21世纪的四大化学难题
化学与其他的学科之间的交叉

化学与其他的学科之间的交叉1.学科交叉的概念及由来交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。
其宽泛的含义也包括:边缘学科、综合学科、横断学科等在。
交叉学科既是一个学科概念,同时一又是一个历史畴。
从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。
新学科在经历一段时一期的发展之后,将成为成熟的学科,进而有可能再与其他学科交叉作用发展而产生新的交叉学科。
20 世纪下半叶,各类交叉学科的应用和兴起为科学发展带来了一股新风,许多科学前沿问题和多年悬而未决的问题在交叉学科的联合攻关中都取得了可喜的进展。
随着越来越多交叉学科的出现及其在认识世界和改造世界中发挥作用的不辩事实,交叉学科在科学领域中的生命力都得到了充分的证明。
交叉学科起源于现代科学高度、精度发展的时代,现代科学技术活动一端深入到生产领域,扎根于经济建设,另一端则直接涉及上层建筑,与社会发展等交织在一起,并相互作用、相互影响。
复杂的问题又多居于学科的交叉地带,学科的交叉自然而然地形成和成熟。
当科学技术累计到现代文明的高度,科学研究所要解决的问题的形式发生了深刻的变化,科学研究已由主要解决单个的互不相关的问题过渡到研究问题群,并进而发展为以研究问题堆为主要研究模式。
这样,研究行为就必然由局限于一个学科或一学科的某个分支领域发展到涉及一学科的多个分支,或邻近学科空间,进而扩展到多学科之间。
当社会经济发展到一定时期,社会科学、生命科学、机电工程、物理化学等等各个领域的问题变得越来越复杂,问题间的部联系更为盘根错节,每类问题得出的不同视角的结论似乎都有新的发现,但又难以集结为系统的依据,这样的情形正是产生新的交叉学科的动力,从而在交叉学科重新规划和完善方法和体制的系统,发现解决问题的理论和方法。
这就是说,只要社会发展不停止,就会不断有产生交叉学科的需求。
2.化学与其他学科的交叉2.1材料化学材料科学的发展离不开化学。
高二年级化学知识难点解读2021

高二年级化学知识难点解读2021化学基本概念和原理要理清概念、形成系统。
建议同学们要对重要性、关键性词语整体把握,弄清楚使用范围和条件。
以下是小编整理的高二年级化学知识点总结,希望能够帮助到需要的高考考生。
高二年级化学知识点总结1化学性质1、SO2能作漂白剂。
SO2虽然能漂白一般的有机物,但不能漂白指示剂如石蕊试液。
SO2使品红褪色是因为漂白作用,SO2使溴水、高锰酸钾褪色是因为还原性,SO2使含酚酞的NaOH溶液褪色是因为溶于不生成酸。
2、SO2与Cl2通入水中虽然都有漂白性,但将二者以等物质的量混合后再通入水中则会失去漂白性,3、往某溶液中逐滴加入稀盐酸,出现浑浊的物质:第一种可能为与Cl-生成难溶物。
包括:①AgNO3第二种可能为与H+反应生成难溶物。
包括:①可溶性硅酸盐(SiO32-),离子方程式为:SiO32-+2H+=H2SiO3↓②苯酚钠溶液加盐酸生成苯酚浑浊液。
③S2O32-离子方程式:S2O32-+2H+=S↓+SO2↑+H2O④一些胶体如Fe(OH)3(先是由于Fe(OH)3的胶粒带负电荷与加入的H+发生电荷中和使胶体凝聚,当然,若继续滴加盐酸至过量,该沉淀则会溶解。
)若加HI溶液,最终会氧化得到I2。
⑤AlO2-离子方程式:AlO2-+H++H2O==Al(OH)3当然,若继续滴加盐酸至过量,该沉淀则会溶解。
4、浓硫酸的作用:①浓硫酸与Cu反应——强氧化性、酸性②实验室制取乙烯——催化性、脱水性③实验室制取硝基苯——催化剂、吸水剂④酯化反应——催化剂、吸水剂⑤蔗糖中倒入浓硫酸——脱水性、强氧化性、吸水性⑥胆矾中加浓硫酸——吸水性5、能发生银镜反应的有机物不一定是醛.可能是:①醛;②甲酸;③甲酸盐;④甲酸酯;⑤葡萄糖;⑥麦芽糖(均在碱性环境下进行)6、既能与酸又能与碱反应的物质①显两性的物质:Al、Al2O3、Al(OH)3②弱酸的铵盐:(NH4)2CO3、(NH4)2SO3、(NH4)2S等。
化学难题攻克

化学难题攻克化学是一门研究物质的组成、性质、结构、变化规律以及应用的科学。
在学习过程中,我们常常会遇到一些难题,需要进行认真探索和攻克。
本文将从化学难题的背景介绍、解题思路以及实践应用等方面展开论述。
一、背景介绍化学难题是指那些在学习或研究过程中,由于问题的复杂性、知识的欠缺或者思维的固化等原因,导致我们无法很好地理解和解决的问题。
这些问题可能涉及到化学方程式的平衡、元素的周期表排列、化学反应的速率等领域。
二、解题思路在攻克化学难题时,我们应该采取系统、科学的解题思路,以提高解题效率和解题准确性。
具体的解题思路可以分为以下几个方面:1.问题分析:首先,我们需要认真阅读题目,理解问题背景和要求。
然后,分析问题的关键点和主要矛盾,找到问题的突破口。
2.知识储备:在解决化学难题时,我们需要运用所学的化学知识。
因此,我们需要对相关知识进行系统的复习和巩固,确保基础知识的扎实。
3.思维拓展:化学难题通常需要我们进行深度思考和灵活运用,因此,我们需要培养批判性思维和创造性思维,探索不同的解题思路和方法。
4.实验验证:对于某些化学难题,我们可以通过实际实验来验证并获得答案。
在实验过程中,我们需要注意实验的设计和操作,保证实验的可靠性和准确性。
三、实践应用在解决化学难题的过程中,我们需要将理论知识与实践相结合,通过反复实践来增加解题的经验和技巧。
以下是几个实践应用的例子:1.分类讨论:化学难题往往存在多种解题方法,我们可以将问题进行分类,针对不同的情况进行讨论和解答。
2.交流合作:化学难题的解答过程中,我们可以与同学或老师进行交流和合作,共同探讨问题并寻找最佳解决方案。
3.多角度思考:化学问题的解答可能涉及到多个因素和角度,我们需要通过综合考虑、对比分析等方法来进行推理和判断。
4.拓展应用:在解决单个化学问题的基础上,我们可以进一步将所学的知识应用到其他领域,提升综合能力和创新思维。
通过以上的解题思路和实践应用,我们能够更好地攻克化学难题,提高解题能力和学习成果。
自学考试现代科学技术与当代社会复习资料

自学考试现代科学技术与当代社会复习资料第一章,科学与技术概论第一节科学与技术的基本概念一、什么是科学(一)科学的含义辞海解释:关于自然、社会和思维的知识体系。
看成是知识、知识发展和知识运用过程的统一。
(二)科学的特征1 它是一种知识形态的理论、概念或原理、学说。
2 它是一种不以人的意志为转移的客观存在,具有重复性、再现性和可比性的特点(检验科学的三性的基本原则,符合三性――真科学、否则假科学)。
3 它具有连续性、深入性和创造性的特点。
4 它的发展变化没有止境。
二、什么是技术(一)技术的含义愿意:是指个人所掌握的技巧、手艺等技能或本领。
表现形式:知识形态和物质形态两个方面。
根本目的:在于对自然界的控制和利用。
价值标准:在于是否实用和带来何种经济效益。
(二)技术的特征1 综合性与集成性2 通用性与适用性3 依存性和连锁性4 先进性与经济性5 技术具有自然和社会双重属性 6 个性化(三)技术的本质为实现预期结果而重复进行的优化操作。
三、科学与技术的关系(一)两者的区别1、职能性质上的区别科学的根本职能是认识世界,揭示客观事物的本质和运动规律,着重回答“是什么”、“为什么”的问题;技术的根本职能是改造世界,实现对客观世界的控制、利用和保护,着重回答“做什么”、“怎么做”的问题。
科学――精神财富,技术――物质财富。
成果表现:科学――新现象、新规律、新法则的发现,技术――新工具、新设备、新方法、新工艺的发明。
2、发生地的区别科学以大学为中心,技术以企业为主体(企业是技术发明与技术开发的主体)(二)两者的联系相辅相成科学中有技术、技术中有科学,在科学转化为生产力的过程中,技术是中间环节,技术是科学原理的物化和应用,技术是科学的延伸,科学是技术的升华。
(三)两者关系发展的新趋势科学的技术化是现代科学发展的重要特点,技术的科学化是现代技术生命力所在。
第二节科学技术系统一现代自然科学的分类与结构(一)科学技术——自然科学-科学研究经历的三个阶段:基础性研究、应用性研究、开发性研究。
化学难点45条

化学知识难点1碳用来冶炼金属,是利用了碳的还原性2用浓硫酸干燥氧气是利用浓硫酸的吸水性3用铁矿石冶炼生铁是利用还原剂与铁的化合物反应生成铁4稀硫酸除铁锈是用硫酸与铁锈发生化学反应除掉5一氧化碳用于冶炼金属是利用一氧化碳的还原性,与含有金属元素的化合物发生反应制取金属6分馏是根据物质的沸点不同进行混合物的分离,没有新物质生成,属于物理变化7铜器锈蚀是铜与氧气、水、二氧化碳等物质发生反应生成铜锈,属于化学变化8酸碱中和生成盐和水,有新物质生成,属于化学变化9玻璃中含有SiO2,易与氢氧化钠反应生成具有黏性的硅酸钠而使玻璃塞打不开,所以氢氧化钠溶液不能保存在滴瓶中,因为其配套的胶头滴管是玻璃的10氧化铜是固体粉末,需要保存在广口瓶中11浓硫酸使白纸变黑浓硫酸有很强的吸水性,使之碳化, 有新物质碳生成所以变黑。
浓硫酸可以将有机物中的氢和氮元素按水的组成比脱去,也是我们常说的夺取其中水分,使可是有机物炭化,12稀有气体填充闪光是利用稀有气体通电后能发出不同颜色的光13用氢气作高能燃料是利用氢气燃烧生成水,放出大量的热14无水硫酸铜是白色的,氧化铜是黑色的,胆矾是蓝色的,氢氧化铁是红褐色。
15有机物是指含碳的化合物,所以有机物必须是化合物,C60是单质16杀菌消毒是通入氯气,氯气与水反应生成盐酸、次氯酸,次氯酸具有杀菌消毒作用,所以属于化学变化17自制汽水中柠檬酸与小苏打发生了化学变化,生成了二氧化碳等物质,属于化学变化18酚酞变红是碱性物质与酚酞发生了化学反应,使酚酞变红19浓硫酸具有脱水性是指浓硫酸与其它物质反应,与其中的氧元素等发生化学反应,而脱水。
通常讲的浓硫酸腐蚀性即脱水性20硫酸具有吸水性,是吸收水而溶解。
浓硫酸之所以能吸收水,是因它能和水结合成稳定的水合物21制取明矾晶体是利用饱和溶液中的动态平衡,溶解了多少晶体,就会有多少溶质析出,使明矾晶体的形状发生变化,没有新的物质生成,属于物理变化22自制“叶脉书签”是指用树叶通过一定的化学处理后,去掉树叶的叶肉细胞,留下网状的脉纹,属于化学变化23硫酸清除金属表面的锈是利用硫酸与氧化铁反应生成硫酸铁和水24用食醋除去热水瓶胆的水垢,是利用食醋与水垢的成分发生了化学变化,将其除掉水垢不易溶解于水,但可以和酸反应生成可溶的盐25用汽油清洗掉衣服上的油污是利用油污溶解于汽油中,没有新物质生成,属于物理变化26元素相同也可能是新物质,例如过氧化氢分解生成水和氧气,过氧化氢和水的组成元素相同,但是它们属于不同的物质27无水酒精可以溶解手机屏幕上的脏物,是根据溶解作用原理洗涤28化学变化中生成的新物质是相对于反应物来说的,即生成了与反应物在组成或结构上与变化前的物质不同的物质29氨气NH3是无色有刺激性气味的气体,极易溶于水;氯化氢HCl是一种无色有刺激性气味的气体;一氧化碳CO是无色无味的气体;二氧化硫SO2是无色有刺激性气味的气体30稀释浓硫酸时,要把浓硫酸缓缓地沿器壁注入水中,同时用玻璃棒不断搅拌,以使热量及时地扩散;一定不能把水注入浓硫酸中31pH试纸有广泛pH试纸和精确pH试纸,用广泛pH试纸测得溶液的pH应为整数32称量氢氧化钠固体,有腐蚀性,易潮解,直接放在托盘上,会腐蚀托盘33水壶烧水出现水垢是由于钙镁化合物受热生成碳酸钙、氢氧化镁等新物质,属于化学变化34醋酸除水壶内的水垢是利用醋酸与碳酸钙反应,生成醋酸钙、水、二氧化碳,再被水洗掉35蛋清遇浓硝酸变黄是浓硝酸与蛋白质发生了化学反应,使蛋白质失去了生理活性36海水提取镁过程中生成镁等物质,属于化学变化37用石灰浆粉刷墙壁,干燥后,墙壁变硬是由于氢氧化钙与二氧化碳反应生成碳酸钙沉淀和水,属于化学变化38氢气燃烧的产物是水,无污染39除杂质最少要满足两个条件:①加入的试剂只能与杂质反应,不能与原物质反应②反应时不能加入新的杂质.除杂质题时,要观察能否满足上述两个条件,还要考虑到物质的溶解性,即观察物质是否溶于水.杂质二氧化碳可以考虑用碱溶液吸收;硫酸根离子可以考虑用钡离子除去;氢氧根离子可以考虑生成沉淀除去.40用二氧化碳灭火,是利用了二氧化碳不燃烧、不支持燃烧、密度比空气大的性质.既有化学性质又有物理性质41溶洞的形成发生了两个反应:碳酸钙、水、二氧化碳反应生成碳酸氢钙,碳酸氢钙分解42铁粉用于保鲜剂,是利用了铁能与氧气和水反应的性质43氧化钙用于食品干燥是利用了氧化钙与水反应的性质44稀HCl溶液、NaCl溶液的鉴别,一种是酸,一种是盐.可根据酸的性质(使酸碱指示剂变色、与金属反应、与金属氧化物反应、与碱反应、与某些盐反应)来鉴别,也可根据盐的性质(与金属反应、与酸反应、与碱反应、与盐反应)来鉴别.但是反应的现象必须要有明显的区别.所以可以用石蕊实验来鉴别、可以加入铁、可以用碳酸钙等45给定的四种物质:①MgCl2溶液;②Cu(NO3)2溶液;③K2SO4溶液;④KOH溶液. 由于Cu(NO3)2溶液有蓝色,所以可以最先推出的是②Cu(NO3)2溶液.之后将Cu (NO3)2溶液滴加到另外三溶液中,产生明显蓝色沉淀的原溶液为KOH溶液,得出④为KOH溶液,之后将KOH溶液滴加到剩余溶液中,产生白色的沉淀的原溶液为①MgCl2溶液,最后无明显现象的是③K2SO4溶液.。
21世纪化学发展的四大难题

21世纪化学发展的四大难题化学是一门承上启下的中心科学;化学是一门与我们的衣、食、住、行都有密切联系、社会迫切需要的中心科学;化学是与信息、生命、材料、环境、能源、地球、空间和核科学等都有紧密联系、交叉和渗透的中心科学。
化学是20世纪发明的七大技术中排序第一的技术,21世纪的化学将在与物理学、生命科学、材料科学、信息科学、能源、环境、海洋、空间科学的相互交叉,相互渗透,相互促进中共同大发展。
然而,21世纪化学却面临着四大难题:一.建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论化学反应理论和定律是化学的第一根本规律。
建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径等。
二.分子结构及其和性能的定量关系这里的“结构”包含构型、构象、手性、粒度、形状和形貌等,而“性能”则包含物理、化学和功能性质以及生物和生理活性等。
虽然从理论上证明一个分子的电子云密度可以决定它的所有性质,但实际计算困难很多,现在对结构和性能的定量关系的了解,还远远不够。
因而,大力发展密度泛函理论和其他计算方法,是21世纪化学的第二个重大难题。
三.生命现象中的化学机理问题充分认识和彻底了解人类和生物体内分子的运动规律。
例如:研究配体小分子和受体生物大分子相互作用的机理,这是药物设计的基础、光合作用的机理、生物固氮作用的机理、人类的大脑是用“泛分子”组装成的最精巧的计算机、蛋白质和DNA的理论研究等。
四.纳米尺度的基本规律当尺度在十分之几到10nm的量级,正处于量子尺度和经典尺度的模糊边界中,有许多新的奇异特性和新的效应,新的规律和重要应用,值得理论化学家去探索研究。
如:热力学性质与粒子尺度的关系、纳米粒子表面积引起性质的不同变化等。
化学十大难题

Scientific American:化学十大难题博主按:这是Scientific American科普杂志为国际化学年推出的专题。
化学一直声称自己是中心学科,是因为化学其实也就是分子科学,而无论物理还是生命科学,研究到最后,还是要在分子机制这个层面才能解决问题。
下面列出的化学十大难题,其实值得所有科学家关注,大家都能在这个舞台里一显身手,但是,化学家或许能在里面找到最好的切入点,从而找到解决问题的关键!1. How Did Life Begin? 生命从何而来?2. How Do Molecules Form? 分子如何形成?3. How Does the Environment Influence Our Genes? 环境如何影响人类基因?4. How Does the Brain Think and Form Memories? 大脑如何思考,并形成记忆?5. How Many Elements Exist? 到底存在多少种元素?6. Can Computers Be Made Out of Carbon? 我们能用碳元素制造出电脑吗?7. How Do We Tap More Solar Energy? 如何捕获更多太阳能?8 What Is the Best Way to Make Biofuels? 制造生物燃料的最佳途径是什么?9. Can We Devise New Ways to Create Drugs? 我们能研制出全新类型的药物吗?10. Can We Continuously Monitor Our Own Chemistry? 我们能实时监测自身的化学变化吗?CHEMISTRY:The 10 Unsolved MysteriesMany of the most profound scientific questions—and some of humanity’s most urgent problems—pertain to the science of atoms and moleculesBy Philip BallPhilip Ball has a Ph.D. in physics from the University of Bristol in England and was an editor at Nature for more than 20 years. He is the award-winning author of 15 books, including The Music Instinct: How Music Works, and Why We Can’t Do without It.1 How Did Life Begin?the moment when the first living beings arose from inanimate matter almost four billion years ago is still shrouded in mystery. How did relatively simple molecules in the primordial broth give rise to more and more complex compounds? And how did some of those compounds begin to process energy and replicate(two of the defining characteristics of life)? At the molecular level, all of those steps are, of course, chemical reactions,which makes the question of how life beganone of chemistry.The challenge for chemists is no longer to come up with vaguely plausible scenarios,of which there are plenty. For example, researchers have speculated about minerals such as clay acting as catalysts for the formation of the first self-replicating polymers(molecules that, like DNA or proteins, are long chains of smaller units); about chemical complexity fueled by the energy of deep-sea hydrothermal vents; and about an "RNA world," in which DNA’s cousin RNA—which can act as an enzyme and catalyze reactions the way proteins do—would have been a universal molecule, before DNA and proteins appeared. No, the game is to figure out how to test these ideas in reactions coddled in the test tube. Researchers have shown, for example, that certain relatively simple chemicals can spontaneously react to form the more complex building blocks of living systems, such as amino acids and nucleotides, the basic units of DNA and RNA. In 2009 a team led by John Sutherland, now at the MRC Laboratory of Molecular Biology in Cambridge, England, was able to demonstrate the formation of nucleotides from molecules likely to have existed in the primordial broth.Other researchers have focused on the ability of some RNA strands to act as enzymes,providing evidence in support of the RNA world hypothesis. Through such steps, scientists may progressively bridge the gap from inanimate matter to selfreplicating, self-sustaining systems. Now that scientists have a better view of strange and potentially fertile environments in our solar system—the occasional flows of water on Mars, the petrochemical seas of Saturn’s moon Titan, and the cold, salty oceans that seem to lurk under the ice of Jupiter’s moons Europa and Ganymede—the origin of terrestrial life seems only a part of grander questions: Under what circumstances can life arise? And how widely can its chemical basis vary? That issue is made richer still by the discovery, over the past 16 years, of more than 500 extrasolar planets orbiting other stars—worlds of bewildering variety.These discoveries have pushed chemists to broaden their imagination about the possible chemistries of life. For instance, NASA has long pursued the view that liquid water is a prerequisite, but now scientists are not so sure. How about liquid ammonia, formamide, an oily solvent like liquid methane or supercritical hydrogen on Jupiter? And why should life restrict itself to DNA, RNA and proteins? After all, severalartificial chemical systems have now been made that exhibit a kind of replication from the component parts without relying on nucleic acids. All you need, it seems, is a molecular system that can serve as a template for making a copy and then detach itself. Looking at life on Earth, says chemist Steven Benner of the Foundation for Applied Molecular Evolution in Gainesville,Fla.,―we have no way to decide whether the similarities [such as the use of DNA and proteins] reflect common ancestry or the needs of life universally.