经济应用数学(下)试卷A答案

合集下载

《经济应用数学》6套期末考试题AB卷带答案模拟测试题

《经济应用数学》6套期末考试题AB卷带答案模拟测试题

《经济应用数学》试题 (1)(4)已知 y sin x ,则 y().A .sin xB .sin xC . cos xD .cos xxxxx 年x 月题 号一 二 三 四 五 六 总 分x(5)设 f (x, y) y , 则f x y ( )' ( , )xxA . y ln yB . x 1 xyC. xyD.x 1lnxyy题得 分 评分人得 分 评分人一、填空(每题 2 分,共 10 分)三、求下列函数的极限(每题 6 分,共 12 分)班级答12(1)y 4 x的定义域为__________________x 1 (2) 函数 2 2 1 y x x 的单调递增区间是 __________________(1)2xlim2x1xx 21(3) 设函数 z sin( x y) , 则 dz __________________要2(4) 已知 f (x)dx x sin x c, 则 f (x) ___________________学号不(5) 3 sin x 2 dx 1 cosx2 得 分评分人 _______ 二、选择题 ( 每题 2分,共 10分)(2) lim x2 x (x 2 cos sin x x) 21 姓 名内(1)若 lim f (x) Axx,则 f (x) 在点 x 0 处()线A .有定义,且 f ( x 0 ) AB .没有定义C .有定义,且 f ( ) 可为任意值D .可以有定义,也可以没有定义x得 分 评分人四、求导数或微分(每题 6 分,共 24 分)封(2)下列函数中()是奇函数A. 2 1y x B .xy e C.y x sin 3x D .y x c os 1xx cos(1)y 3e x x 求y'密(3)设f (x) 为可导函数,以下各式正确的是()A. f ( x)dx f (x) B. f ( x)dx f (x) x cos 求dy(2)y e xC . f ( x)dx f (x)D . f ( x)dx f (x) C《经济应用数学》试题(1)第1页《经济应用数学》试题(1)第2页(共4 页)得分评分人(3)yy 1 xe ,求d ydx六、应用题(每题9 分,共18 分)11.求由曲线 3 , y x3y x所围成的平面图形的面积.题x ey(4)设0xy e ,求d ydx答班级五、求下列积分和解微分方程(每题 6 分,解微分方程8 得分评分人分,共26分) 要学号不2x x cosx 2(1)dxx2.已知某产品的边际成本为 C '(q )4q ( 万元/百台) ,边际收入为R '(q) 60 2q( 万元/百台), 如果该产品的固定成本为10 万元,求:(1)产量为多少时总利润L(q) 最大?姓名内(2) 2sin x dx(2)从最大利润产量的基础上再增产200台,总利润会发生什么变化?线2x(3)xe dx封《经济应用数学》试题(1)参考答案一、填空(每题 2 分,共10分)密(4)xy ' y 3, y 0x 1 1, 2,1 1,2 ;2, 1, ;3,cos x y( ydx xdy );4, 2x cosx;5,0 二、选择题( 每题2 分,共10 分)1,D 2,D 3,C 4,B 5,A三、求下列函数的极限(每题分,共分)6 121,原式limx 1 x 2 x 1 3x 1 x 1 2,《经济应用数学》试题(1)第3页《经济应用数学》试题(1)第4页(共4 页)2,原式2cos x 112 2x xlim 12xsin x1x《经济应用数学》试题(2)xxxxx年月题号一二三四五六总分四、求导数或微分(每题 6 分,共24 分)班级题答x 11,4,y'=3e +sinx+2 xx x2, y' e (cos x sin x) dy e (cos x sin x) d xydy e' y y 'y e xe y y3,x xdx 1 xexdy e y' ' 0x yy xy e e y yx xdx x e五、求下列积分和解微分方程(每题 6 分,解微分方程8 分,共26 分)得分评分人一、填空(每题 2 分,共10 分)2 x g x x(1) 设函数 f (x) x 6 10, ( ) 3,则f g(x) =________________(2) 