小学奥数时钟问题
六年级奥数第23讲:时钟问题

时钟问题时钟问题就是研究钟面上时针和分针关系的问题。
(1)我们知道钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度的5÷60=121。
(2)分针每分钟转3600÷60=60,时针每分钟转3600÷12÷60=0.50。
时钟问题经常围绕着两针(指时针与分针,下同)重合、两针垂直、两针垂直、两针成多少度角提出问题。
因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。
例1、现在时间是2点,问:什么时间时针与分针第一次重合?做一做:时针与分针在5点几分重合?例2、在5点10分时,时针和分针的夹角是多少度?做一做:计算2点24分时,时针与分针所成的角度。
例3、问:在7点与8点之间,时针与分针在什么时刻相互垂直?做一做:问:在6点与7点之间,钟面上的时针和分针在何时成直角?例4、某人离开学校,看了看钟;外出了两个多小时以后,回到学校又看了一下钟,发现时针和分针恰好互换了位置。
问:这个人离开学校有多长时间?做一做:一部动画片放映时间不到1小时,结束时小明发现手表上时针、分针的位置正好与开始时的时针、分针交换了位置。
那么,这部动画片放映了多少分钟?例5、问:在3点与4点间,时针和分针在什么时刻位于一条直线上?做一做:问:4点几分,时针与分针成一直线?例6、问:在1点与2点之间的什么时刻,分针与时针的夹角被钟面上“12”这个刻度平分?做一做:问:3点过多少分,时针和分针离“3”距离相等,并且在“3”的两边?例7、王叔叔家有一块手表,他发现手表比家里的闹钟每小时快30秒,而闹钟比标准时间每小时慢30秒。
那么,王叔叔的手表一昼夜比标准时间差多少秒?做一做:某人有一块手表和一个闹钟,手表比闹钟每小时慢30秒,而闹钟比标准时间每小时快30秒。
问:这块手表一昼夜比标准时间差多少秒?1.小明上午8点要到学校上课,可是家里的闹钟早晨5点50分钟就停了。
小学奥数专题16-时钟问题

时钟问题◇专 题 知 识 简 述◇时钟问题是研究钟面上时针和分针关系的问题。
研究时钟的长针(分针)与短针(时针)成直线、成直角与重合的问题,叫做时钟问题。
钟表的分针每小时走60个小格,而时针每小时只走5个小格;分针每分钟走1个小格,而时针每分钟只走605个小格,即121个小格。
每分钟分针比时针多走1211个小格。
时钟问题的每一个公式都与1211有关,1211个小格是两针在1分钟内所走的路程差。
根据两针不同的间隔要求,用除法就可以求出题中所要求的时间。
解题规律:(1)求两针成直线所需要的时间,有:两针成直线所需要的分钟数=(原来两针间隔的格数±30)÷(1-121) (2)求两针成直角所需要的时间,有:两针成直角所需要的分钟数=(原来两针间隔的格数±15)÷(1-121),两针成直角所需要的分钟数=(原来两针间隔的格数±45)÷(1-121) (3)求两针重合所需要的时间,有:两针重合所需要的时间=原来两针间隔的格数刻,就得出两÷(1-121)求出所需要的时间后,再加上原来的时针形成各种不同位置的时刻。
◇例 题 解 析◇(一)求两针成直线所需要的时间例1 在7点钟到8点钟之间,分针与时针什么时候成直线?解:在7点钟的时候,分针在时针后面:5×7=35(格),当分针与时针成直线时,两针的间隔是30格。
因此,只需要分针追上时针:35-30=5(格)。
因为每分钟比时针多走(1-121)格,所以,我们看5个格之中包含多少个(1-121)格,即可得到两针成直线所需要的时间。
5÷(1-121)=5÷1211=5115(分) 综合算式:(5×7-30)÷(1-121)=5÷1211=5115(分) 答:在7点5115分,分针与时针成直线。
例2 在4点与5点之间,分针与时针什么时候成直线?解:4点钟时,分针在时针的后面: 5×4=20(格)当分针与时针成直线时,分针不仅要追上已落后的20格,还要超过时针30格,所以一共要追上:20+30=50(格)。
经典奥数时钟问题

四、时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。
钟面上按“时”分为12大格,按“分”分为60小格。
每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。
1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。
而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。
解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。
2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。
在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。
因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。
因此,需追及(20+30)小格。
解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。
3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。
所以分针需追及(5×1+15)小格或追及(5×1+45)小格。
解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。
4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。
五年级时钟问题奥数题及答案【三篇】

【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。
以下是⽆忧考为⼤家整理的《五年级时钟问题奥数题及答案【三篇】》供您查阅。
【第⼀篇】
现在是3点,什么时候时针与分针第⼀次重合?
【第⼆篇】
时钟的表盘上按标准的⽅式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每⼀个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟⾯的全部12个数,求n的最⼩值.
解答:(1)当时,有可能不能覆盖12个数,⽐如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);
(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.
(2)每个扇形覆盖4个数的情况可能是:
(1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数
(2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数
(3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数
(4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数
当时,⾄少有3个扇形在上⾯4个组中的⼀组⾥,恰好覆盖整个钟⾯的全部12个数.
所以n的最⼩值是9.
【第三篇】。
小学奥数钟表问题