‖But if we retreat into saying that we have to stick with what we know, he says,―we have no fun.‖2 How Do Molecules Form?molecular structures may be a mainstay of high school science classes,but the familiar picture of balls and sticks representing atoms and the bonds among them is largely a conventional fiction.The trouble is that scientists disagree on what a more accurate representation of molecules should look like. In the 1920s physicists Walter Heitler and Fritz London showed how to describe a chemical bond using the equations of then nascent quantum theory, and the great American chemist Linus Pauling proposed that bonds form when the electron orbitals of different atoms overlap in space.A competing theory by Robert Mulliken and Friedrich Hund suggested that bonds are the result of atomic orbitals merging into―molecular orbitals‖that extend over more than one atom. Theoretical chemistry seemed about to become a branch of physics. Nearly 100 years later the molecularorbital picture has become the most common one, but there is still no consensus among chemists that it is always the best way to look at molecules. The reason is that this model of molecules and all others are based on simplifying assumptions and are thus approximate, partial descriptions. In reality, a molecule is a bunch of atomic nuclei in a cloud of electrons, with opposing electrostatic forces fighting a constant tug-of-war with one another, and all components constantly moving and reshuffling. Existing models of the molecule usually try to crystallize such a dynamic entity into a static one and may capture some of its salient properties but neglect others.Quantum theory is unable to supply a unique definition of chemical bonds that accords with the intuition of chemists whose daily business is to make and break them. There are now many ways of describing molecules as atoms joined by bonds. According to quantum chemist Dominik Marx of Ruhr University Bochum in Germany, pretty much all such descriptions―are useful in some cases but fail in others.‖Computer simulations can now calculate the structures and properties of molecules from quantum first principles with great accuracy—as long as the number of electrons is relatively small. ―Computational chemistry can be pushed to the level of utmost realism and complexity,‖Marx says. As a result, computer calculations can increasingly be regarded as a kind of virtual experiment that predicts the course of a reaction. Once the reaction to be simulated involves more than a few dozen electrons, however, the calculations quickly begin to overwhelm even the most powerful supercomputer, so the challenge will be to see whether the simulations can scaleup—whether, for example, complicated biomolecular processes in the cell or sophisticated materials can be modeled this way.3 How Does the Environment Influence Our Genes?the old idea of biology was that who you are is a matter of which genes you have. It is now clear that an equally important issue is which genes you use. Like all of biology, this issue has chemistry at its core. The cells of the early embryo can develop into any tissue type. But as the embryo grows, these so-called pluripotent stem cells differentiate, acquiring specific roles (such as blood, muscle or nerve cells) that remain fixed in their progeny. The formation of the human body is a matter of chemically modifying the stem cells’ chro mosomes in ways that alter the arrays of genes that are turned on and off. One of the revolutionary discoveries in research on cloning and stem cells, however, is that this modification is reversible and can be influenced by the body’s experiences. Cells d o not permanently disable genes during differentiation, retaining only those they need in a ―ready to work‖ state. Rather the genes that get switched off retain a latent ability to work—to give rise to the proteins they encode—and can be reactivated, for instance, by exposure to certain chemicals taken in from the environment.What is particularly exciting and challenging for chemists is that the control of gene activity seems to involve chemical events happening at size scales greater thanthose of atoms and molecules—at the so-called mesoscale—with large molecular groups and assemblies interacting. Chromatin, the mixture of DNA and proteins that makes up chromosomes, has a hierarchical structure. The double helix is wound around cylindrical particles made from proteins called histones, and this string of beads is then bundled up into higher-order structures that are poorly understood [see illustration on opposite page]. Cells exercise great control over this packing—how and where a gene is packed into chromatin may determine whether it is active or not.Cells have specialized enzymes for reshaping chromatin structure, and these enzymes have a central role in cell differentiation. Chromatin in embryonic stem cells seems to have a much looser, open structure: as some genes fall inactive, the chromatin becomes increasingly lumpy and organized. ―The chromatin seems to fix and maintain or stabilize the cells’ state,‖ says pathologist Bradley Bernstein of Massachusetts General Hospital. What is more, such chromatin sculpting is accompanied by chemical modification of both DNA and histones. Small molecules attached to them act as labels that tell the cellular machinery to silence genes or, conversely, free them for action. This labeling is called ―epigenetic‖ because it does not alter the information carried by the genes themselves.The question of the extent to which mature cells can be returned to pluripotency—whether they are as good as true stem cells, which is a vital issue for their use in regenerative medicine—seems to hinge largely on how far the epigenetic marking can be reset.It is now clear that beyond the genetic code that spells out many of the cells’ key instructions, cells speak in an entirely separate chemical language of genetics—that of epigenetics. ―People can have a genetic predisposition to many diseases, including cancer, but whether or not the disease manifests itself will often depend on environmental factors operating through these epigenetic pathways,‖ says geneticist Bryan Turner of the University of Birmingham in England.4 How Does the Brain Think and Form Memories?the brain is a chemical computer. Interactions between the neurons that form its circuitry are mediated by molecules: specifically, neurotransmitters that pass across the synapses, the contact points where one neural cell wires up to another. This chemistry of the mind is perhaps at its most impressive in the operation of memory, in which abstract principles and concepts—a telephone number, say, or an emotional association—are imprinted in states of the neural network by sustained chemical signals. How does chemistry create a memory that is both persistent and dynamic, as well as able to recall, revise and forget?We now know parts of the answer. A cascade of biochemical processes, leading to a change in the amounts of neurotransmitter molecules in the synapse, triggers learning for habitual reflexes. But even this simple aspect of learning has short and long-term stages. Meanwhile more complex so-called declarative memory (of people, places, and so on) has a different mechanism and location in the brain, involving the activation of a protein called the NMDA receptor on certain neurons. Blocking thisreceptor with drugs prevents the retention of many types of declarative memory.Our everyday declarative memories are often encoded through a process called long-term potentiation, which involves NMDA receptors and is accompanied by an enlargement of the neuronal region that forms a synapse. As the synapse grows, so does the ―strength‖of its connection with neighbors—the voltage induced at the synaptic junction by arriving nerve impulses. The biochemistry of this process has been clarified in the past several years. It involves the formation of filaments within the neuron made from the protein actin—part of the basic scaffolding of the cell and the material that determines its size and shape. But that process can be undone during a short period before the change is consolidated if biochemical agents prevent the newly formed filaments from stabilizing. Once encoded, long-term memory for both simple and complex learning is actively maintained by switching on genes that give rise to particular proteins. It now appears that this process can involve a type of molecule called a prion. Prions are proteins that can switch between two different conformations. One of the conformations is soluble, whereas the other is insoluble and acts as a catalyst to switch other molecules like it to the insoluble state, leading these molecules to aggregate. Prions were first discovered for their role in neurodegenerative conditions such as mad cow disease, but prion mechanisms have now been found to have beneficial functions, too: the formation of a prion aggregate marks a particular synapse to retain a memory.There are still big gaps in the story of how memory works, many of which await filling with the chemical details. How, for example, is memory recalled once it has been stored? ―This is a deep problem whose analysis is just beginning,‖ says neuroscientist and Nobel laureate Eric Kandel of Columbia University.Coming to grips with the chemistry of memory offers the enticing and controversial prospect of pharmacological enhancement. Some memory-boosting substances are already known, including sex hormones and synthetic chemicals that act on receptors for nicotine, glutamate, serotonin and other neurotransmitters. In fact, according to neurobiologist Gary Lynch of the University of California, Irvine, the complex sequence of steps leading to long-term learning and memory means that there are many potential targets for such memory drugs.5 How Many Elements Exist?the periodic tables that adorn the walls of classrooms have to be constantly revised, because the number of elements keeps growing. Using particle accelerators to crash atomic nuclei together, scientists can create new ―superheavy‖ elements, which have more protons and neutrons in their nuclei than do the 92 or so elements found in nature. These engorged nuclei are not very stable—they decay radioactively, often within a tiny fraction of a second. But while they exist, the new synthetic elements such as seaborgium (element 106) and hassium (element 108) are like any other insofar as they have well-defined chemical properties. In dazzling experiments, researchers have investigated some of those properties in a handful of elusive seaborgium and hassium atoms during the brief instants before they fell apart.Such studies probe not just the physical but also the conceptual limits of the periodic table: Do superheavy elements continue to display the trends and regularities in chemical behavior that make the table periodic in the first place? The answer is thatsome do, and some do not. In particular, such massive nuclei hold on to the atoms’ innermost electrons so tightly that the electrons move at close to the speed of light. Then the effects of special relativity increase the electrons’ mass and may play havoc with the quantum energy states on which their chemistry—and thus the table’s periodicity—depends. Because nuclei are thought to be stabilized by particular ―magic numbers‖ of protons and neutrons, some researchers hope to find what they call the island of stability, a region a little beyond the current capabilities of element synthesis in which superheavies live longer. Yet is there any fundamental limit to their size? A simple calculation suggests that relativity prohibits electrons from being bound to nuclei of more than 137 protons.More sophisticated calculations defy that limit. ―The periodic system will not end at 137; in fact, it will never end,‖ insists nuclear physicist Walter Greiner of the Johann Wolfgang Goethe University Frankfurt in Germany. The experimental test of that claim remains a long way off.6 Can Computers Be Made Out of Carbon?computer chips made out of graphene—a web of carbon atoms—could potentially be faster and more powerful than silicon-based ones. The discovery of graphene garnered the 2010 Nobel Prize in Physics, but the success of this and other forms of carbon nanotechnol ogy might ultimately depend on chemists’ ability to create structures with atomic precision. The discovery of buckyballs—hollow, cagelike molecules made entirely of carbon atoms—in 1985 was the start of something literally much bigger. Six years later tubes of carbon atoms arranged in a chicken wire–shaped, hexagonal pattern like that in the carbon sheets of graphite made their debut. Being hollow, extremely strong and stiff, and electrically conducting, these carbon nanotubes promised applications ranging from high-strength carbon composites to tiny wires and electronic devices, miniature molecular capsules, and water-filtration membranes.For all their promise, carbon nanotubes have not resulted in a lot of commercial applications. For instance, researchers have not been able to solve the problem of how to connect tubes into complicated electronic circuits. More recently, graphite has moved to center stage because of the discovery that it can be separated into individual chicken wire–like sheets, called graphene, that could supply the fabric for ultraminiaturized, cheap and robust electronic circuitry. The hope is that the computer industry can use narrow ribbons and networks of graphene, made to measure with atomic precision, to build chips with better performance than silicon-based ones. “Graphene can be patterned so that the interconnect and placement problems of carbon nanotubes are overcome,‖ says carbon specialist Walt de Heer of the Georgia Institute of Technology. Methods such as etching, however, are too crude for patterning graphene circuits down to the single atom, de Heer points out, and as a result, he fears that graphene technology currently owes more to hype than hard science. Using the techniques of organic chemistry to build up graphene circuits from the bottom up—linking together“polyaromatic‖ molecules containing several hexagonal carbon rings, like little fragments of a graphene sheet—might be the key tosuch precise atomicscale engineering and thus to unlocking the future of graphene electronics.7 How Do We Tap More Solar Energy?with every sunrise comes a reminder that we currently tap only a pitiful fraction of the vast clean-energy resource that is the sun. The main problem is cost: the expense of conventional photovoltaic panels made of silicon still restricts their use. Yet life on Earth, almost all of which is ultimately solar-powered by photosynthesis, shows that solar cells do not have to be terribly efficient if, like leaves, they can be made abundantly and cheaply enough.