曲线 2 1y x 在点(1,0) 处的切线方程为______3 x(3) 函数y ( ) 3 1在定义域内单调___________(递增、减少)f x x要1, 原式2 12(x cos x)dx x sin x 2ln x cx 2(4) 若x s in x是f (x) 的一个原函数,则 f ( x) d x ________学号不2, 原式3, 原式22sin xdx sin xdx cosx cos 41 12 2 2xsin tdt(5)0lim ___________2x 0xxxe d x e c22姓 名内4, y 1 xy 3 x, P 1 x Q 3 x得 分 评分人二、选择题 ( 每题 2 分,共 10 分)线封 1 1 dx3 dxpdxPdxy eQedx cedx cexxx由 yx 1得 c 3特解y 33x六、应用题(每题 9 分,共 18 分) 1, 由对称性141 311 3433S 2 (xx )dx 2xx 1 4 41 x3x c(1)设 f (x) 的定义域为 0,1 , 则 f (x 1) 的定义域为()A . 0,1B . 1,2C . 1,0D . 0,2(2)下列函数中()是奇函数1x2D.y eC y x cos3xy sin.xA y f ( x)B lim f (x) .x.函数在的一个邻域内有定义xx21y xB .A .(3)函数 yf (x) 在点 x 0 处连续,则()存在;密2,(1) L(q) R(q ) C( q )L '(q ) R '(q) C '(q) 60 6qC .极限值等于x 处的函数值 f ( x 0 ) 即 lim f ( x)f (x 0 ) 0x xD . y f (x) 在x 点无定令 L '(q )0 得 q 10义驻点唯一, q 10 百台 1000台为最大值,此时利润最大x(4) f (x dx xe C ,则 f (x)( ))(2)12122A .x(x 2)eB .x(x 1)e C .xxeD .x(x 1)eL 60 6qdq 60q 3q 12(万元)120000(元)1010《经济应用数学》试题(1)第5页《经济应用数学》试题(1)第6页(共4 页)(5)微分方程y ' y 满足初始条件y(0) 1 的特解为()A.x x x x y e B.y e 1 C.y e 1 D.y 2 ex cos 3,求dy (3)设y e x得分评分人三、求下列函数的极限(每题 6 分,共12 分)(4) 3 3z x y y x,求z z' , 'x y题(1) 1limx3 x x 2 3答班级得分评分人要(2) limx 0 1 cos2x2x五、求下列积分和解微分方程(每题 6 分,解微分方程8分,共26 分)学号(1)4x(1 x )dx不得分评分人姓名内四、求导数或微分(每题 6 分,共24 分)(2)e sin x cosxdx线(1)设x 1f ( x) ,求 f '( x)x 1 (3) 11xexedx封密 5 x x x x4 3 2(2)y 2x 3 5 4 7 ,求y" (4)1y' y 02x《经济应用数学》试题(1)第7页《经济应用数学》试题(1)第8页(共4 页)得分评分人六、应用题(每题9分,共18 分)1 ,f '( x)1 1x 1 x 112 x 2 x2 2x 1 x x 11.求由曲线y x2 , y x 所围成的平面图形的面积. 4 3 2 3 22, y ' 10 x12 x15 x2x 4 y" 40 x36 x30 x 2xy e x x (cos3 3sin 3 )dy e x x dxx3, ' (cos3 3sin 3 )题' 3 2 3' 3 3 24,z x y yz x xyxy五、求下列积分和解微分方程(每题 6 分,解微分方程8 分,共26 分)班级答要1, 原式2, 原式3, 原式1342 140222 x xdx xx3 20 34xxsinsinsin e dx ec1111x xx d 1 e ln 1 e ln 1 e ln 2e 0学号不2.某企业分批生产某产品,每批产量为q吨,固定成本8万元,总成本函数为34,dyydy 1,dx2x2dxy x11xln y ln cxy ce,dy 1, dx2y x2C(q) 8 q , 其中 k 为待定系数,已知批量 q 9 吨时,总成本 C 62万元。

经济数学考试题及答案4

经济数学考试题及答案4

经济数学考试题及答案4一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3在区间(-∞,2)上是()。

A. 增函数B. 减函数C. 先增后减D. 先减后增2. 已知随机变量X服从正态分布N(μ,σ^2),若P(X>1)=0.3,则P(X<1)=()。

A. 0.3B. 0.7C. 0.4D. 0.63. 以下哪个选项是二阶可导的函数()。

A. f(x) = |x|B. f(x) = x^(1/3)C. f(x) = x^2D. f(x) = sin(x)4. 已知某商品的边际成本函数为MC(x)=3x^2+2x+1,当x=1时,该商品的边际成本为()。

A. 6B. 4C. 5D. 75. 以下哪个选项是二重积分的几何意义()。

A. 曲线下的面积B. 曲面下的体积C. 曲线围成的体积D. 曲面围成的面积二、填空题(每题3分,共15分)6. 函数f(x)=x^3-3x的极值点为______。

7. 若随机变量X服从二项分布B(n,p),其中n=10,p=0.5,则E(X)=______。

8. 函数f(x)=x^2+2x+1的导数为______。

9. 已知某企业生产某种产品的成本函数为C(q)=0.5q^2+2q+100,当产量q=50时,该企业的平均成本为______。

10. 函数f(x)=e^x的不定积分为______。

三、计算题(每题10分,共30分)11. 求函数f(x)=x^2-6x+8在区间[1,4]上的定积分。

12. 已知随机变量X服从泊松分布,其参数λ=3,求P(X=2)。

13. 计算二重积分∬(D) (x^2+y^2) dA,其中D是由直线x=0,y=0和x+y=1所围成的区域。

四、解答题(每题15分,共30分)14. 已知函数f(x)=x^3-3x^2+2,求该函数的单调区间和极值。

15. 某公司生产一种产品,其成本函数为C(q)=0.1q^2+2q+100,销售价格为p=50-0.2q。

经济应用数学习题及答案

经济应用数学习题及答案

经济应用数学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN经济应用数学习题第一章 极限和连续 填空题1. sin lim x x x→∞=0 ; 2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。

4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25. 2lim(1)x x x →∞-=2-e选择题 1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )1 2.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 计算题 1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u -2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim 000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。

2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D ) (A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x 7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导 (C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y yy dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。

经济数学下册期末试题及答案

经济数学下册期末试题及答案

经济数学下册期末试题及答案一、选择题1. 在市场经济中,供给曲线通常呈现出:a) 向上倾斜b) 向下倾斜c) 水平d) 曲线的形状不确定答案: a) 向上倾斜2. 边际收益递减指的是:a) 边际成本随着产量增加而递减b) 边际效用随着消费量增加而递减c) 边际利润随着销售额增加而递减d) 边际人口随着社会发展而递减答案: b) 边际效用随着消费量增加而递减3. 市场需求曲线的斜率通常表示:a) 市场需求的价格弹性b) 市场需求的收入弹性c) 市场需求的替代品弹性d) 市场需求的交叉弹性答案: a) 市场需求的价格弹性4. 在纯竞争市场中,企业决定最优产量的条件是:a) 边际收益等于边际成本b) 总收益等于总成本c) 边际收益大于边际成本d) 总收益大于总成本答案: a) 边际收益等于边际成本5. 弹性需求意味着:a) 需求量对价格变化的敏感度较低b) 需求量对价格变化的敏感度较高c) 需求量不会随价格变化而改变d) 需求量和价格没有直接的关系答案: b) 需求量对价格变化的敏感度较高二、简答题1. 解释边际效用递减原理,并说明其在经济决策中的应用。

边际效用递减原理是指当个体消费某种商品或服务时,其每一单位消费所带来的额外效用递减的现象。

简而言之,意味着随着消费量的增加,每个单位的消费对总效用的贡献逐渐减少。

在经济决策中,边际效用递减原理告诉我们,在资源有限的情况下,合理分配资源可以最大化整体效用。

例如,在选择消费时,如果某个商品的边际效用已经减少到与其他商品相当,那么在分配有限资金时,可以考虑选择其他具有较高边际效用的商品,以提高总体满意度。

2. 解释市场需求曲线的斜率所代表的含义,并说明该斜率对市场分析的重要性。

市场需求曲线的斜率通常表示市场需求的价格弹性,即需求量对价格变化的敏感度。

当需求曲线的斜率较大时,意味着市场需求对价格的弹性较高,即价格的小幅变化会引起较大的需求量变化;反之,当需求曲线的斜率较小时,表示市场需求对价格的弹性较低,即价格的变化对需求量的影响较小。

经济应用数学试题及答案

经济应用数学试题及答案

经济应用数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:C2. 在线性规划问题中,目标函数的最优值可能在:A. 可行域的顶点B. 可行域的边界C. 可行域的内部D. 所有上述情况答案:D3. 假设某公司生产两种产品,产品1的利润为每单位10元,产品2的利润为每单位20元。

如果公司每天只能生产100单位的产品,且生产产品1需要2小时,产品2需要1小时,而公司每天有200小时的生产时间。

该公司应该如何分配生产时间以最大化利润?A. 只生产产品1B. 只生产产品2C. 生产50单位产品1和50单位产品2D. 生产100单位产品2答案:D4. 以下哪个选项不是边际成本的概念?A. 增加一单位产量的成本B. 总成本对产量的导数C. 固定成本D. 总成本的增加量除以产量的增加量答案:C5. 假设某公司的成本函数为C(x) = 3x^2 + 2x + 5,其中x是生产量。

该公司要生产多少单位的产品才能使平均成本最小?A. x = 0B. x = 1C. x = 2D. x = 3答案:B6. 在完全竞争市场中,长期均衡时,市场价格等于:A. 边际成本B. 平均成本C. 总成本D. 固定成本答案:B7. 以下哪个选项是关于消费者剩余的描述?A. 消费者支付的价格与他们愿意支付的价格之间的差额B. 消费者实际支付的价格C. 消费者购买的商品数量D. 消费者购买商品的总成本答案:A8. 如果一个市场的需求曲线是线性的,斜率为-2,那么需求的价格弹性是多少?A. 0.5B. -1C. -2D. 2答案:C9. 以下哪个选项不是经济利润的特点?A. 包括正常利润B. 考虑了机会成本C. 等于会计利润D. 可能为负值答案:C10. 在多阶段生产过程中,以下哪个选项不是生产者面临的决策类型?A. 投入品的选择B. 生产技术的选择C. 产品价格的确定D. 产出水平的确定答案:C二、简答题(每题10分,共20分)1. 解释什么是边际效用递减原理,并给出一个生活中的实例。

西南大学20年12月经济数学下【0226】大作业答案

西南大学20年12月经济数学下【0226】大作业答案

西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季 课程名称【编号】:经济数学下【0226】 A 卷 考试类别:大作业 满分:100分一、单项选择(每题5分,共30分)1、92322=-y x 是三维空间3R 上的 【 D 】A 、母线平行Z 轴的双曲柱面B 、实轴为X 轴的双曲线C 、母线平行Z 轴的椭园柱面D 、对称轴为Z 轴的椭圆锥面2、以下叙述正确的是 【 B 】 A 、二元函数的极限的计算可用降维法化为累次极限求取B 、累次极限不一定是二元函数的极限C 、二元函数的极限存在则两累次极限都存在D 、两累次极限都存在则二元函数的极限存在。

3、若)2sin(ln y x z -=,则=∂∂xz【 C 】 A 、)(y x tg 2- B 、 )(y x tg 2--C 、)(y x ctg 2-D 、)(y x ctg 2-- 4、若D :由1,100====y x y x ,,所围,则=⎰⎰Dxydxdy ye 【 A 】 A 、3 B 、2-e C 、e -3 D 、45、下列级数收敛的是 【 D 】A 、∑+12n nB 、∑+31n C 、∑+)1(1n n D 、∑+122nn6、在线性方程解的结构理论中,下列叙述正确的是 【 B 】 A 、齐次方程两解之积仍是它的解 B 、非齐次方程两解之和仍是它的解 C 、非齐次方程两解之差是它的解D 、非齐次方程的一个解与它的对应齐次方程的解之和是非齐次方程的解二、填空题(每小题8分,共40分)1、函数23),(323-+-=y y x x y x f 在)2,1(点处的全微分=)2,1(df。

2、函数22)(4),(y x y x y x f ---=的极大值为 8 。

3、比较两个重积分的大小,若D :由100=+==y x y x ,,所围, 则⎰⎰+Ddxdy y x 2)( ≥ ⎰⎰+Ddxdy y x 3)(。

4、若2x y x y D ==,由:所围 ,则=⎰⎰Ddxdy xy21/40 。

经济应用数学一下考试试题库

经济应用数学一下考试试题库

《经济应用数学(一)》(下) 考试试题库适用专业: 怀德学院会计、营销、国贸、财务管理、人力、物流专业一、定积分及应用选择题(18题)1. 设)(x f 可导,下列式子正确的是( )A.()()tad f x dx f x dt =⎰ B. ()()xa d f x dx f x dx=⎰ C.)()(x f dx x f dx d ba=⎰ D. )()(x f dx x f ba='⎰2.1(2)f x dx '=⎰( ).A.2[(2)(0)]f f -B. 2[(1)(0)]f f -C.1[(2)(0)]2f f - D. 1[(1)(0)]2f f - 3. 下列定积分的值为负的是( ).A.20sin xdx π⎰B.2cos xdx π-⎰C.233x dx --⎰D.225x dx --⎰4. 设()f x 在[,]a b 上连续.⎰=>=aI a xx f x I 023)0(d )(,则 ( )⎰⎰⎰⎰aa a ax x xf D x x xf C xx xf B xx xf A 0d )(21.d )(21.d )(.d )(.225. 设等于)(则极限连续⎰-→x a ax x x f ax xx f d lim,)(( ) A. af (a ) B. 0C.1D. 不存在 6. 设⎰---aax x f a a x f 等于)(分上的连续函数,则定积为d ],[)(( )⎰⎰⎰---aaa aaxx f D xx f C x f B A d .d .2.0.0)()()(7.设()f x 在区间[,]a b 上连续,则下列各式中不成立的是( ).A.()()bbaaf x dx f t dt =⎰⎰ B.()()baabf x dx f x dx =-⎰⎰C. ()0aaf x dx =⎰D. 若()0b af x dx =⎰,则()0f x =8.=-+⎰-dx x f x f x a a)]()([( ).A. ⎰a dx x f 0)(4B. ⎰-+adx x f x f x 0)]()([2C. 0D.以上都不正确.9.设()43422222sin cos ,sin cos 1x M xdx N x x dx x ππππ--==++⎰⎰, 23422(sin cos )P x x x dx ππ-=-⎰,则有( )A.N <P <M;B.M <P <N;C.N <M <P ;D.P <M <N .10.下列积分可直接使用牛顿--莱布尼兹公式的有 ( ).A.35201x dx x +⎰;B.1-⎰;C.43022(5)x dx x -⎰; D.11ln eedx x x⎰. 11.下列广义积分收敛的是( ). A.x e dx +∞⎰B.1ln edx x x +∞⎰C.1+∞⎰D.1+∞⎰12.下列广义积分发散的是( ).A.211dx x+∞⎰ B. 0xe dx +∞⎰ C. 211ln dx x x+∞⎰ D. 0x e dx -+∞⎰ 13.下列积分不是广义积分的有( )A. 101dx x⎰ B. 121dx x ⎰C.1⎰D. 10sin xdx x⎰14.下列积分计算过程正确的有( )A. 440201[tan ]1cos dx x xππ==⎰; B. 1112111[]2dx x x --=-=-⎰; C.110[arcsin ]2x π==⎰; D. 因为1x 是奇函数,所以1110dx x -=⎰. 15.由曲线x y cos =和直线0=x ,π=x ,0=y 所围成的图形面积为( )A.cos xdx π⎰;B.0|cos |xdx π⎰;C.cos x dx π⎰;D.2cos xdx π⎰+2cos xdx ππ⎰.16.曲线ln y x =与直线ln ,ln ,0y a y b a b ==<<及y 轴所围成的面积值为( )A.ln ln byae dy ⎰;B.by a e dy ⎰;C.ln ln ln baxdx ⎰; D.ln baxdx ⎰.17.*在区间[,]a b 上0>(),f x 0<'(),f x 0>"(),f x 1=⎰()baS f x dx , 2=-()()S f b b a ,32+=-()()()f a f b S b a , 则由它们的几何意义可得( )A. 123S S S <<B. 213S S S <<C. 321S S S <<D. 231S S S <<18.曲线()y f x =、()y g x =(()()0)f x g x >>及直线,x a x b ==所围成图形绕x 轴旋转而成的旋转体的体积为( )A.120[()()]f x g x dx π-⎰;B.1220[()()]f x g x dx π-⎰;C.1201[()()]2f x g x dx π-⎰;D.1221[()()]2f x g x dx π-⎰. 填空题(17题) 1.比较积分值的大小:10x e dx ⎰___ ____1(1)x dx +⎰2. 比较积分值的大小:10x e dx ⎰____ ___21x e dx ⎰3.02sin limxt x e tdt x→=⎰______________.4.522cosxdx ππ-=⎰___________.5.设0(1)(2)xy t t dt =--⎰,则(0)y '= .6.已知函数20sin xy t dt =⎰,则2y '= .7.若2kx e dx +∞-=⎰,则k = .8. 20x d dx⎰=9. 22x d t dt dx =10 325425sin 81x x dx x x -=++⎰ . 11.42sin 1cos x xdx xππ-=+⎰ . 12.312111x x dx x -++=+⎰ .13.12=⎰.14. 如果()f x 在[],a b 上的最大值与最小值分别为M 与m ,则()abf x dx ⎰有如下估计式:________________________________. 15.由曲线xy 1=与直线x y =及2=x 所围成的图形的面积是 16. 椭圆t b y t a x sin ,cos ==,π20≤≤t 所围图形的面积是17.曲线(),(),(()()0)y f x y g x f x g x ==>>与x 轴及两直线)(,b a b x a x <==围成平面图形绕x 轴旋转产生的旋转体的体积为18. 曲线2y x =、1x =和x 轴所围成的图形绕y 轴旋转产生的旋转体的体积为 计算题(基本题38题)1. 设函数()y y x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求dydx. 2. 设函数()y y x =由方程2200cos 0y x t e dt t dt +=⎰⎰所确定,求dy dx.3.计算 322cos()x x d t dt dxπ⎰;4.计算 203ln(1)limxx t dt x→+⎰;5.求2limxx x →⎰.6* .计算 2220020()limxt xx t e dt te dt→⎰⎰.7. 计算 312x dx --⎰. 8. ⎰-511du u u ; 9.⎰-2ln 01dx e x ;10.⎰-1024dx x ;11.ax ⎰;12.21e ⎰13.22ππ-⎰;14.⎰+10222)1(dx x x ;15⎰-+10232)1(dx x ; 16.计算.sin sin 053⎰-πdx x x17.⎰230arccos xdx ;18.⎰20sin πxdx x ; 19*.⎰>-+aa dx xa x 022)0(.120.1arctan x xdx ⎰;21.⎰-+222sin )(ππxdx x x22.21⎰;23.41⎰;24.1ln e ex dx ⎰;25. 32224x xdx x -++⎰. 26. 0x xe dx +∞-⎰;27. 232cos sin x xdx π⎰28.20sin cos x x dx π-⎰29.12ln(1)(2)x dx x ++⎰30.520cos sin 2d πθθθ⎰31.221t te dt -⋅⎰32.211ln ln ex xdx x++⎰ 33.1201ln 1x x dx x +⎛⎫ ⎪-⎝⎭⎰34.1ln(1)e x x dx -+⎰35 判定dx x x⎰∞+∞-+21的敛散性. 36.求21()-⎰f x dx ,其中22000,(),x e x f x x -⎧≥=⎨<⎩.37.设2301()12x x f x x ⎧≤≤⎪=⎨<≤⎪⎩,,求20()f x dx ⎰.38.计算21()f x dx -⎰,其中0()00x e x f x x -⎧≥=⎨<⎩,,.综合题与应用题(27题)39.求由抛物线x y =,直线y =-x 及y =1围成的平面图形的面积.40. 求椭圆12222=+by a x 所围图形的面积.41.计算曲线x e y =,x e y -=与直线1=x 所围成的图形的面积。

经济应用数学(西南财经大学专升本)

经济应用数学(西南财经大学专升本)
D .该向量组有若干个极大无关组.
参考答案:B
6、
A .解向量
B .基础解系
C .通解
D . A的行向量
参考答案:A
7、t满足( )时, 线性无关。
A . t≠1;
B . t=1;
C . t≠0;
D . t=0.
参考答案:A
二、计算题共4题,完成0题
1、求向量组 的一个极大无关组,并把其余向量用此极大无关组线性表示。
一、单项选择题共7题,完成0题
1、n维向量组α1,α2,…αs(3≤ s≤ n)线性无关的充要条件是α1,α2,…αs中()。
A .任意两个向量都线性无关
B .存在一个向量不能用其余向量线性表示
C .任一个向量都不能用其余向量线性表示
D .不含零向量
参考答案:C
2、如果两个同维的向量组等价,则这两个向量组( )。
因为向量组α1,α2,α3,…αt线性无关,所以:
k1+k2+…+kt=0,
k2+…+kt=0,
……,
kt=0,
所以k1=k2=…=kt=0矛盾。故向量组α1,α1+α2, … ,α1+α2+ …+αt线性无关。
2、设向量组α1,α2,α3线性无关,证明:向量组α1+α2,α2+α3,α3+α1线性无关。
参考答案:B
7、当( )时,A = 是正交阵。
A . a = 1, b = 2, c = 3
B . a = b = c = 1
C .
D .
参考答案:C
8、设A , B均为n阶方阵,下面结论正确的是( )。
A .若A ,B均可逆,则A + B可逆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 、16;
B 、10;
C 、8;
D 、.4
4、设321,,X X X 是取自某总体的容量为3的样本,则总体均值μ的有偏估计是( B )
A 、3211613121ˆX X X ++=μ,
B 、
,2123111
ˆ234X X X μ=++ C 、3213326161ˆX X X ++=μ
, D 、4123111
ˆ333
X X X μ
=++ 5、设(
)2
,~σ
μN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y ( D )
A 、()2
2
2
,b a b a N +-σμ; B 、()2
2
2
,b a b a N -+σμ;
C 、()2
2
,σμa b a N +; D 、()2
2
,σμa b a N -.
二、填空题(每小题3分,共15分)
1、一个袋子中装有5个大小相同的球,其中3个黑球,2个白球,从中任取2球,则刚好取得一个白球一个黑球的概率为_____
35
__________.
2.设X ~)9,1(N ,则(10)P X -<=_______0.5______。