小学奥数钟表问题
(类似行程问题)
时钟问题主要有3大类题型:
第一类是追及问题(注意时针分针关系的时候往往有两种情况);
第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);
第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。
注:
1、指针速度单位:分针每分钟走6度,时针每分钟走0.5度,秒针每分钟走360度;
【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?
1、爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,
2、一只钟表的时针与分针均指在4和6
分针的正中央,问这是什么时刻?
3、小亮晚上9点整将手表对准,他在早晨8点到校时,却迟到了10分钟,那么小明的手表每小时慢几分钟?
4、科技馆有一只奇妙的钟,一圈共有20格。
每过7分钟,指针跳一次就要跳过9个格,今天早上8点整的时候,指针恰好从0跳到9,问:昨晚8点整的时候时针指着几?
解:
昨晚8点整到今天早上8点整,12x60=720分钟
720/7=102 (6)
今天早上8点整,指针恰好从0跳到9,昨晚8点整到今天早上8点整,指针跳动103次
103x9=927
927/20=46 (7)
9-7=2
昨晚8点整的时候时针指着2。
二年级奥数——时钟问题

时钟问题
1、小光去食堂吃饭,出发前他看见钟面上显示大约是12:15分,到了食堂以后却发现食堂关门了,小光很不解,同学都笑小光看错了时间,把时针和分针看反了,因为现在根本不是饭点,你认为现在的时间应该是大约()。
2、有一个钟,每逢整点和半点敲,1点敲一下,2点敲两下,以此类推,每逢半点敲1下,那么这个钟一天(24小时)一共敲了()下。
3、有一个闹钟,一昼夜(一天)快3分钟,小华要赶火车,明天早上8点必须准时报时,现在是下午4点,这个闹钟应该拨慢()分钟。
4、下图是几个时钟在镜子里反射的图像,实际的时间是多少
5、观察下列时钟所表示的时间,按规律在第五个钟面上画出正确的
时针和分针。
5、一辆汽车早上5:20出发,到7点整到达终点站,经过了()时()分。
6、一节课40分钟,然后下课10分钟休息,接着上第二节课,如果早上8点开始第一节课,那么第三节课下课是()时()分。
7、一只电子表,每分钟要慢1秒,现在是早上8点整,表面时间完全正确,那么当表上显示到12点时,标准的时间应该是()时()分。
8、小明参加学校一年一度的“野外绝地求生大逃杀”活动,活动结束后到家发现时间在中午12点整,他算了一下这次出门一共用了200个小时,那么他是()点出门的。
9、小东家的钟坏了,奶奶在下午2点时对钟,由于老花眼,把时针
和分针很颠倒了,小东放学回家一看才3点整,吓坏了,那么现在应该是()时()分。
(完整版)小学六年级奥数★时钟问题