“One of the holy grails of solar-energy research is using sunlight to produce fuels,‖ says Devens Gust of Arizona State University. The easiest way to make fuel from solar energy is to split water to produce hydrogen and oxygen gas. Nathan S. Lewis and his collaborators at Caltech are developing an artificial leaf that would do just that [see illustration on opposite page] using silicon nanowires.Earlier this year Daniel Nocera of the Massachusetts Institute of Technology and his co-workers unveiled a silicon-based membrane in which a cobalt-based photocatalyst does the water splitting. Nocera estimates that a gallon of water would provide enough fuel to power a home in developing countries for a day. ―Our goal is to make each home its own power station,‖ he says.Splitting water with catalysts is still tough. ―Cobalt catalysts such as the one that Nocera uses and newly discovered catalysts based on other common metals are promising,‖ Gust says, but no one has yet found an ideal inexpensive catalyst.“We don’t know h ow the natural photosynthetic catalyst, which is based on four manganese atoms and a calcium atom, works,‖ Gust adds.Gust and his colleagues have been looking into making molecular assemblies for artificial photosynthesis that more closely mimic their biological inspiration, and his team has managed to synthesize some of the elements that could go into such an assembly. Still, a lot more work is needed on this front. Organic molecules such as the ones nature uses tend to break down quickly. Whereas plants continually produce new proteins to replace broken ones, artificial leaves do not (yet) have the full chemical synthesis machinery of a living cell at their disposal.8 What Is the Best Way to Make Biofuels?instead of making fuels by capturing the rays of the sun, how about we let plants store the sun’s energy for us and then turn plant matter into fuels? Biofuels such as ethanol made from corn and biodiesel made from seeds have already found a place in the energy markets, but they threaten to displace food crops, particularly in developing countries where selling biofuels abroad can be more lucrative than feeding people at home. The numbers are daunting: meeting current oil demand would mean requisitioning huge areas of arable land.Turning food into energy, then, may not be the best approach. One answer could be to exploit other, less vital forms of biomass. The U.S. produces enough agricultural and forest residue to supply nearly a third of the annual consumption of gasoline and diesel for transportation. Converting this low-grade biomass into fuel requires breaking down hardy molecules such as lignin and cellulose, the main building blocks of plants. Chemists already know how to do that, but the existing methods tend to be too expensive, inefficient or difficult to scale up for the enormous quantities of fuel that the economy needs.One of the challenges of breaking down lignin—cracking open the carbon-oxygen bonds that link ―aromatic,‖ or benzenetype, rings of carbon atoms—was recently met by John Hartwig and Alexey Sergeev, both at the Universityof Illinois. They found a nickel-based catalyst able to do it. Hartwig points out that ifbiomass is to supply nonfossil-fuel chemical feedstocks as well as fuels, chemists will also need to extract aromatic compounds (those having a backbone of aromatic rings) from it. Lignin is the only major potential source of such aromatics in biomass.To be practical, such conversion of biomass will, moreover, need to work with mostly solid biomass and convert it into liquid fuels for easy transportation along pipelines. Liquefaction would need to happen on-site, where the plant is harvested. One of the difficulties for catalytic conversion is the extreme impurity of the raw material—classical chemical synthesis does not usually deal with messy materials such as wood. ―There’s no consensus on how all this will be done in the end,‖ Hartwig says. What is certain is that an awful lot of any solution lies with the chemistry, especially with finding the right catalysts. ―Almost e very industrial reaction on a large scale has a catalyst associated‖ with it, Hartwig points out.9 Can We Devise New Ways to Create Drugs?the core business of chemistry is a practical, creative one: making molecules, a key to creating everything from new materials to new antibiotics that can outstrip the rise of resistant bacteria. In the 1990s one big hope was combinatorial chemistry, in which thousands of new molecules are made by a random assembly of building blocks and then screened to identify those that do a job well. Once hailed as the future of medicinal chemistry, ―combi-chem‖ fell from favor because it produced little of any use.But combinatorial chemistry could enjoy a brighter second phase. It seems likely to work only if you can make a wide enough range of molecules and find good ways of picking out the minuscule amounts of successful ones. Biotechnology might help here—for example, each molecule could be linked to a DNA-based“bar code‖ that both identifies it and aids its extraction. Or researchers can progressively refine the library of candidate molecules by using a kind of Darwinian evolution in the test tube. They can encode potential protein-based drug molecules in DNA and then use error-prone replication to generate new variants of the successful ones, thereby finding improvements with each round of replication and selection. Other new techniques draw on nature’s mastery at uniting molecular fragments in prescribed arrangements. Proteins, for example, have a precise sequence of amino acids because that sequence is spelled out by the genes that encode the proteins. Using this model, future chemists might program molecules to assemble autonomously. The approach has the advantage of being ―green‖ in that it reduces the unwanted by-products typical of traditional chemical manufacturing and the associated waste of energy and materials.David Liu of Harvard University and his co-workers are pursuing this approach. They tagged the building blocks with short DNA strands that program the linker’s structure. They also created a molecule that walks along that DNA, reading its codes and sequentially attaching small molecules to the building block to make the linker—a process analogous to protein synthesis in cells. Liu’s method could be a handy way to tailor new drugs.“Many molecular life scientists believe that macromolecules will play an increasingly central, if not dominant, role in the future of therapeutics,‖ Liu says.10 Can We Continuously Monitor Our Own Chemistry?increasingly, chemists do not want to just make molecules but also to communicate with them: to make chemistry an information technology that will interface with anything from living cells to conventional computers and fiber-optic telecommunications.In part, it is an old idea: biosensors in which chemical reactions are used to report on concentrations of glucose in the blood date back to the 1960s, although only recently has their use for monitoring diabetes been cheap, portable and widespread. Chemical sensing could have countless applications—to detect contaminants in food and water at very low concentrations, for instance, or to monitor pollutants and trace gases present in the atmosphere. Faster, cheaper, more sensitive and more ubiquitous chemical sensing would yield progress in all of those areas.It is in biomedicine, though, that new kinds of chemical sensors would have the most dramatic potential. For instance, some of the products of cancer genes circulate in the bloodstream long before the condition becomes apparent to regular clinical tests. Detecting these chemicals early might make prognoses more timely and accurate. Rapid genomic profiling would enable drug regimens to be tailored to individual patients, thereby reducing risks of side effects and allowing some medicines to be used that today are hampered by their dangers to a genetic minority.Some chemists foresee continuous, unobtrusive monitoring of all manner of biochemical markers of health and disease, perhaps providing real-time information to surgeons during operations or to automated systems for delivering remedial drug treatments. This futuristic vision depends on developing chemical methods for selectively sensing particular substances and signaling about them even when the targets occur in only very low concentrations.MORE TO EXPLOREBeyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. National Research Council. National Academies Press, 2003.Beyond the Bond. Philip Ball in Nature, Vol. 469, pages 26–28; January 6, 2011.Let’s Get Practical. George M. Whitesides and John Deutch in Nature, Vol. 469, pages 21–22; January 6, 2011.。
化学四大难题

5.21世纪化学的四大难题(l)化学的第一根本规律(第一个世纪难题):建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论。
化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律。
19世纪C.M.古尔德贝格和P.瓦格提出的质量作用定律,是最重要的化学定律之一,但它是经验的、宏观的定律。
H.艾林的绝对反应速度理论是建筑在过渡态、活化能和统计力学基础上的半经验理论。
过渡态、活化能和势能面等都是根据不含时间的薛定愕第一方程来计算的。
所谓反应途径是按照势能面的最低点来描绘的。
这一理论和提出的新概念虽然非常有用,但却是不彻底的半经验理论。
近年来发展了含时Hartree-Fock方法,含时密度泛函理论方法,以酉群相干态为基础的电子-原子核运动方程理论,波包动力学理论等。
但目前这些理论方法对描述复杂化学体系还有困难。
所以建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径?等等,是21世纪化学应该解决的第一个难题。
(2)化学的第二个世纪难题:分子结构及其和性能的定量关系。
这里“结构”和“性能”是广义的,前者包含构型、构象、手性、粒度、形状和形貌等,后者包含物理、化学和功能性质以及生物和生理活性等。
虽然W.Kohn从理论上证明一个分子的电子云密度可以决定它的所有性质,但实际计算困难很多,现在对结构和性能的定量关系的了解,还远远不够。
要大力发展密度泛函理论和其他计算方法。
这是21世纪化学的第二个重大难题。
例如:①如何设计合成具有人们期望的某种性能的材料?②如何使宏观材料达到微观化学键的强度?例如“金属胡须”的抗拉强度比通常的金属丝大一个数量级,但还远未达到金属-金属键的强度,所以增加金属材料强度的潜力是很大的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21世纪的四大化学难题
化学是与信息、生命、材料、环境、能源、地球、空间和核科学等八大新兴科学紧密联系、交叉和渗透的中心科学。
前不久在杭州召开的中国化学会创建70周年纪念大会上,北京大学化学学院教授、中国科学院院士徐光宪指出,21世纪是信息科学、合成化学和生命科学共同繁荣的世纪,同时化学也面临四大难题。
徐光宪说,化学的核心是合成化学,在20世纪的100年中,化学合成和分离了2285万种新物质、新药物、新材料、新分子以满足人类生活和高新技术发展的需要,没有哪一门其它科学能像化学那样,创造出如此众多的新物质,在合成化学领域共获得41项诺贝尔奖。
如果没有合成各种抗生素和大量新药物的技术,人类不能控制传染病和缓解心脑血管病,平均寿命要缩短25年;如果没有合成纤维、合成塑料、合成橡胶的技术,人类生活要受到很大影响;信息技术的核心是集成电路芯片,是采用的化学制备的硅单晶片生产的,计算机的存储器等其它部件用了大量的化学合成材料;特别是如果没有哈勃发明的高压合成氨技术和以后的合成尿素技术,世界粮食产量至少要减半,哈勃也因此获诺贝尔奖。
此后,C·博施改进了哈勃流程也获诺贝尔奖。
所以国外传媒把哈勃流程评为20世纪最重大的发明。
1.合成化学难题-化学反应理论建立严格彻底的微观化学反应理论,是21世纪化学应该解决的第一个难题。
如何建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论?
