磁导率名词解释
磁芯磁导率

磁芯磁导率
磁芯的磁导率是一个物质对磁场的响应能力的量度,表示了材料在磁场中的导磁能力。
磁导率常用符号为μ,单位是亨利每米(H/m)。
磁导率可以分为相对磁导率和绝对磁导率两种。
相对磁导率是指某一材料在给定磁场中的磁导率相对于真空中的磁导率的比值。
相对磁导率可以用来描述材料对磁场的响应情况,表征材料的磁性能。
在电磁学中常用符号μr表示。
绝对磁导率则是指某一材料在给定磁场中的磁感应强度与磁场强度的比值。
绝对磁导率可以用来计算材料各向异性的导磁性能。
在电磁学中常用符号μ表示。
值得注意的是,磁导率和磁性之间虽然有密切联系,但并不是所有磁性材料的磁导率都相同。
不同类型的磁性材料有不同的磁导率,且随着外部磁场强度和频率的变化,磁导率也会有所不同。
磁导率

磁导率magnetic permeability表征磁介质磁性的物理量。
常用符号μ表示,等于磁介质中磁感应强度B与磁场强度H之比,即B(矢量)=μH(矢量)通常使用的是磁介质的相对磁导率μr ,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0磁场强度矢量H磁场强度矢量H是为了磁场的安培环路定理得到形式上简化而引入的辅助物理量。
它的物理意义类似于电位移矢量D。
从定义的操作方面来看,磁感应强度是完全考虑磁场对于电流元的作用,而不考虑这种作用是否受到磁场空间所在的介质的影响,这样磁感应强度就是同时由磁场的产生源与磁场空间所充满的介质来决定的。
相反,磁场强度则完全只是反映磁场来源的属性,与磁介质没有关系。
实际在前面已经说明,这两个概念在实际运用中各有其方便之处。
事实上,H的定义式为: H(矢量)=B(矢量)/μ磁通量magnetic flux表征磁场分布情况的物理量。
通过磁场中某处的面元dS的磁通量dΦ定义为该处磁感应强度的大小B与dS在垂直于B方向的投影dScosθ的乘积,即dΦ =BdScosθ式中θ是面元的法线方向n与磁感应强度B的夹角。
磁通量是标量,θ<90°为正值,θ>90°为负值。
通过任意闭合曲面的磁通量ΦB 等于通过构成它的那些面元的磁通量的代数和,即对于闭合曲面,通常取它的外法线矢量(指向外部空间)为正。
磁场的高斯定理指出,通过任意闭合曲面的磁通量为零,即它表明磁场是无源的,不存在发出或会聚磁力线的源头或尾闾,亦即不存在孤立的磁单极。
以上公式中的B既可以是电流产生的磁场,也可以是变化电场产生的磁场,或两者之和。
磁通密度是通过垂直于磁场方向的单位面积的磁通量,它等于该处磁场磁感应强度的大小B。
磁通密度精确地描述了磁感线的疏密。
通量概念是描述矢量场性质的必要手段,通量密度则描述矢量场的强弱。
磁通量和磁通密度,电通量和电通密度都是如此。
在国际单位制(SI)中,磁通量的单位是韦伯(Wb)。
磁导率emu-概述说明以及解释

磁导率emu-概述说明以及解释1.引言1.1 概述磁导率是描述材料对磁场响应能力的物理量,它是衡量材料磁性的重要参数之一。
磁导率的概念最早由德国物理学家赫尔曼·冯·亥茨(Hermann von Helmholtz)提出,用于描述材料在外加磁场作用下磁化程度的变化。
磁导率通过表征材料对磁场的响应程度来体现材料的磁性特征。
在外界磁场的作用下,材料内部的原子或分子会受到磁场的影响,发生磁化现象。
磁导率即是描述材料磁化程度与施加于材料上的磁场强度之间关系的物理量。
磁导率的值越大,代表材料在给定磁场下能够更强烈地磁化,具有更强的磁性;反之,磁导率越小,则表示材料对外加磁场的响应能力较弱,磁性较弱。
磁导率对材料的磁性特性具有重要意义。
通过测量材料的磁导率,可以了解材料的磁性质量、磁场特性以及电磁学特性的相关信息。
磁导率的测量方法有多种,其中包括静态磁化法、交流磁化法和霍尔效应法等。
磁导率的应用前景广泛。
在电子技术、材料科学、地球物理学等领域,磁导率的研究具有重要的理论意义和实际应用价值。
在电子技术中,了解材料的磁导率可帮助设计和制造磁性元器件,如电感和变压器等;而在材料科学领域,研究磁导率可以帮助开发具有特定磁性质的材料,拓展新材料的应用领域;在地球物理学中,通过测量材料磁导率可以探测地下矿产、岩石和沉积物的分布情况。
总之,磁导率作为衡量材料磁性特征的重要物理量,在材料研究和应用中具有重要意义。
进一步研究和利用磁导率的特性,将有助于推动材料科学领域的发展,并有望创造更多的科技应用和经济效益。
1.2 文章结构在文章的结构部分,我们将会探讨磁导率的定义和意义以及磁导率的测量方法。
通过这两个方面的讨论,我们可以更好地了解磁导率在磁性材料研究中的重要性和其在未来的应用前景。
首先,我们会详细介绍磁导率的定义和意义。
磁导率是一个衡量材料磁性能的物理量,它描述了磁场在材料中传播的能力。
磁导率的数值越大,意味着材料对磁场的响应越强,具有更好的导磁性能。
磁导率 物理意义