时钟问题“时间就是生命”。
自从人类发明了计时工具——钟表,人们的生活就离不开它了。
什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。
学习时钟问题前先来分析下时钟里分针与时针各自有什么特点:分针特点:时针特点:下面开始练一练重合问题例1现在是2点,什么时候时针与分针第一次重合?例2 从中午12点开始,什么时候时针与分针第一次重合?垂直问题例1在7点与8点之间,时针与分针在什么时刻相互垂直?例2在1点2点之间,时针与分针在什么时刻相互垂直?同一直线问题例1在3点与4点之间,时针和分针在什么时刻位于一条直线上?例2在9点到10点之间,时针和分针在什么时刻位于一条直线上?生活实际问题例1 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。
这部动画片播出了多长时间?前面几个例题都是利用追及问题的解法,先找出时针与分针所行的路程差是多少格,再除以它们的速度差求出准确时间。
但是,有些时钟问题不太容易求出路程差,因此不能用追及问题的方法求解。
如果将追及问题变为相遇问题,那么有时反而更容易。
其他问题例1 3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?例2小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
小明做作业用了多少时间?课后练习1.时针与分针在9点多少分时第一次重合?2.王师傅2点多钟开始工作时,时针与分针正好重合在一起。
5点多钟完工时,时针与分针正好又重合在一起。
王师傅工作了多长时间?3.8点50分以后,经过多长时间,时针与分针第一次在一条直线上?4.小红8点钟开始画一幅画,正好在时针与分针第三次垂直时完成,此时是几点几分?5.3点36分时,时针与分针形成的夹角是多少度?6.3点过多少分时,时针和分针离“2”的距离相等,并且在“2”的两边?7.早晨小亮从镜子中看到表的指针指在6点20分,他赶快起床出去跑步,可跑步回来妈妈告诉他刚到6点20分。
(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时钟问题时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
模块一、时针与分针的追及与相遇问题【例 1】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【巩固】 钟表的时针与分针在4点多少分第一次重合? 【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
【巩固】 现在是3点,什么时候时针与分针第一次重合?【解析】根据题意可知,3点时,时针与分针成90度,第一次重合需要分针追90度,490(60.5)1611÷-=(分)【例2】钟表的时针与分针在8点多少分第一次垂直?【解析】32711此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。
【例3】2点钟以后,什么时刻分针与时针第一次成直角?【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分)【例4】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【解析】8点整的时候,时针较分针顺时针方向多40格,设在满足题意时,时针走过x格,那么分针走过40-x格,所以时针、分针共走过x+(40-x)=40格.于是,所需时间为11240(1)361213÷+=分钟,即在8点123613分钟为题中所求时刻.【例5】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【解析】时针的速度是360÷12÷60=0.5(度/分),分针的速度是360÷60=6(度/分),即分针与时针的速度差是6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,,第一次在一条直线时,分针与时针的夹角是180度,,即分针与时针从60度到180度经过的时间为所求。
,所以答案为9(18060) 5.52111-÷=(分)【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【解析】根据题意可知,9点时,时针与分针成90度,第一次在一条直线上需要分针追90度,第二次在一条直线上需要分针追270度,答案为490(60.5)1611÷-=(分)和1270(60.5)4911÷-=(分)【例6】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。
做完作业再看钟,还不到9点,而且分针与时针恰好重合。
小华做作业用了多长时间?【解析】根据题意可知,从在一条直线上追到重合,需要分针追180度,8180(60.5)3211÷-=(分)【例7】某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【解析】 如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟.评注:通过上面的例子,看到有时是将格数除以1(1)12+,有时是将格数除以1(1)12-,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是1100”,答案还是40分钟.【例 8】 上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分?【解析】 时针与分针第一次重合的经过的时间为:11451491211⎛⎫÷-= ⎪⎝⎭(分),当钟表的时针和分针重合时,钟表表示的时间是9点14911分【例 9】 小红上午8点多钟开始做作业时,时针与分针正好重合在一起。
10点多钟做完时,时针与分针正好又重合在一起。
小红做作业用了多长时间?【解析】 8点多钟时,时针和分针重合的时刻为:17401431211⎛⎫÷-= ⎪⎝⎭(分)10点多钟时,时针和分针重合的时刻为:16501541211⎛⎫÷-= ⎪⎝⎭(分)67101054843210111111-=时分时分时分,小红做作业用了1021011时分时间 【例 10】 小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?【解析】 9点和10点之间分针和时针在一条直线上的时刻为:14151161211⎛⎫÷-= ⎪⎝⎭(分),时针与分针第一次重合的时刻为: 11451491211⎛⎫÷-= ⎪⎝⎭(分),所以这道题目所用的时间为:148491632111111-=(分) 【例 11】 一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
这部动画片放映了多长时间?【解析】 根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了一圈,即5360(60.5)5513÷+=(分) 模块二、时间标准及闹钟问题【例12】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。
有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。
这个闹钟响铃的时间是标准时间的几点几分?【解析】7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】142.5度【例13】钟敏家有一个闹钟,每时比标准时间快2分。
星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭。
钟敏应当将闹钟的铃定在几点几分上?【解析】闹钟与标准时间的速度比是62:60=31:30, 11点半与9点相差150分,根据十字交叉法,闹钟走了150×31÷30=155(分),所以闹钟的铃应当定在11点35分上。
【例14】小翔家有一个闹钟,每时比标准时间慢2分。
有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶40起床,于是他就将闹钟的铃定在了6∶40。
这个闹钟响铃的时间是标准时间的几点几分?【解析】闹钟与标准时间的速度比是58:60=29:30 晚上9点与次日早晨6点40分相差580分,即标准时间过了580×30÷29=600(分),所以标准时间是7点。
【例15】有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?【解析】时钟与标准时间的速度差是20秒/时,因为经过12小时,时钟的指针回到起始的位置,所以到下一次准确时间时,时钟走了12×3600÷20=2160(小时) 即90天,所以下一次准确的时间是5月30日中午12时。
【例16】小明家有两个旧挂钟,一个每天快20分,另一个每天慢30分。
现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?【解析】快的挂钟与标准时间的速度差是20分/天,慢的挂钟与标准时间的速度差是30分/天,快的每标准一次需要12×60÷30=24(天),慢的每标准一次需要12×60÷20=36(天),24与36的最小公倍数是72,所以它们至少要经过72天才能再次同时显示标准时间。
【例17】某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。
当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间?【解析】标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×10=1000(分),怪钟从5点到6点75分,经过175分,根据十字交叉法,1440×175÷1000=252(分),即4点12分。
【例18】手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。
8点整将手表对准,12点整手表显示的时间是几点几分几秒?【解析】按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒。