排序实验报告_排序综合实验报告材料

合集下载

排序检验实验报告

排序检验实验报告

一、实验目的1. 理解排序检验的基本原理和方法。

2. 掌握排序检验的应用场景。

3. 通过实际操作,验证排序检验的有效性。

二、实验原理排序检验(Rank Test)是一种非参数检验方法,用于检验两个独立样本是否来自同一总体。

其基本思想是将样本数据从小到大排序,计算两个样本的秩和,然后根据秩和比较两个样本是否具有显著差异。

三、实验材料1. 计算机2. 数据处理软件(如SPSS、R等)3. 实验数据四、实验步骤1. 收集实验数据,确保两组数据相互独立。

2. 对两组数据进行排序,得到各自的秩。

3. 计算两组数据的秩和。

4. 根据秩和计算检验统计量。

5. 根据检验统计量查表得到临界值。

6. 判断两组数据是否来自同一总体。

五、实验结果与分析1. 数据描述本实验选取了两组独立样本,分别为样本A和样本B。

样本A包含10个数据,样本B包含10个数据。

两组数据如下:样本A:3, 5, 7, 8, 9, 10, 12, 13, 14, 15样本B:1, 4, 6, 7, 8, 9, 10, 11, 12, 132. 排序及秩计算将两组数据从小到大排序,得到各自的秩:样本A:1, 2, 3, 4, 5, 6, 7, 8, 9, 10样本B:1, 2, 3, 4, 5, 6, 7, 8, 9, 103. 秩和计算计算两组数据的秩和:样本A秩和:1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55样本B秩和:1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 554. 检验统计量及临界值计算检验统计量:T = |秩和A - 秩和B| / √[nA nB (nA + nB + 1) / 12]T = |55 - 55| / √[10 10 (10 + 10 + 1) / 12]T = 0查表得到临界值,以α = 0.05为例,查表得到临界值为1.98。

5. 判断结果由于计算得到的检验统计量T = 0小于临界值1.98,因此无法拒绝原假设,即两组数据来自同一总体。

排序的实验报告册

排序的实验报告册

一、实验目的1. 了解排序算法的基本原理和常用算法。

2. 掌握几种常用排序算法的代码实现。

3. 比较不同排序算法的性能,分析其优缺点。

4. 培养实验操作能力和分析问题能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm三、实验内容1. 实验一:冒泡排序2. 实验二:选择排序3. 实验三:插入排序4. 实验四:快速排序5. 实验五:归并排序四、实验步骤1. 实验一:冒泡排序(1)编写冒泡排序的Python代码。

(2)对一组随机生成的数据进行排序。

(3)观察排序过程,分析冒泡排序的优缺点。

2. 实验二:选择排序(1)编写选择排序的Python代码。

(2)对一组随机生成的数据进行排序。

(3)观察排序过程,分析选择排序的优缺点。

3. 实验三:插入排序(1)编写插入排序的Python代码。

(2)对一组随机生成的数据进行排序。

(3)观察排序过程,分析插入排序的优缺点。

4. 实验四:快速排序(1)编写快速排序的Python代码。

(2)对一组随机生成的数据进行排序。

(3)观察排序过程,分析快速排序的优缺点。

5. 实验五:归并排序(1)编写归并排序的Python代码。

(2)对一组随机生成的数据进行排序。

(3)观察排序过程,分析归并排序的优缺点。

五、实验结果与分析1. 实验一:冒泡排序(1)代码实现:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```(2)排序过程:冒泡排序通过比较相邻两个元素的大小,将较大的元素向后移动,从而实现排序。

(3)优缺点分析:优点:易于理解,实现简单。

缺点:时间复杂度较高,对于大数据量排序效率较低。

数据结构实验报告-排序

数据结构实验报告-排序

数据结构实验报告-排序一、实验目的本实验旨在探究不同的排序算法在处理大数据量时的效率和性能表现,并对比它们的优缺点。

二、实验内容本次实验共选择了三种常见的排序算法:冒泡排序、快速排序和归并排序。

三个算法将在同一组随机生成的数据集上进行排序,并记录其性能指标,包括排序时间和所占用的内存空间。

三、实验步骤1. 数据的生成在实验开始前,首先生成一组随机数据作为排序的输入。

定义一个具有大数据量的数组,并随机生成一组在指定范围内的整数,用于后续排序算法的比较。

2. 冒泡排序冒泡排序是一种简单直观的排序算法。

其基本思想是从待排序的数据序列中逐个比较相邻元素的大小,并依次交换,从而将最大(或最小)的元素冒泡到序列的末尾。

重复该过程直到所有数据排序完成。

3. 快速排序快速排序是一种分治策略的排序算法,效率较高。

它将待排序的序列划分成两个子序列,其中一个子序列的所有元素都小于等于另一个子序列的所有元素。

然后对两个子序列分别递归地进行快速排序。

4. 归并排序归并排序是一种稳定的排序算法,使用分治策略将序列拆分成较小的子序列,然后递归地对子序列进行排序,最后再将子序列合并成有序的输出序列。

归并排序相对于其他算法的优势在于其稳定性和对大数据量的高效处理。

四、实验结果经过多次实验,我们得到了以下结果:1. 冒泡排序在数据量较小时,冒泡排序表现良好,但随着数据规模的增大,其性能明显下降。

排序时间随数据量的增长呈平方级别增加。

2. 快速排序相比冒泡排序,快速排序在大数据量下的表现更佳。

它的排序时间线性增长,且具有较低的内存占用。

3. 归并排序归并排序在各种数据规模下都有较好的表现。

它的排序时间与数据量呈对数级别增长,且对内存的使用相对较高。

五、实验分析根据实验结果,我们可以得出以下结论:1. 冒泡排序适用于数据较小的排序任务,但面对大数据量时表现较差,不推荐用于处理大规模数据。

2. 快速排序是一种高效的排序算法,适用于各种数据规模。

算法冒泡排序实验报告(3篇)

算法冒泡排序实验报告(3篇)

第1篇一、实验目的本次实验旨在通过实现冒泡排序算法,加深对排序算法原理的理解,掌握冒泡排序的基本操作,并分析其性能特点。

二、实验内容1. 冒泡排序原理冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。

2. 实验步骤(1)设计一个冒泡排序函数,输入为待排序的数组,输出为排序后的数组。

(2)编写一个主函数,用于测试冒泡排序函数的正确性和性能。

(3)通过不同的数据规模和初始顺序,分析冒泡排序的性能特点。

3. 实验环境(1)编程语言:C语言(2)开发环境:Visual Studio Code(3)测试数据:随机生成的数组、有序数组、逆序数组三、实验过程1. 冒泡排序函数设计```cvoid bubbleSort(int arr[], int n) {int i, j, temp;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```2. 主函数设计```cinclude <stdio.h>include <stdlib.h>include <time.h>int main() {int n;printf("请输入数组长度:");scanf("%d", &n);int arr = (int )malloc(n sizeof(int)); if (arr == NULL) {printf("内存分配失败\n");return 1;}// 生成随机数组srand((unsigned)time(NULL));for (int i = 0; i < n; i++) {arr[i] = rand() % 100;}// 冒泡排序bubbleSort(arr, n);// 打印排序结果printf("排序结果:\n");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");// 释放内存free(arr);return 0;}```3. 性能分析(1)对于随机生成的数组,冒泡排序的平均性能较好,时间复杂度为O(n^2)。

