钢中的合金元素与杂质元素

合集下载

钢中常存的杂质元素

钢中常存的杂质元素

2.硫和磷的影响
硫是炼钢时不能除尽的有害杂质。硫可以大量溶于液态钢中,而在固 态铁中的溶解度极小。硫和铁能形成FeS,并易于形成低熔点共晶。 当钢凝固结晶时低熔共晶易于沿晶界分布;若把含有硫化物共晶的钢 加热到高温,例如1100℃以上时,共晶体就将熔化,因此就引起轧制 或锻造时的晶界碎裂(热脆)。铸钢件虽然不经锻造,但含硫量高时 也会引起铸件在铸造应力作用下发生热裂。此外硫还对钢的焊接性能 有不良影响,即容易导致焊缝热裂,同时在焊接过程中,硫易于氧化 ,生成SO2 气体,以致焊缝中产生气孔和疏松。

3.氮、氢、氧的影响
➢ 氢在钢中的溶解度甚微,对钢的组织看不出什么影响。但 由于氢和应力的联合作用将引起金属材料产生氢脆。钢中 较常见的是“白点”和氢致延迟断裂。
➢ 钢中含有过饱和的氢向裂纹尖端三向应力区内形成的微孔 核心及其它缺陷处扩散聚集形成氢分子,由于微孔核心等 很小,很少的氢气便可产生相当大的压力,这种内压力大 到足以通过塑性变形或解理使裂纹长大或使微孔长大、连 接时便产生氢脆断裂,呈白点特征。
3.氮、氢、氧的影响
➢ 氮是在冶炼时进入钢中的。氮在α-铁中的溶解度 在590℃时达到最大,约为0.1%,在室温时则降至 0.001%以下,所以通常情况下铁素体中溶解的氮 含量处于过饱和。如果将这样的钢材经受冷变形 后在室温放置或稍微加热时,过饱和的氮将逐渐 以氮化物的形式沉淀析出,这将使低碳钢的强度 、硬度上升,但塑性、韧性下降,这种现象称为 机械时效或应变时效。显然这对低碳钢的性能不 利。必须注意的是,当低碳钢中存在钒、钛、铌 等合金元素时,氮可以与之形成稳定的氮化物, 有细化晶粒和沉淀强化的效果。此外氮化钢就是 利用氮化物相强化钢铁材料零件的。
磷也是在炼钢过程中不能除尽的元素,一般转炉钢中残留较多(允许 最高含量为0.09%),碱性平炉钢中残留较少(<0.06%),而在碱性 电炉和电渣熔炼的钢中,磷可降至0.02%以下。磷在α-铁中的最大溶 解度可达2.55%(1049℃)。随着温度的降低,溶解度逐渐下降。钢中 的磷一般全部固溶于铁中,并产生固溶强化作用,使钢的强度、硬度 显著提高,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。此 外,磷铁合金的结晶范围很宽,因此磷具有严重的偏析倾向。

各种化学元素在钢中的作用

各种化学元素在钢中的作用

各种化学元素在钢中的作用钢是一种由铁和其他元素合金化而成的材料,其中添加的其他元素可用来改变钢的性质和特性。

不同的元素在钢中起到了不同的作用,下面就来逐一介绍一些常见的元素在钢中的作用。

1.碳(C):碳是钢中最常见的合金元素之一、它可以提高钢的硬度和强度,同时还可以提高钢的韧性和耐磨性。

碳含量越高,钢的硬度和强度就越高,但韧性会降低。

2.硅(Si):硅是钢中常见的合金元素之一、它可以提高钢的强度和硬度,并改善钢的耐热性能。

硅还可以降低钢的冷脆性和脆性。

3.锰(Mn):锰是一种常见的合金元素,在钢中添加锰可以提高钢的强度、硬度和耐磨性。

锰还可以提高钢的可塑性和韧性,并改善钢的冷加工性能。

4.磷(P):磷是一种常见的杂质元素,在钢中有害。

高磷含量会导致钢的脆性增加,尤其是在低温下。

因此,磷含量需要控制在较低的水平。

5.硫(S):硫是钢中的杂质元素之一,高硫含量会降低钢的韧性和冷加工性能。

因此,硫含量需要控制在较低的水平。

6.铬(Cr):铬是一种常见的合金元素,添加铬可以提高钢的耐腐蚀性能。

铬可以与氧气反应生成一层致密的氧化铬保护膜,防止钢与外界环境发生腐蚀。

7.镍(Ni):镍是一种常见的合金元素,添加镍可以提高钢的韧性和抗冷脆性能。

镍还可以提高钢的耐热性能和抗腐蚀性能。

8.钼(Mo):钼是一种常见的合金元素,添加钼可以提高钢的强度、硬度和耐热性能。

钼还可以提高钢的塑性和韧性,并改善钢的耐磨性能。

9.钒(V):钒是一种常见的合金元素,添加钒可以提高钢的强度和韧性,并改善钢的耐磨性能。

钒还可以提高钢的耐腐蚀性能和耐热性能。

10.硼(B):硼是一种常见的合金元素,添加硼可以提高钢的硬度和强度。

硼还可以提高钢的耐磨性能,并改善钢的切削性能。

总的来说,不同的元素在钢中的作用是多种多样的。

通过合理地添加和控制各种元素的含量,可以调整钢的性能和特性,使其适用于不同的应用领域。

钢材中的合金元素含量对其性能的影响

钢材中的合金元素含量对其性能的影响

钢材中的合金与杂质含量对其性能的影响一、对钢材一般性能的影响1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高1 5-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

优点:(1)提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。

(2) 硅能显著地提高钢的弹性极限、屈服极限和屈强比,这是一般弹簧钢。

(3)耐腐蚀性。

硅的质量分数为15%- 20%的高硅铸铁,是很好的耐酸材料。

含有硅的钢在氧化气氛中加热时,表面也将形成一层SiO2 薄膜,从而提高钢在高温时的抗氧化性。

缺点:使钢的焊接性能恶化。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn 钢比A3 屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

优点:(1)锰提高钢的淬透性。

(2)锰对提高低碳和中碳珠光体钢的强度有显著的作用。

(3)锰对钢的高温瞬时强度有所提高。

缺点:①含锰较高时,有较明显的回火脆性现象;②锰有促进晶粒长大的作用,因此锰钢对过热较敏感,在热处理工艺上必须注意。

各种合金元素对钢性能的影响

各种合金元素对钢性能的影响

三、各种合金元素对钢性能的影响目前在合金钢中常用的合金元素有:铬(Cr),锰(Mn),镍(Ni),硅(Si),硼(B),钨(W),钼(Mo),钒(V),钛(Ti)和稀土元素(Re)等。

五大元素:硅、锰、碳、磷、硫。

五大杂质元素:氧、氮、磷、硫、氢。

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

硅可提高强度、高温疲劳强度、耐热性及耐H2S等介质的腐蚀性。

硅含量增高会降低钢的塑性和冲击韧性。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

锰可提高钢的强度,增加锰含量对提高低温冲击韧性有好处。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

钢中的杂质元素

钢中的杂质元素

钢中不可能除尽所有的杂质在钢的冶炼过程中,不可能除尽所有的杂质,所以实际使用的碳钢中除碳以外,还含有少量的锰、硅、硫、磷、氧、氢、氮等元素,它们的存在,会影响钢的质量和性能。

()一•锰和硅的影响 ● 锰和硅是炼钢过程中必须加入的脱氧剂,用以去除溶于钢液中的氧。

● 它还可把钢液中的FeO 还原成铁,并形成MnO 和2SiO 。

● 锰除了脱氧作用外,还有除硫作用,即与钢液中的硫结合成MnS ,从而在相当大程度上消除硫在钢中的有害影响。

● 这些反应产物大部分进入炉渣,小部分残留于钢中,成为非金属夹杂物。

● 脱氧剂中的锰和硅总会有一部分溶于钢液中,冷至室温后即溶于铁素体中,提高铁素体的强度。

● 此外,锰还可以溶入渗碳体中,形成()C Mn Fe 3,锰和硅的固溶强化作用铁素体提高钢的强度和硬度● 锰对碳钢的机械性能有良好的影响,它能提高钢的强度和硬度,当含锰量不高<0.8%时,可以稍微提高或不降低钢的塑性和韧性。

● 锰提高强度的原因是它溶入铁素体而引起的固溶强化,并使钢材在轧后冷却时得到层片较细、强度较高的珠光体,在同样含锰量和同样冷却条件下珠光体的相对量增加。

● 硅溶于铁素体后有很强的固溶强化作用,显着提高钢的强度和硬度,但含量较高时,将使钢的塑性和韧性下降。

()二•硫的影响 来源:硫是钢中的有害元素,它是在炼钢时由矿石和燃料带到钢中来的杂质。

存在形式:从FeS 相图4.25可以看出,硫只能溶于钢液中,在固态铁中几乎不能溶解,而是以FeS 夹杂的形式存在于固态钢中。

热加工开裂即热脆:1. 硫的最大危害是引起钢在热加工时开裂,这种现象称为热脆2. 造成热脆的原因是由于FeS 的严重偏折3. 即使钢中含硫量不算高,也会出现Fe+FeS 共晶4. 钢在凝固时,共晶组织中的铁依附在先共晶相一铁晶体上生长,最后把FeS 留在晶界处,形成离异共晶。

FeS Fe +共晶的熔化温度很低989度,而热加工的温度一般为1150~1250度,这时位于晶界上的FeS Fe +共晶已处于熔融状态,从而导致热加工时开裂5. 如果钢液中含氧量也高,还会形成熔点更低的(940度)FeS FeO Fe ++三相共晶,其危害性更大防止热脆的方法和原理:防止热脆的方法是往钢中加入适当的锰。

各种因素对钢材性能的影响

各种因素对钢材性能的影响

2.5 各种因素对钢材性能的影响一.化学成分普通碳素钢中Fe占99%,其他杂质元素占1%;普通低合金钢中有<5%的合金元素。

碳(C):钢材强度的主要来源,但是随其含量增加,强度增加,塑性、冷弯性能、冲击性能、疲劳强度降低,可焊性降低,抗腐蚀性降低。

一般控制在0.22%以下,在0.2以下时,可焊性良好。

硫(S):热脆性。

有害元素,引起热脆和分层。

不得超过0.05%。

磷(P):冷脆性。

抗腐蚀能力略有提高,可焊性降低。

不得超过0.045%。

锰(Mn):合金元素。

弱脱氧剂。

与S形成MnS,(熔点为1600℃),可以消除一部分S的有害作用。

硅(Si):合金元素。

强脱氧剂。

,可细化精粒,提高强度,且不影响其它性能,但过量会恶化焊接性和抗锈性。

钒(V):合金元素。

细化晶粒,提高强度,其碳化物具有高温稳定性,适用于受荷较大的焊接结构。

氧(O):有害杂质。

氮(N):有害杂质。

碳当量(carbon equivalent )把钢中合金元素的含量按其对某种性能(如焊接性、铸造工艺性等)的作用换算成碳的相当含量。

C eq=C+Mn/6+(Cr+V+Mo)/5+(Cu+Ni)/15二.冶金缺陷常见的冶金缺陷有偏析、非金属夹杂、气孔、裂纹等。

1.偏析:金属结晶后化学成分分布不均匀的现象。

主要是硫、磷偏析,其后果是偏析区钢材的塑性、韧性、可焊性变坏。

2.非金属夹杂:指钢材中的非金属化合物,如硫化物、氧化物,他们使钢材性能变脆。

3. 裂纹:钢材中存在的微观裂纹。

4. 气泡:浇铸时由FeO 和C 作用所生成的CO 气体不能充分逸出而滞留在钢锭那形成的微小空洞。

5. 分层:浇铸时的非金属夹杂在轧制后可能造成钢材的分层。

三.构造缺陷a)Nσ应力集中现象xyb)(σ )σx maxc)N试件表面不平整,有刻槽、缺口,厚度突变时,应力不均匀,力线变曲折,缺陷处有高峰应力——应力集中。

结果:塑性降低,脆性增加。

应力集中对σ-ε关系的影响σ3000200100600500400700原因:不正确的设计(构造不合理)、制造(不光滑)及使用(在构件上乱打火等)。

各化学元素对钢材的影响

各化学元素对钢材的影响

各化学元素对钢材的影响钢材是一种广泛应用于建筑、制造和其他领域的重要材料。

化学元素可以通过添加或与钢材中的化学成分相互作用来改变钢材的性能和特性。

下面将详细介绍一些常见的化学元素对钢材性能的影响。

1.碳(C):碳是钢材中最重要的元素之一、含碳量的增加可以提高钢材的硬度和强度,但同时也会降低其可塑性和冲击韧性。

高碳钢具有较高的硬度和强度,适合用于制造刀具和弹簧等应用。

2.硅(Si):硅的添加可以提高钢材的抗腐蚀性和磁性。

硅还有助于钢材的脱氧作用,减少对氧气的敏感性。

硅含量较高的钢材常用于制造电力设备和变压器。

3.锰(Mn):锰的添加可以提高钢材的强度和韧性,并增加其耐磨性和耐蚀性。

锰含量较高的钢材常用于制造铁路轨道和重型机械设备。

4.硫(S)和磷(P):硫和磷是常见的非金属杂质元素,其含量对钢材性能有负面影响。

高硫和高磷含量会导致钢材变脆,降低其可塑性和韧性。

因此,在钢材生产过程中对硫和磷的含量进行控制非常重要。

5.铬(Cr):铬的添加可以提高钢材的耐腐蚀性和耐热性。

铬与钢中的碳形成的氧化物膜可以防止钢材与大气中的氧气接触,从而减少钢材的腐蚀。

高铬钢常用于制造不锈钢。

6.镍(Ni):镍的添加可以提高钢材的韧性和强度,同时也增加了钢材的耐腐蚀性。

镍含量较高的钢材常用于制造耐高温和耐腐蚀的材料,如合金钢和不锈钢。

7.钼(Mo):钼的添加可以提高钢材的强度和耐热性。

钼对钢材的影响类似于镍,但效果更加显著。

钼含量较高的钢材常用于制造高温设备和工具。

8.铝(Al):铝的添加可以改善钢材的氧化抗性和耐蚀性,并降低钢材的密度。

铝还可以提高钢材的强度和硬度,用于制造航空和汽车零件。

9.钛(Ti):钛的添加可以提高钢材的强度和耐腐蚀性。

钛含量较高的钢材常用于制造航空和化工设备。

10.硼(B):硼的添加可以提高钢材的硬度和强度,并改善其机械性能。

硼含量较高的钢材常用于制造切削工具和弹簧。

总之,化学元素对钢材性能的影响是多样且复杂的。

钢的合金化原理介绍

钢的合金化原理介绍
第一章
钢的合金化原理
一、钢中的合金元素
合金钢是在碳钢的基础上,为了改善碳钢的力学性 能或获得某些特殊性能,有目的地在冶炼钢的过程 中加入某些元素而得到的多元合金。 合金钢----为了保证一定的生产和加工工艺以及所要 求的组织与性能,在化学成分上特别添加合金元素 的铁基合金。 常用的合金元素有 锰(Mn)、硅(Si)、铬(Cr)、镍(Ni)、 钼(Mo)、钨(W)、钒(V)、钛(Ti)、锆 (Zr)、钴(Co)、铝(Al)、硼(B)及稀土 (RE)元素等。 常见的杂质元素:Si, Mn, S, P 但是如果人为加入并可改善钢的性能,这些杂质元 素也为合金元素。
封闭γ相区并与α-Fe无限互溶的Fe-Me相图(a)及Fe-Cr相图(b)
这类合金元素有:Si、Al 和强碳化物形成元 素Cr、W、Mo、V、Ti及P、Be等。但应该指 出,含Cr量小于7%时,A3下降;含Cr量大于 7%时,A3才上升。 ②缩小γ相区(但不能使γ相区封闭)(图1-4) 合金元素使A3升高,A4下降,使γ相区缩小 但不能使其完全封闭。 这类合金元素有:B、Nb、Zr、Ta等。
(3)在特殊条件下(如快速冷却凝固),可使某些 金属或合金形成非晶体相结构。 钢中非晶体相的作用目前仍缺乏较详细的实验 和理论依据。
三、合金元素与铁和碳的相互作用
1.合金元素与铁的相互作用 (1)γ相稳定化元素 γ相稳定化元素使A3 降低, A4升高,在较宽的成分范围内,促使奥氏体形成, 即扩大了γ相区。 根据Fe-Me相图的不同,可分为: ①开启γ相区(无限扩大γ相区) 这类合金元素主要有Mn、Ni、Co等。如果 加入足够量的Ni或Mn,可完全使体心立方的α相 从相图上消失,γ相保持到室温(即A1点降低), 故而由γ相区淬火到室温较易获得亚稳的奥氏体组 织,它们是不锈钢中常用作获得奥氏体的元素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢中的合金元素与杂质元素
碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)通常被称为钢铁材料的五大元素。

C,Si,Mn对钢铁材料是有益的,称为合金元素;
P和S则是有害元素,称为杂质元素;
N、H、O等元素的影响。

(1)锰的影响
锰在钢中的存在也属于有益元素,它与氧有较强的亲合力,具有较好的脱氧能力,在炼钢时作为脱氧剂加入。

另外锰与硫的亲合力很强,在钢液中与硫形成M n S,起到去
硫作用,大大的消除了硫的有害影响。

钢中的含锰量一般为0.25~0.80%,它一部分溶入铁素体起
到固溶强化作用,提高铁素体的强度,锰还可溶入渗碳体形成合
金渗碳体(F e,M n)3C,使钢具有较高的强度;
另一部分锰与硫形成M n S,与氧形成M n O,这些非金属夹
杂物大部分进入炉渣。

(2)硅的影响
硅在钢中的存在属于有益元素,由于它与氧有很大的亲合力,具有很好地脱氧能力。

在炼钢时作为脱氧剂加入,
S i+2F eO=2F e+Si O2,硅与氧化铁反应生成二氧化硅(Si O2)非金属夹杂物,一般大部分进入炉渣,消除了F e O的有害作用。

但如果它以夹杂物形式存在于钢中,将影响钢的性能。

碳钢中的含硅量一般S i%≤0.4%,它大部分溶入铁素体,起
固溶强化作用,提高铁素体的强度,而使钢具有较高的强度。

(3)硫的影响
硫在钢中是有害的杂质。

液态时F e、S能够互溶,固态时Fe几乎不溶解硫,而与硫形成熔点为1190℃的化合物F e S。

形成的共晶体(γ-F e+F eS)以离异共晶形式分布在γ-F e晶界处。

若将含有硫化铁共晶体的钢加热到轧制、锻造温度时,共晶体熔化,进行轧制或锻造时,钢将沿晶界开裂,这种现象称为钢
的“热脆”或“红脆”。

磷在钢中的存在一般属于有害元素。

在1049℃时,磷在F e中的最大溶解度可达 2.55%,在室温时溶解度仍在1%左右,因此磷具有较高的固溶强化作用,使钢
的强度、硬度显著提高,但也使钢的塑性,韧性剧烈降低,特别是使钢的脆性转折温度急剧升高,这种现象称为冷脆。

(5)氮的影响
氮在钢中的存在一般认为是有害元素。

N在γ中的最大溶解度在650℃为2.8%N,在α中的最大溶解度在590℃约为0.1%N,而在室温时的溶解度很小低于0.001%N,因此将钢由高温快速冷却后,可得到溶氮过饱和的铁素体。

这种溶氮过饱和的铁素体是不稳定的,在室温长时间放置
时N将以F e4N的形式析出,使钢的强度、硬度升高,塑性、韧
性降低,这种现象称为时效硬化。

为了减轻氮的有害作用,就必须减少钢中的含氮量或加入A l、V、N b、T i等元素,使它们优先形成稳定的氮化物,以减小氮所造成的时效敏感性。

(6)氢的影响
氢在钢中的存在也是有害元素,它是由潮湿的炼钢原料和炉
气而进入钢中的。

氢在钢中的溶解度甚微,但严重的影响钢的性能,氢溶入铁
中形成间隙固溶体,使钢的塑性大大降低,脆性大大升高,这种
现象称为氢脆。

含有较多氢的钢,在加热热轧时溶入,冷却时溶解度降低,
析出的氢结合成氢分子,使钢的塑性大大降低,脆性大大升高,加上热轧时产生的内应力,当它们的综合作用力大于钢的时,在
钢中就会产生许多微细裂纹如头发丝一样,也称发裂,这种组织
缺陷称为白点。

(7)氧的影响
氧在钢中的存在也是有害元素,由于炼钢是一个氧化过程,
氧在钢液中起到去除杂质的积极作用,但在随后的脱氧过程中不
能完全将它除净,氧在钢中的溶解度很小,在700℃时为0.008%,在500℃时在铁素体中的溶解度<0.001%。

氧溶入铁素体一般降低钢的强度、塑性和韧性,氧在钢中主
要以氧化物方式存在,如(F e O、F e2O3、F e3O4、M n O、S i O2、
A l2O3等),所以它对钢的性能的影响主要取决于这些氧化物的
性能,数量、大小和分布等。

相关文档
最新文档