化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律。
应该说,目前的一些理论方法对描述复杂化学体系还有困难。
因此,建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径等,是21世纪化学应该解决的第一个难题。
对于这一世纪难题,应予首先研究的课题有:(1)充分了解若干个重要的典型的化学反应的机理,以便设计最好的催化剂,实现在最温和的条件进行反应,控制反应的方向和手性,发现新的反应类型,新的反应试剂。
(2)在搞清楚光合作用和生物固氮机理的基础上,设计催化剂和反应途径,以便打断CO2, N2等稳定分子中的惰性化学键。
(3)研究其它各种酶催化反应的机理。
酶对化学反应的加速可达100亿倍,专一性达
100%。
如何模拟天然酶,制造人工催化剂,是化学家面临的重大难题。
(4)充分了解分子的电子、振动、转动能级,用特定频率的光脉冲来打断选定的化学键——选键化学的理论和实验技术。
2.材料化学难题
如何确立结构和性能的定量关系?
这里“结构”和“性能”是广义的,前者包含构型、构象、手性、粒度、形状和形貌等,后者包含物理、化学和功能性质以及生物和生理活性等。
这是21世纪化学的第二个重大理论难题。
要优先研究的课题有:(1)分子和分子间的非共价键的相互作用的本质和规律。
(2)超分子结构的类型,生成和调控的规律。
(3)给体-受体作用原理。
(4)进一步完善原子价和化学键理论,特别是无机化学中的共价问题。
(5)生物大分子的一级结构如何决定高级结构?高级结构又如何决定生物和生理活性?(6)分子自由基的稳定性和结构的关系。
(7)掺杂晶体的结构和性能的关系。
(8)各种维数的空腔结构和复杂分子体系的构筑原理和规律。
(9)如何设计合成具有人们期望的某种性能的材料?(10)如何使宏观材料达到微观化学键的强度?例如“金属胡须”的抗拉强度比通常的金属丝大一个量级,但还远未达到金属-金属键的强度,所以增加金属材料强度的潜力是很大的。
以上各方面是化学的第二根本问题,其迫切性可能比第一问题更大,因为它是解决分子设计和实用问题的关键。
3.生命化学难题-
生命现象的化学机理生命过程包含许多化学反应,所以生命活动的过程,可以用也必须用化学过程来理解。
如何揭示生命现象的化学机理?
充分认识和彻底了解人类和生物的生命运动的化学机理,无疑是21世纪化学亟待解决的重大难题之一。
例如:(1)研究配体小分子和受体生物大分子相互作用的机理,这是药物设计的基础。
(2)化学遗传学为哈佛大学化学教授Schreiber所创建。
他的小组合成某些小分子,使之与蛋白质结合,并改变蛋白质的功能,例如使某些蛋白酶的功能关闭。
这些方法使得研究者们不通过改变产生某一蛋白质的基因密码就可以研究它们的功能,为开创化学蛋白质组学,化学基因组学(与生物学家以改变基因密码来研究的方法不同)奠定基础。
(3)搞清楚光合作用、生物固氮作用,以及牛、羊等食草动物胃内酶分子如何把植物纤维分解为小分子的反应机理,为充分利用自然界丰富的植物纤维资源打下基础。
(4)人类的大脑是用“泛分子”组装成的最精巧的计算机。
如何彻底了解大脑的结构和功能将是21世纪的脑科学、生物学、化学、物理学、信息和认知科学等交叉学科共同来解决的难题。
(5)了解活体内信息分子的运动规律和生理调控的化学机理。
(6)了解从化学进化到手性和生命起源的飞跃过程。
(7)如何实现从生物分子(biomolecules)到分子生命(molecular life)的飞跃?如何制造活的分子(Make life),跨越从化学进化到生物进化的鸿沟。
(8)研究复杂、开放、非平衡的生命系统的热力学,耗散和混沌状态,分形现
象等非线形科学问题。
4.纳米尺度难题
如何揭示纳米尺度的基本规律
纳米分子和材料的结构与性能关系的基本规律是21世纪的化学和物理需要解决的重大难题之一。
现在中美日等国都把纳米科学技术定为优先发展的国家目标。
钱学森先生说,继信息科学之后,纳米科学技术可能引起新一轮的产业革命。
在复杂性科学和物质多样性研究中,尺度效应至关重要。
尺度的不同,常常引起主要相互作用力的不同,导致物质性能及其运动规律和原理的质的区别。
纳米尺度体系的热力学性质,包括相变和“集体现象”如铁磁性,铁电性,超导性和熔点等与粒子尺度有重要的关系。
当尺度在十分之几到10纳米的量级,正处于量子尺度和经典尺度的模糊边界中,此时热运动的涨落和布朗运动将起重要的作用。
例如金的熔点为1063℃,纳米金(5-10nm)的融化温度却降至330℃。
银的熔点为960.3℃,而纳米银(5-10nm)为100℃。
四大难题破解后的美好前景
经过50-100年的努力,解决了化学的四大难题,我们不难设想我们美好的远景:(1)在解决第一和第三难题,充分了解光合作用、固氮作用机理和催化理论的基础上,我们可以期望实现农业的工业化,在工厂中生产粮食和蛋白质,大大缩减宝贵的耕地面积,使地球能养活人口的数目成倍增加。
第三难题的解决,在医学上可以使人类免受疾病的痛苦,享受120~150岁的天年。
(2)在解决第二和第四难题的基础上,我们可以期望得到比现在性能最好的合金钢材强度大十倍,但重量轻几倍的合成材料,使城市建筑和桥梁建设的面貌完全更新。
(3)在充分了解结构与性能关系的基础上,我们能合成出高效、稳定、廉价的太阳能光电转化材料,组装成器件。
太阳投射到地球上的能量,是当前全世界能耗的一万培。
如果光电转化效率为10%,我们只要利用0。
1%的太阳能,就能满足当前全世界能源的需要。
(4)未来的化工企业将是绿色的,零排放的,原子经济的,物质在内部循环的企业。
(5)在合成了廉价的可再生的储氢材料和能转换材料的基础上,街上行走的汽车将全部是零排放的电动汽车。
我们穿的将是空调衣服。
(6)海水淡化将成为重要工业,从而解决人类的水资源紧缺问题。
从上面的讨论可以看出,20世纪的化学取得了辉煌成就,21世纪的化学发
展前程远大,期待社会对化学的重要性给予应有的认同,希望有更多的优秀年轻学生选择化学专业,共同迎接化学的黄金时代,实现我们人类美好的远景。