于任意实数x ,226kx x -+恒为正数,求实数k 的取值范围. 【解析】:显然0k =时,22626kx x x -+=-+不恒为正数,不合题意,于是:2016(2)460k k k >⎧⇒>⎨--⋅<⎩.【课后作业】1.解以下不等式:〔1〕02732<+-x x 〔2〕0262≤+--x x〔3〕01442<++x x 〔4〕0532>+-x x2.不等式()()120x x -->的解是____________.3.不等式2230x x -->的解是____________.4.不等式2560x x -++≥的解是_________________________.5.假设代数式262-+x x 的值恒取非负实数,那么实数x 的取值范围是 .6.不等式()21680k xx --+<的解是425x x <->或,那么k =_________.7.不等式20x px q ++<的解集是{}32x x -<<,那么p q +=________. 8.不等式20ax bx c ++>的解集为23x <<,那么20ax bx c -+>的解是________. 9.一元二次方程240x x k -+=,求以下各条件下,实数k 的取值范围.〔1〕方程有两个正根;〔2〕方程有一正一负两个根;〔3〕有两个大于1的根10.解不等式〔1〕01692>++x x 〔2〕21()10(0,)x a a a a -++<≠为实数11.解关于x 的不等式:220()x x a a ++<为实数.【参考答案】1.〔1〕123x <<;〔2〕1223x x ≥≤-或;〔3〕无解;〔4〕全体数2.12x << 3.3x >或1x <- 4.23x -≤≤ 5.1223x x ≥≤-或 6.4- 7.5-8.32x -<<-9.〔1〕04x << 〔2〕0x < 〔3〕34x <≤10.〔1〕⎭⎬⎫⎩⎨⎧-≠31x x 〔2〕原不等式可变为:1()()0x a x a --<,〔1〕当1>a 或01<<-a 时,⎭⎬⎫⎩⎨⎧<<a x a x 1; 〔2〕当1±=a 时,无解;〔3〕当10<<a 或1-<a 时,⎭⎬⎫⎩⎨⎧<<a x a x 1. 11.【解析】:原不等式对应的一元二次方程为:220x x a ++=,44a ∆=-,当1a ≥时,440a ∆=-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:1x =-所以220x x a ++<的解为:11x -<<-综上所述,1a ≥时,原不等式无解;当1a <时,原不等式的解为:{|11x x -<<-.。
专题12 一元二次不等式的解法(解析版)

专题12 一元二次不等式的解法一、知识点精讲【引例】二次函数y=x2-x-6的对应值表与图象如下:由对应值表及函数图象(如图2.3-1)可知图2.3-1当x=-2,或x=3时,y=0,即x2-x=6=0;当x<-2,或x>3时,y>0,即x2-x-6>0;当-2<x<3时,y<0,即x2-x-6<0.这就是说,如果抛物线y= x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程x2-x-6=0的解就是x1=-2,x2=3;同样,结合抛物线与x轴的相关位置,可以得到一元二次不等式x2-x-6>0的解是x<-2,或x>3;一元二次不等式x2-x-6<0的解是-2<x<3.上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢?我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0).为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解.(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-b2a,由图2.3-2②可知不等式ax2+bx+c>0的解为x≠-b2a;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c=0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.二、典例精析【典例1】解下列不等式:(1)x2+2x-3≤0;(2)x-x2+6<0;(3)4x2+4x+1≥0;(4)x2-6x+9≤0;(5)-4+x -x 2<0. 【答案】见解析 【解析】(1)∵Δ>0,方程x 2+2x -3=0的解是x 1=-3,x 2=1. ∴不等式的解为-3≤x ≤1. (2)整理,得x 2-x -6>0.∵Δ>0,方程x 2-x -6=0的解为 x 1=-2,x 2=3. ∴原不等式的解为x <-2,或x <3. (3)整理,得(2x +1)2≥0. 由于上式对任意实数x 都成立, ∴原不等式的解为一切实数. (4)整理,得(x -3)2≤0.由于当x =3时,(x -3)2=0成立;而对任意的实数x ,(x -3)2<0都不成立, ∴原不等式的解为x =3.(5)整理,得x 2-x +4>0.Δ<0,所以,原不等式的解为一切实数.【典例2】已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解. 【答案】见解析【解析】由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分别为2和3,∴5,6bca a-==, 即5,6b c a a =-=.由于0a <,所以不等式20bx ax c ++>可变为 20b cx x a a++< ,即-2560,x x ++< 整理,得2560,x x -->所以,不等式20bx ax c +->的解是x <-1,或x >65. 【说明】:本例利用了方程与不等式之间的相互关系来解决问题. 【典例3】解关于x 的一元二次不等式210(x ax a ++>为实数).【答案】见解析【分析】 对于一元二次不等式,按其一般解题步骤,首先应该将二次项系数变成正数,本题已满足这一要求,欲求一元二次不等式的解,要讨论根的判别式∆的符号,而这里的∆是关于未知系数的代数式, ∆的符号取决于未知系数的取值范围,因此,再根据解题的需要,对∆的符号进行分类讨论. 【解析】: ∆24a =-,①当0,2a a ∆><->即或2时, 10x ax ++=2方程的解是221244,.22a a a a x x ----+-==所以,原不等式的解集为24,2a a x ---< 或242a a x -+->;②当Δ=0,即a =±2时,原不等式的解为x ≠-a2 ; ③当0,22,a ∆<-<<即时原不等式的解为一切实数 .综上,当a ≤-2,或a ≥2时,原不等式的解是24,2a a x ---< 或242a a x -+->;当22,a -<<时原不等式的解为一切实数.【典例4】已知函数y =x 2-2ax +1(a 为常数)在-2≤x ≤1上的最小值为n ,试将n 用a 表示出来. 【答案】见解析【分析】:由该函数的图象可知,该函数的最小值与抛物线的对称轴的位置有关,于是需要对对称轴的位置进行分类讨论.【解析】:∵y =(x -a )2+1-a 2,∴抛物线y =x 2-2ax +1的对称轴方程是x =a .(1)若-2≤a ≤1,由图2.3-3①可知,当x =a 时,该函数取最小值n =1-a 2; (2)若a <-2时, 由图2.3-3②可知, 当x =-2时,该函数取最小值 n =4a +5; (3)若a >1时, 由图2.3-3③可知, 当x =1时,该函数取最小值n =-2a +2.综上,函数的最小值为245,2,1,21,22, 1.a a n a a a a +<-⎧⎪=--≤≤⎨⎪-+>⎩三、对点精练 1.解下列不等式:(1)3x 2-x -4>0; (2)x 2-x -12≤0; (3)x 2+3x -4>0; (4)16-8x +x 2≤0. 【答案】见解析 【解析】(1)3x 2-x -4>0 413x x ⇔<->或 (2)x 2-x -12≤034x ⇔-≤≤(3)x 2+3x -4>041x x ⇔<->或; (4)16-8x +x 2≤04x ⇔=.2.解关于x 的不等式x 2+2x +1-a 2≤0(a 为常数). 【答案】见解析 【解析】不等式可以变为(x +1+a )( x +1-a )≤0,(1)当-1-a <-1+a ,即a >0时,∴-1-a ≤x ≤-1+a ;(2)当-1-a =-1+a ,即 a =0时,不等式即为(x +1)2≤0,∴x =-1; (3)当-1-a >-1+a ,即a <0时,∴-1+a ≤x ≤-1-a . 综上,当a >0时,原不等式的解为-1-a ≤x ≤-1+a ;当a =0时,原不等式的解为x =-1;当a <0时,原不等式的解为-1+a ≤x ≤-1-a . 3. 解下列不等式: (1) 260x x +->(2) (1)(2)(2)(21)x x x x -+≥-+【答案】见解析 【解析】⑴解法一:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩3322x x x x <->-⎧⎧⇒⎨⎨<>⎩⎩或32x x ⇒<->或所以,原不等式的解是32x x <->或. 解法二:解相应的方程260x x +-=得:123,2x x =-=,所以原不等式的解是32x x <->或. (2) 解法一:原不等式可化为:240x x -+≤,即240(4)0x x x x -≥⇒-≥于是:00044040x x x x x x ≤≥⎧⎧⇒≤≥⎨⎨-≤-≥⎩⎩或或,所以原不等式的解是04x x ≤≥或. 解法二:原不等式可化为:240x x -+≤,即240x x -≥,解相应方程240x x -=,得120,4x x ==,所以原不等式的解是04x x ≤≥或.【说明】:解一元二次不等式,实际就是先解相应的一元二次方程,然后再根据二次函数的图象判断出不等式的解.4. 求关于x 的不等式222m x mx m +>+的解. 【答案】见解析【解析】原不等式可化为:(2)2m m x m ->- (1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <. ① 02m <<时,不等式的解为1x m<; ② 0m <时,不等式的解为1x m>; ③ 0m =时,不等式的解为全体实数. (3) 当202m m -==即时,不等式无解. 综上所述:当0m <或2m >时,不等式的解为1x m >;当02m <<时,不等式的解为1x m<;当0m =时,不等式的解为全体实数;当2m =时,不等式无解. 5.解下列不等式: (1) 2280x x --<(2) 2440x x -+≤(3) 220x x -+<【答案】见解析 【解析】(1) 不等式可化为(2)(4)0x x +-<∴ 不等式的解是24x -<< (2) 不等式可化为2(2)0x -≤ ∴ 不等式的解是2x =; (3) 不等式可化为217()024x -+<∴ 不等式无解。
年高一数学衔接09一元二次不等式的解法

高一暑假衔接09:一元二次不等式的解法教学案一、主讲知识【知识点讲解1】一元二次不等式1 、一元二次不等式的概念(1)只含有一个未知数,并且未知数的最高次数是2的不等式,称为不等式.(2)能使不等式成立的未知数x的一个值称为不等式的一个解.(3)不等式所有解的集合称为解集.2、“三个二次”的关系一元二次不等式与相应的一元二次方程、二次函数的联系,如下表.有两相等实根3、一元二次不等式的解法解一元二次不等式的步骤:(1)化为基本形式ax2+bx+c>0或ax2+bx+c<0(其中a>0);(2)计算Δ=b2-4ac,以确定一元二次方程ax2+bx+c=0是否有解;(3)有根求根;(4)根据图象写出不等式的解集.【讲透例题1】一元二次不等式的解法例1、(1)求不等式4x 2-4x +1>0的解集.(2)解不等式-x 2+2x -3>0.【相似题练习1】1、求不等式2x 2-3x -2≥0的解集.2、求不等式-3x 2+6x >2的解集.3、求解下列一元二次不等式 (1)求不等式2560x x -+>的解集.(2)求不等式29610x x -+>的解集.(3) 求不等式2230x x -+->的解集.4、已知集合{2,1,0,1,2}A =--,{(1)(2)0}B x x x =-+>,则A B 的子集个数为( )A .2B .4C .6D .85、已知集合{}2280P x x x =-->,{}Q x x a =≥,若PQ R =,则实数a 的取值范围是______,若P Q Q ⋂=,则实数a 的取值范围是______【知识点讲解2】含参数的二次不等式形如()22120x a x a +--≤,除了主元变量x 以外,还含有其他的变量(参变量)a 的不等式,我们称为含参数的一元二次不等式.规律方法:在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a >0,a =0,a <0;(2)关于不等式对应的方程的根的讨论:两根(∆>0),一根(∆=0),无根(∆<0); 在有根的前提下,恰当的使用十字相乘可有效简化运算.(3)关于不等式对应的方程根的大小的讨论:121212,,x x x x x x >=<.【讲透例题2】含参数的二次不等式例1、解关于x 的不等式ax 2-(a +1)x +1<0.【相似题练习2】1、已知0a <,关于x 的一元二次不等式()2220ax a x -++>的解集为( )A .{2|x x a<,或}1x > B .2|1x x a ⎧⎫<<⎨⎬⎩⎭C .{|1x x <,或2x a ⎫>⎬⎭D .2|1x x a ⎧⎫<<⎨⎬⎩⎭2、(多选)下列四个不等式中,解集为∅的是( ) A .210x x -++≤B .22340x x -+<C .23100x x ++≤D .2440(0)x x a a a ⎛⎫-+-+>> ⎪⎝⎭3、解关于x的不等式(x-a)(x-a2)<0.4、解关于x的不等式()() 21100 ax a x a-++>>.5、解关于x的不等式56x2+ax-a2<0.【讲透例题3】“三个二次”间对应关系的应用例1、已知关于x的不等式x2+ax+b<0的解集为{x|1<x<2},试求关于x的不等式bx2+ax+1>0的解集.【相似题练习3】1、已知不等式ax2-bx+2<0的解集为{x|1<x<2},求a,b的值.3、关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,且:2115x x -=,则a =( )A .52B .72C .154D .1524、若关于x 的不等式2260tx x t -+<的解集(,)(1,)a -∞+∞,则a 的值为______.【知识点讲解4】一元二次不等式恒成立问题不等式的解集为R (或恒成立)的条件【讲透例题4】一元二次不等式恒成立问题例1、要使函数2(1)y mx mx m =++-的值恒为负值,求m 的取值范围.2、不等式x 2+ax +4<0的解集不为空集,则a 的取值范围是_______3、“不等式x 2−x +m >0在R 上恒成立”的充要条件是( ) A .m >14B .m <14C .m <1D .m >14、对任意实数x ,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是( ). A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥5、已知命题“x R ∃∈,210mx x -+<”是假命题,则实数m 的取值范围是_________.6、不等式x 2−kx +1>0对任意实数x 都成立,则实数k 的取值范围是__________.7、已知关于x 的不等式2260,(0)kx x k k -+<≠(1)若不等式的解集是{}|32x x x <->-或,求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.二、课堂总结三个“二次”的关系b三、课堂练习1.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( ) A .{x |x <-1或x >2} B .{x |x ≤-1或x ≥2} C .{x |-1<x <2}D .{x |-1≤x ≤2}2.若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是( )A.⎩⎨⎧⎭⎬⎫x |1t <x <t B.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t3.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2)B .(-2,2]C .(-∞,-2)∪[2,+∞)D .(-∞,2)4.不等式-1<x 2+2x -1≤2的解集是__________.5.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.6.解关于x 的不等式:x 2+(1-a )x -a <0.7.若不等式ax 2+bx +c ≥0的解集为⎭⎬⎫⎩⎨⎧≤≤-231|x x ,求关于x 的不等式cx 2-bx +a <0的解集.8.解关于x 的不等式ax 2-2(a +1)x +4>0.。
初高中衔接一元二次不等式的解法

§ 一元二次不等式的解法(学案)式.知识梳理1、一次函数 y=ax+b (aM 0)是一条直线.和x 轴的交点是c,(a 0)当a >0时,图像是:bX0- ab 24ac3、一次函数y ax 2 bx 一次方程ax+b=0的解是X 0①判别式0,函数图像和x 轴相交(如图3),有两个交点,①a>o 时,图像如图1,当x X 0时,函数值y x X 0时,函数设交 值y 0. 一次不等式ax+b >0,(a > 0)的解是:点是(X i ,0),(X 2,0), X i由图像可知,当自变量X X i 或X X 2时,X i ax+bv0, (a >0)的解是:函数值—大于零;当 X i X 2时,函数值零;当X X i 或X 2时,②a<o 时,图像如图2,当x X 0时,函数值y 0 ;当X X 0时,函数函数值值y 0.一次不等式ax+b >0,(av 0)的解是:对于一元二次方程ax 2 bx0, (a 0)有两个不相等的实数解ax+bv0, (av 0)的解是:是:2、形如y ax 2bx c,(a 0)的函数叫二次函数;形如对于一元二次不等式 ax 2bxc 0,(a 0)的解是:ax 2 bx c 0,(a 0)的方程叫一元二次方程;形如 ax 2bx c 0,(a0)的解是:ax 2bx c 0(或0或0或0),(a0)的不等式,叫作一元二次不等ax2bx c 0,(a 0)的解是: ax 2bx c 0, (a 0)的解是:对于一元二次不等式ax 2 bx c 0,(a 0)的解是:例1、解下列不等式ax 2 bx c 0,(a 0)的解是:ax 2 bx c 0, (a 0)的解是:②判别式b 2 4ac0,函数图像和x 轴相切(如图4),有一个切点, 4、解一元二次不等式的步骤:先判断二次项系数的正负;再看判别式;设切点是(x 0,0),,由图像可知,当自变量x R 且x X 0时,函数值 ______ 零; 最后比较根的大小.解集要么为两根之外,要么为两根之内.具体 当x X 0时,函数值_零;对于任意实数x ,函数值都不会地:对于一元二次方程ax 2bx c 0,(a 0)有两个相等的实数解是:①设不等式ax 2bx c0(a 0),对应方程ax 2 bx c 0有两个不等 对于一元二次不等式 2ax bx c0,(a 0)的解是:实根X 1和X 2,且X 1X 2 , 则不等式的解为: x x 1或x x 2 (两根2axbx0,(a 0)的解是:ax 2bx0,(a 0)的解是:ax 2 bx0,(a 0)的解是:之外)②设不等式ax 2 bx c0(a 0),对应方程ax 2bx c 0有两个不等③判别式b 24ac0,函数图像在x 轴上方(如图5),由图像可知,实根x i 和X 2 ,且x i X 2 ,则不等式的解为: x i x X 2 (两根之内)注意:①若不等式ax 2 bx c 0(或0)中,a 0,可在不等式两边乘1转化为二次项系数为正的情况,然后再按上述①②进行 当自变量x R 时, 函数值均 ____ 零;即对于任意实数x ,函数值都 ②解一元二次不等式要结合二次函数的图象,突出配方法和因不可能式分解法.对于一元二次方程ax 2bx c 0,(a 0)无实数解;典例分析1、23x +5x-2>02、9x -6x+1>0当堂检测:3、2x -4x+5>02、-x +x+1<0 1. (1) 2x2-3x-2>0;(2) x2-3x+5<0 ;5、2-x +4x-4>0o、3x +6< 19x(3)- 3x2+6x>2;(4)-6 x2+3x-2 0.例2、解不等式3 > 1 (x 2-9)-3X. (5) x 1 2例3、已知x2+px+qv0的解集为x| - x 1,求不等式qx2+px+1>0的2 32.不等式x 3 x3.不等式6x2 x4.二次方程ax2bxx 2 1的解是0的解是c 0的两根为 2 , 3, a 0,那么ax2 bx c 0的解为a5.不等式ax2 bx 2 0的解为十3,则等式ax2 bx 2 0的解为拓展1.若关于x的不等式x2 ax a 0的解为,则实数a的取值范围是拓展2.在R上定义运算:x y x1 y ,若不等式x a x a 1对任意实数x均成立,则a的取值范围为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题12 一元二次不等式的解法一、知识点精讲【引例】二次函数y=x2-x-6的对应值表与图象如下:由对应值表及函数图象(如图2.3-1)可知图2.3-1当x=-2,或x=3时,y=0,即x2-x=6=0;当x<-2,或x>3时,y>0,即x2-x-6>0;当-2<x<3时,y<0,即x2-x-6<0.这就是说,如果抛物线y= x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程x2-x-6=0的解就是x1=-2,x2=3;同样,结合抛物线与x轴的相关位置,可以得到一元二次不等式x2-x-6>0的解是x<-2,或x>3;一元二次不等式x2-x-6<0的解是-2<x<3.上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢?我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0).为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解.(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-b2a,由图2.3-2②可知不等式ax2+bx+c>0的解为x≠-b2a;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c=0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.二、典例精析【典例1】解下列不等式:(1)x2+2x-3≤0;(2)x-x2+6<0;(3)4x2+4x+1≥0;(4)x2-6x+9≤0;(5)-4+x -x 2<0. 【答案】见解析 【解析】(1)∵Δ>0,方程x 2+2x -3=0的解是x 1=-3,x 2=1.∴不等式的解为-3≤x ≤1.(2)整理,得x 2-x -6>0.∵Δ>0,方程x 2-x -6=0的解为 x 1=-2,x 2=3. ∴原不等式的解为x <-2,或x <3.(3)整理,得(2x +1)2≥0.由于上式对任意实数x 都成立, ∴原不等式的解为一切实数.(4)整理,得(x -3)2≤0.由于当x =3时,(x -3)2=0成立;而对任意的实数x ,(x -3)2<0都不成立,∴原不等式的解为x =3.(5)整理,得x 2-x +4>0.Δ<0,所以,原不等式的解为一切实数.【典例2】已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解. 【答案】见解析【解析】由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分别为2和3,∴5,6bca a-==, 即5,6b c a a =-=.由于0a <,所以不等式20bx ax c ++>可变为 20b cx x a a++< ,即-2560,x x ++< 整理,得2560,x x -->所以,不等式20bx ax c +->的解是x <-1,或x >65. 【说明】:本例利用了方程与不等式之间的相互关系来解决问题. 【典例3】解关于x 的一元二次不等式210(x ax a ++>为实数).【答案】见解析【分析】 对于一元二次不等式,按其一般解题步骤,首先应该将二次项系数变成正数,本题已满足这一要求,欲求一元二次不等式的解,要讨论根的判别式∆的符号,而这里的∆是关于未知系数的代数式, ∆的符号取决于未知系数的取值范围,因此,再根据解题的需要,对∆的符号进行分类讨论. 【解析】: ∆24a =-,①当0,2a a ∆><->即或2时, 10x ax ++=2方程的解是1222a a x x ---+==所以,原不等式的解集为2a x -< 或2a x ->;②当Δ=0,即a =±2时,原不等式的解为x ≠-a2 ; ③当0,22,a ∆<-<<即时原不等式的解为一切实数 .综上,当a ≤-2,或a ≥2时,原不等式的解是2a x -< 或2a x ->;当22,a -<<时原不等式的解为一切实数.【典例4】已知函数y =x 2-2ax +1(a 为常数)在-2≤x ≤1上的最小值为n ,试将n 用a 表示出来. 【答案】见解析【分析】:由该函数的图象可知,该函数的最小值与抛物线的对称轴的位置有关,于是需要对对称轴的位置进行分类讨论.【解析】:∵y =(x -a )2+1-a 2,∴抛物线y =x 2-2ax +1的对称轴方程是x =a .(1)若-2≤a ≤1,由图2.3-3①可知,当x =a 时,该函数取最小值n =1-a 2;(2)若a <-2时, 由图2.3-3②可知, 当x =-2时,该函数取最小值 n =4a +5; (3)若a >1时, 由图2.3-3③可知, 当x =1时,该函数取最小值n =-2a +2.综上,函数的最小值为245,2,1,21,22, 1.a a n a a a a +<-⎧⎪=--≤≤⎨⎪-+>⎩三、对点精练 1.解下列不等式:(1)3x 2-x -4>0; (2)x 2-x -12≤0; (3)x 2+3x -4>0; (4)16-8x +x 2≤0.