磁导率物理意义
磁导率是表征磁介质磁性的物理量,表示在空间或在磁芯空间中的线圈流过电流后,产生磁通的阻力或是其在磁场中导通磁力线的能力。
其公式μ=B/H,其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
磁导率的物理意义主要体现在其描述磁场在特定介质中的传播特性和磁场强度与磁感应强度之间的关系。
不同材料的磁导率值各不相同,反映了材料内部原子或分子对磁场的响应能力。
此外,磁导率还用于描述不同材料对磁场的响应程度,其值的大小能够反映材料的磁性能。
例如,在电子设备中,电感器、变压器和线圈等磁性元件的性能与材料的磁导率密切相关。
磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。
物质的绝对磁导率和真空磁导率(设为μ0=4**m)比值称为相对磁导率,也就是我们一般意义上的磁导率。
对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。
然而铁磁质的μr可以大至几万。
非铁磁性物质的μ近似等于μ0。
而铁磁性物质的磁导率很高,μ>>μ0。
铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。
空气的相对磁导率为;铂为;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为、、、、。
所以,铜虽然具有抗磁性,但相对磁导率也有;纯铁为顺磁性物质,其相对磁导率会达到400以上。
所以用铜裹住铁并不能阻断磁力,而且是远远不能。
在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。
直截了当地讲,磁场无处不在,是不能阻断的。
只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性能,因此可用于导磁,也可用于隔磁(本质上还是导磁)。
磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。
常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
目录1简介2常用参数3功能4方法原理1简介磁导率μ等于磁介质中磁感应强度B与磁场强度H之比,即μ=dB / dH通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0相对磁导率μr与磁化率χ的关系是:μr=1+χ磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。
磁导率变化规律总结

磁导率变化规律总结磁导率是一种描述物质对磁场的响应程度的物理量,它与物质的性质、温度、磁场强度等因素有关。
本文主要介绍了磁导率的定义、分类、测量方法和变化规律,以及磁导率对工程应用的影响和意义。
一、磁导率的定义和分类1.1 磁导率的定义磁导率是一种描述物质对磁场的响应程度的物理量,它是由物质中的原子或分子的磁矩产生的附加磁场与外加磁场之比。
数学上,磁导率可以表示为:μ=B H其中,B是物质中的总磁感应强度,H是外加磁场强度。
在国际单位制中,磁导率的单位是亨利每米(H/m)。
1.2 磁导率的分类根据物质对磁场的响应方式,可以将物质分为三类:顺磁性、反磁性和铁磁性。
顺磁性物质:当外加磁场时,物质中的原子或分子的磁矩会与外加磁场方向一致,从而产生一个增强外加磁场的附加磁场。
顺磁性物质的磁导率大于零,但远小于1。
例如,氧气、铝、钛等。
反磁性物质:当外加磁场时,物质中的原子或分子的磁矩会与外加磁场方向相反,从而产生一个削弱外加磁场的附加磁场。
反磁性物质的磁导率小于零,但绝对值远小于1。
例如,水、铜、金等。
铁磁性物质:当外加磁场时,物质中存在着一些微观区域(称为魏斯区),它们具有很强的自发磁化现象,即使没有外加磁场,也有一定的剩余磁性。
当外加磁场时,这些魏斯区会尽可能地与外加磁场方向一致,从而产生一个远远大于外加磁场的附加磁场。
铁磁性物质的磁导率远大于1,甚至可以达到几千或几万。
例如,铁、钴、镍等。
二、测量方法测量物质的相对磁导率(即与真空中光速平方之比)有多种方法,其中常用的有下列几种:2.1 悬挂法悬挂法是利用顺(反)磁性物质在非均匀外加磁场中受到力的作用而发生偏转来测量其相对继续写:相对磁导率的方法。
具体步骤如下:将待测样品制成细长条形,并用细丝悬挂在水平方向上。
将两个同极性的永久磁铁放置在样品的两侧,使样品处于非均匀磁场中。
调节磁铁的距离和方向,使样品达到稳定的偏转角度。
用角度测量仪或游标卡尺测量样品的偏转角度。
磁导率-16页

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。
物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。
对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr 与1之差的绝对值是0.94×10-5)。
然而铁磁质的μr可以大至几万。
非铁磁性物质的μ近似等于μ0。
而铁磁性物质的磁导率很高,μ>>μ0。
铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。
空气的相对磁导率为 1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。
所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。
所以用铜裹住铁并不能阻断磁力,而且是远远不能。
在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。
直截了当地讲,磁场无处不在,是不能阻断的。
只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性能,因此可用于导磁,也可用于隔磁(本质上还是导磁)。
磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。
常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
目录1简介2常用参数3功能4方法原理1简介磁导率μ等于磁介质中磁感应强度B与磁场强度H之比,即μ=dB / dH通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0相对磁导率μr与磁化率χ的关系是:μr=1+χ磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。
磁导率——精选推荐

磁导率 (magnetic permeability) 磁性合金的磁感应强度B与磁场强度H的比值,μ=B/H,又称绝对磁导率,单位为H/m。
分类在工程实用中,磁导率术语都是指相对磁导率,为物质的绝对磁导率μ与磁性常数μ0(又称真空磁导率)的比值,μr=μ/μ0,为无量纲值。
通常“相对”二字及符号下标r都被省去。
磁导率是表示物质受到磁化场H作用时,内部的真磁场相对于H的增加(μ>1)或减少(μ<1)的程度。
在实际应用中,磁导率还因其技术磁化条件的不同而分为多种,其中磁性合金常用的有:(1)起始磁导率μi。
磁中性化的磁性合金,当磁场强度趋近于无限小时磁导率的极限值。
在实际测量中,-般规定某低值条件下的磁导率作为起始磁导率。
(2)最大磁导率μm。
对应基本磁化曲线上各点磁导率的最大值。
(3)微分磁导率μd。
与B-H曲线上某-点的斜率相对应的磁导率μd=dB/dH。
(4)脉冲磁导率μp。
在脉冲磁场的作用下,磁通密度增量△B与磁场强度增量△H的比值,μp=△B/△H。
(5)理想磁导率μid。
磁性合金同时经受-定数值的交流磁场强度(其幅值使材料趋于饱和且波形近似正弦)和给定的直流磁场强度作用,然后将交流磁场强度逐渐降为零,此时磁通密度与相应的直流磁场强度的比值。
这样得到的理想磁导率为所加直流磁场强度的函数。
理想磁导率又称无磁滞磁导率,主要用于弱磁性材料和软磁材料的瑞利区。
(6)复数磁导率μ。
合金中磁通密度B与磁场强度H的复数商,表示B和H在时间相位上不同。
假定B的空间矢量和H的空间矢量是平行的,μ=μ'-jμ''。
这里μ'为复数磁导率的实部,又称弹性磁导率;μ''为复数磁导率的虚部,对应于合金的磁损耗,又称粘性磁导率。
许多应用场合常常要求以串联或并联项表示复数磁导率即μ=μs'-jμs''和1/μ=1/μp'-1/jμp''。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁导率名词解释
磁导率是物质的磁性特性的量度,它衡量了物质对外磁场的响应能力。
它表示的是物质相对于真空对磁场的相对传导能力。
磁导率是一个常数,通常用希腊字母μ表示。
磁导率越大,表示物质对磁场的传导能力越强,反之则越弱。
磁导率在电磁学、物理学等领域中具有重要的应用,例如在计算磁场的分布和设计电感器件时会用到。
不同物质具有不同的磁导率,例如铁、钴和镍等铁磁材料的磁导率较高,而铜、铝等非铁磁材料的磁导率较低。