排序的实验报告

排序的实验报告

排序的实验报告排序的实验报告引言:排序是计算机科学中非常重要的一个概念,它涉及到对一组数据按照一定规则进行重新排列的操作。

在计算机算法中,排序算法的效率直接影响到程序的运行速度和资源利用率。

为了深入了解各种排序算法的原理和性能,我们进行了一系列的排序实验。

实验一:冒泡排序冒泡排序是最简单的排序算法之一。

它的原理是通过相邻元素的比较和交换来实现排序。

我们编写了一个冒泡排序的算法,并使用Python语言进行实现。

实验中,我们分别对10、100、1000个随机生成的整数进行排序,并记录了排序所需的时间。

实验结果显示,随着数据规模的增加,冒泡排序的时间复杂度呈现出明显的增长趋势。

当数据规模为10时,排序所需的时间约为0.001秒;而当数据规模增加到1000时,排序所需的时间则增加到了1.5秒左右。

这说明冒泡排序的效率较低,对大规模数据的排序并不适用。

实验二:快速排序快速排序是一种常用的排序算法,它的核心思想是通过分治的策略将数据分成较小的子集,然后递归地对子集进行排序。

我们同样使用Python语言实现了快速排序算法,并对相同规模的数据进行了排序实验。

实验结果显示,快速排序的时间复杂度相对较低。

当数据规模为10时,排序所需的时间约为0.0005秒;而当数据规模增加到1000时,排序所需的时间仅为0.02秒左右。

这说明快速排序适用于大规模数据的排序,其效率较高。

实验三:归并排序归并排序是一种稳定的排序算法,它的原理是将待排序的数据分成若干个子序列,然后将子序列两两合并,直到最终得到有序的结果。

我们同样使用Python 语言实现了归并排序算法,并进行了相同规模数据的排序实验。

实验结果显示,归并排序的时间复杂度相对较低。

当数据规模为10时,排序所需的时间约为0.0008秒;而当数据规模增加到1000时,排序所需的时间仅为0.03秒左右。

这说明归并排序同样适用于大规模数据的排序,其效率较高。

讨论与结论:通过以上实验,我们可以得出以下结论:1. 冒泡排序虽然简单易懂,但对于大规模数据的排序效率较低,不适用于实际应用。

排序的实验报告

排序的实验报告

排序的实验报告排序的实验报告引言:排序是计算机科学中常见的问题之一。

在实际应用中,我们经常需要对一组数据进行排序,以便更好地理解和分析数据。

本实验旨在比较不同排序算法的效率和性能,以及探讨它们在不同数据集上的表现。

实验设计:为了进行排序算法的比较,我们选择了五种常见的排序算法,分别是冒泡排序、选择排序、插入排序、快速排序和归并排序。

我们使用Python编程语言实现了这些算法,并在同一台计算机上运行它们以确保公平比较。

实验步骤:1. 数据集的准备我们选择了三种不同规模的数据集:小规模(100个元素)、中规模(1000个元素)和大规模(10000个元素)。

这些数据集包含了随机生成的整数。

2. 算法实现我们按照上述算法的描述,使用Python编程语言实现了这些排序算法。

为了确保准确性和效率,我们在实现过程中进行了多次测试和调试。

3. 实验运行我们分别对小规模、中规模和大规模的数据集运行这些排序算法,并记录下每个算法的运行时间。

实验结果:1. 小规模数据集排序结果对于小规模的数据集,所有的排序算法都能够在很短的时间内完成排序。

然而,快速排序和归并排序的运行时间明显短于冒泡排序、选择排序和插入排序。

2. 中规模数据集排序结果随着数据规模的增加,冒泡排序、选择排序和插入排序的运行时间显著增加,而快速排序和归并排序的运行时间仍然较短。

特别是在中规模数据集上,快速排序和归并排序的效率明显高于其他算法。

3. 大规模数据集排序结果在大规模数据集上,冒泡排序、选择排序和插入排序的运行时间急剧增加,而快速排序和归并排序的运行时间仍然保持在可接受的范围内。

这进一步证明了快速排序和归并排序的高效性。

讨论:通过对不同规模数据集的排序实验,我们可以得出以下结论:1. 快速排序和归并排序是最有效的排序算法,它们的运行时间相对较短。

2. 冒泡排序、选择排序和插入排序在小规模数据集上表现良好,但在大规模数据集上效率较低。

3. 对于特定的应用场景,选择合适的排序算法非常重要。

排序的应用实验报告

排序的应用实验报告

排序的应用实验报告实验题目:排序的应用实验一、实验目的:1. 了解排序算法的基本原理和应用场景;2. 掌握常见的排序算法的实现方法;3. 熟悉排序算法的时间复杂度分析;4. 在实际应用中灵活运用排序算法。

二、实验原理:排序是将一组数据按照某个规则进行重新排列的过程,常见的排序算法有冒泡排序、选择排序、插入排序、归并排序、快速排序、堆排序等。

每种排序算法有其特点和适用场景,掌握不同排序算法的实现方法和时间复杂度对于实际应用非常重要。

三、实验内容及步骤:1. 冒泡排序实验:a) 随机生成一组整数数据;b) 利用冒泡排序算法对数据进行排序;c) 输出排序结果,并统计排序过程中的比较次数和交换次数。

2. 选择排序实验:a) 随机生成一组整数数据;b) 利用选择排序算法对数据进行排序;c) 输出排序结果,并统计排序过程中的比较次数和交换次数。

3. 插入排序实验:a) 随机生成一组整数数据;b) 利用插入排序算法对数据进行排序;c) 输出排序结果,并统计排序过程中的比较次数和移动次数。

4. 归并排序实验:a) 随机生成一组整数数据;b) 利用归并排序算法对数据进行排序;c) 输出排序结果。

5. 快速排序实验:a) 随机生成一组整数数据;b) 利用快速排序算法对数据进行排序;c) 输出排序结果。

四、实验结果及分析:1. 冒泡排序实验结果:随机生成的一组整数数据为:[5, 3, 8, 2, 6]排序过程中的比较次数为:10排序过程中的交换次数为:4排序结果为:[2, 3, 5, 6, 8]2. 选择排序实验结果:随机生成的一组整数数据为:[5, 3, 8, 2, 6] 排序过程中的比较次数为:10排序过程中的交换次数为:4排序结果为:[2, 3, 5, 6, 8]3. 插入排序实验结果:随机生成的一组整数数据为:[5, 3, 8, 2, 6] 排序过程中的比较次数为:10排序过程中的移动次数为:7排序结果为:[2, 3, 5, 6, 8]4. 归并排序实验结果:随机生成的一组整数数据为:[5, 3, 8, 2, 6] 排序结果为:[2, 3, 5, 6, 8]5. 快速排序实验结果:随机生成的一组整数数据为:[5, 3, 8, 2, 6]排序结果为:[2, 3, 5, 6, 8]五、实验总结:通过本次实验,我对常见的排序算法有了更深入的了解。

排序算法实验报告

排序算法实验报告

数据结构实验报告八种排序算法实验报告一、实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单项选择择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。

二、实验步骤各种内部排序算法的比较:1.八种排序算法的复杂度分析〔时间与空间〕。

2.八种排序算法的C语言编程实现。

3.八种排序算法的比较,包括比较次数、移动次数。

三、稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。

一般的选择都是时间复杂度为O(nlog2n)的排序方法。

时间复杂度来说:(1)平方阶(O(n2))排序各类简单排序:直接插入、直接选择和冒泡排序;(2)线性对数阶(O(nlog2n))排序快速排序、堆排序和归并排序;(3)O(n1+§))排序,§是介于0和1之间的常数。

希尔排序(4)线性阶(O(n))排序基数排序,此外还有桶、箱排序。

说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O〔n〕;而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O〔n2〕;原表是否有序,对简单项选择择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。

稳定性:排序算法的稳定性:假设待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;假设经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。

稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。

基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。

另外,如果排序算法稳定,可以防止多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级
2*10^7
10 电信 1 班
10^8
操作系统
10^5
Microsoft Windows 7 旗舰版 (64 位/Service Pck 1)
正序
xxxxxxxxxxxxx
逆序
编译软件
直接插入
Visul C++ 6.0
(带监视哨〕
emil
C
609803959.
24.874
10^4
100.158
2*10^4
中选出键值最小的记录,与无序区第一个记录 R 交换;新的无序区为 R 到
各种排序试验结果:
R[n],从中再选出键值最小的记录,与无序区第一个记录 R 交换;类似, CPU
第 i 趟排序时 R 到 R[i-1]是有序区,无序区为 R[i]到 R[n],从中选出键
(英特尔)Intel(R) Core(TM) i5 CPU M 480 2.67GHz
〔1〕二路并归排序:开始时,将排序表 R 到 R[n]看成 n 个长度为 1
录,顺序放在已排好序的子序列的后面〔或最前〕,直到全部记录排序完 的有序子表,把这些子表两两并归,便得到 n/2 个有序的子表〔当 n 为奇
毕。
数时,并归后仍是有一个长度为 1 的子表〕;然后,再把这 n/2 个有序的
〔1〕直接选择排序:首先,全部记录组成初始无序区 R 到 R[n],从 子表两两并归,如此反复,直到最终得到一个程度为 n 的有序表为止。
指导老师: 胡圣荣
序与排序要求相反时就交换两者的位置,直到没有反序的记录为止。
日期: 20XX.12.15~20XX.1.5
〔1〕冒泡排序:设想排序表 R 到 R[n]垂直放置,将每个记录 R[i]看
XX 农业大学工程学院
作是重量为 R[i].key 的气泡;依据轻气泡不能在重气泡之下的原则,从
算法基本思想:
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
排序实验报告_排序综合实验报告材料
无序区不断缩小。最终无序区变为空,有序区中包含了全部的记录,排序 结束。
〔2〕希尔排序:将排序表分成若干组,全部相隔为某个“增量〞的记
数据结构
录为一组,在各组进行直接插入排序;初始时增量 d1 较大,分组较多〔每
下往上扫描数组 R,凡违背本原则的轻气泡,就使其向上“漂浮〞,如此
1、插入排序:每次将一个待排序的记录,按其关键字大小插入到前面 反复进行,直到最终任何两个气泡都是轻者在上,重者在下为止。
已经排序好的序列中的适当位置,直到全部记录插入完毕为止。
〔2〕快速排序:在待排序的 n 个记录中任取一个作为“基准〞,将其
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
47.326 冒泡(下沉〕 C 49.9904 199.96 4999.78 19999.9 0.099999 4999.95 t 0.483 1.902 47.239 189.081 5min 0
学号
小〔或最大〕的记录来实现排序的。下面介绍利用大根堆来排序。首先, xxxxxxxxxx
将初始无序区调整为一个大根堆Βιβλιοθήκη 输出关键字最大的堆顶记录后,将剩下
主板
的 n-1 个记录在重建为堆,于是便得到次小值。如此反复执行,知道全部
宏碁 JE40_CP
第1页共1页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
排序算法综合试验报告
组的记录数少〕,以后增量渐渐削减,分组削减〔每组的记录数增多〕,
姓 名: xx x x
直到最终增量为 1〔d1d2...dt=1〕,全部记录放为一组,再整体进行一次
班 级: 10 电信 1
直接插入排序。
学 号: xxx
2、交换排序:每次比较两个待排序的记录,假如发觉他们关键字的次
〔1〕直接插入排序:在排序过程中,每次都讲无序区中第一条记录插 与记录分为两组,第一组中个记录的键值均小于或等于基准的键值,第二
入到有序区中适当位置,使其仍保持有序。初始时,取第一条记录为有序 组中个记录的键值均大于或等于基准的键值,而基准就排在这两组中间
区,其他记录为无序区。明显,随着排序过程的进行,有序区不断扩大,
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
0.02 直接选择 C 0 0 0 0 0 0 t 0.218 0.78 19.367 77.32 5min 19.751
第1页共1页
20.249 冒泡(上升) C 49.9905 199.985 4999.94 19999.9 0.099999 4999.95 t 0.452 1.825 45.542 182.678 5min 0
值最小的记录,将它与无序区第一个记录 R[i]交换,R 到 R[i]变为新的
xx
有序区。因为每趟排序都使有序区中增加一个记录,所以,进行 n-1 趟排

序后,整个排序表就全部有序了。
4.00 GB (金士顿 PC3-10600 DDR3 1333MHz)
〔2〕堆排序:利用小根堆〔或大根堆〕来选取当前无序区中关键字最
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
0.156 0.578 14.21 56.715 5min 0 29.137 希尔排序 (无监视哨) C 0.261664 0.598651 4.29106 9.60946 70.5165 166.929
第1页共1页
1084.56 2461.37 17159.6 1.50001 2.24458 t 0.015 0.016 0.047 0.109 0.717 1.591 11.544 27.735 208.722 0.02
第1页共1页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
〔这也是该记录的最终位置〕,这称为一趟快速排序〔或一次划分〕。对 元素输出完,从而得到一个有序序列。
所分成的两组重复上述方法,直到全部记录都排在适当位置为止。
4、并归排序:指将若干个已排序的子表合成一个有序表。
3、选择排序:每次从待排序的记录中选出关键字最小〔或最大〕的记
2500.3
10^5
9995.6
2*10^5
0.099999
10^6
5000.05
2*10^6
t(时间)
10^7
0.156
第1页共1页
0.546 13.391 53.417 5min 0 27.486 直接插入 (无监视哨〕 C 24.874 100.158 2500.3 9995.6 0.099999 4999.95 t
相关文档
最新文档