【答案】见解析 【解析】(1)3x 2-x -4>0 413x x ⇔<->或 (2)x 2-x -12≤034x ⇔-≤≤(3)x 2+3x -4>041x x ⇔<->或;(4)16-8x +x 2≤04x ⇔=.2.解关于x 的不等式x 2+2x +1-a 2≤0(a 为常数). 【答案】见解析 【解析】不等式可以变为(x +1+a )( x +1-a )≤0,(1)当-1-a <-1+a ,即a >0时,∴-1-a ≤x ≤-1+a ;(2)当-1-a =-1+a ,即 a =0时,不等式即为(x +1)2≤0,∴x =-1;(3)当-1-a >-1+a ,即a <0时,∴-1+a ≤x ≤-1-a . 综上,当a >0时,原不等式的解为-1-a ≤x ≤-1+a ;当a =0时,原不等式的解为x =-1;当a <0时,原不等式的解为-1+a ≤x ≤-1-a . 3. 解下列不等式: (1) 260x x +->(2) (1)(2)(2)(21)x x x x -+≥-+【答案】见解析 【解析】⑴解法一:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩3322x x x x <->-⎧⎧⇒⎨⎨<>⎩⎩或32x x ⇒<->或所以,原不等式的解是32x x <->或. 解法二:解相应的方程260x x +-=得:123,2x x =-=,所以原不等式的解是32x x <->或. (2) 解法一:原不等式可化为:240x x -+≤,即240(4)0x x x x -≥⇒-≥于是:00044040x x x x x x ≤≥⎧⎧⇒≤≥⎨⎨-≤-≥⎩⎩或或,所以原不等式的解是04x x ≤≥或. 解法二:原不等式可化为:240x x -+≤,即240x x -≥,解相应方程240x x -=,得120,4x x ==,所以原不等式的解是04x x ≤≥或.【说明】:解一元二次不等式,实际就是先解相应的一元二次方程,然后再根据二次函数的图象判断出不等式的解.4. 求关于x 的不等式222m x mx m +>+的解. 【答案】见解析【解析】原不等式可化为:(2)2m m x m ->- (1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <. ① 02m <<时,不等式的解为1x m<; ② 0m <时,不等式的解为1x m>; ③ 0m =时,不等式的解为全体实数. (3) 当202m m -==即时,不等式无解. 综上所述:当0m <或2m >时,不等式的解为1x m >;当02m <<时,不等式的解为1x m<;当0m =时,不等式的解为全体实数;当2m =时,不等式无解. 5.解下列不等式: (1) 2280x x --<(2) 2440x x -+≤(3) 220x x -+<【答案】见解析 【解析】(1) 不等式可化为(2)(4)0x x +-<∴ 不等式的解是24x -<< (2) 不等式可化为2(2)0x -≤ ∴ 不等式的解是2x =; (3) 不等式可化为217()024x -+<∴ 不等式无解。
6. 已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围. 【答案】见解析 【解析】显然0k =不合题意,于是:222000111(2)4010k k k k k k k k >>>⎧⎧⎧⇒⇒⇒>⎨⎨⎨<->--<->⎩⎩⎩或 7. 解下列不等式: (1)2301x x -<+(2)132x ≤+ 【答案】见解析 【分析】(1) 类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解. (2) 注意到经过配方法,分母实际上是一个正数. 【解析】(1) 解法(一)原不等式可化为:3323023031221010211x x x x x x x x x ⎧⎧-<-><>⎧⎧⎪⎪⇒⇒-<<⎨⎨⎨⎨+>+<⎩⎩⎪⎪>-<-⎩⎩或或解法(二) 原不等式可化为:3(23)(1)012x x x -+<⇒-<<. (2) 原不等式可化为:135353000222x x x x x --+-≤⇒≤⇒≥+++(35)(2)020x x x ++≥⎧⇒⇒⎨+≠⎩ 523x x <-≥-或【说明】:(1) 转化为整式不等式时,一定要先将右端变为0.(2) 本例也可以直接去分母,但应注意讨论分母的符号:2020133(2)13(2)12x x x x x +>+<⎧⎧≤⇒⎨⎨+≥+≤+⎩⎩或。