3.设X 与Y 相互独立,且X ~(2)P ,Y ~)15,3(U ,则(4)D X Y -= 44
4、设总体服从),(2σμN ,当2
σ未知时,检验假设00:μμ=H ,10:H μμ≠可使用检验统计量
x ______________________
5、设总体X ~(2,9)N ,321,,X X X 是取自某总体的容量为3的样本,X 为样本均值,则
()E X =___2____ _
三、计算题( 8 分)
甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,试求: (1)目标被击中的概率;
(2)恰有一人击中目标的概率.
解:记=1A
“甲击中目标”, =2A “乙击中目标”, =B
“目标没有被击中” =C “恰有一人击中目标”
(1)1212()()()()0.40.50.2P B P A A P A P A =⋂==⨯= 【4分】 (2)1212()()0.60.50.40.50.5P C P A A A A =⋃=⨯+⨯= 【8分】 四、计算题( 10分)
设有两个口袋,甲袋装有n 个白球、m 个黑球;乙袋装有N 个白球、M 个黑球,今由甲袋中任取一球放入乙袋,再从乙袋中任取一球,试求:从乙袋中取得白球的概率。

解:设A={从甲袋中任取一球,取到白球}
B={从乙袋中任取一球,取到白球} (2分)
则B AB
AB =
()()()
()()()()
P B P AB P AB
P A P B A P A P B A =+=+ (6分)
()()()111
11n N m N
m n M N m n M N n N mN m n M N +=
+
++++++++=
+++
(8 分) 五、计算题( 10 分)
一个袋中有5个乒乓球,编号分别为1,2,3,4,5,从中任取3个,记X 为取出的3个球中的最大号码,求X 的分布律,并计算(51)E X -。

解:X 的可能取值为 3,4,5
1.0)3(35
22===C C X P , 2335(4)0.3C P X C ===, 24
35(5)0.6C P X C ===, 【6分】
【7分】
(51)5()15(30.140.350.6)121.5E X E X -=-=⨯+⨯+⨯-= 【10分】
六、计算题( 12 分)
设随机变量X 的概率密度为,01;()0,
kx x f x ⎧<<=⎨
⎩其它
,试求:
(1) 常数k ;(2)1
(1)2
P X <<;(3)()D X
解:(1)
1
1
1,22
kxdx k k =
==⎰
【3分】
(2)1
12
13
(1)224P X xdx <<==⎰ 【6分】
七、应用题( 每小题 10 分,共 30 分)
1、已知成年人的脉搏X (次/分钟)服从正态分布2
(,6.2)N μ,从一群成年人中随机抽取9人,测得其脉搏分别为:68,69,72,73,66,69,71,74,68,试求每人平均脉搏μ的置信水平为0.95的置信区间.
解: 成年人的平均脉搏μ的置信区间为
2x u n ασ⎛
⎫± ⎪⎝
⎭ (4 分)
由已知70x =,n=9,
0.0252
1.96u u α== (8分)
得置信区间为(66,74) (10 分) 答:成年人的平均脉搏μ的置信区间为(66,74)
2、设总体X 的概率密度为:(1),01;
(;)=10.
x x f x θθθθ⎧+<<>-⎨⎩其中其它.是未知参数,
12,,,n X X X 为一个样本,求参数θ的矩估计量。

解: 2
1
)1()(1
++=
+=

θθθθdx x x X E 【4分】 令()E X X =,即
1
2
X θθ+=+ 【7分】 解得 12ˆ1
X X θ
-=- 为θ的矩法估计。

【10分】
3、从某医院2010出生的新生女婴中随机地抽取25个,测得平均体重为3160克,样本标准差为300克,而由过去的资料统计新生女婴体重为3140克,假设新生女婴体重服从正态分布。

问现在与过去的新生女婴体重有无显著差异?(给定0.01α=)
解: ⑴01:3140,:3140H H μμ=≠ (2分)
⑵检验统计量:X T =
~(1)t n - (4分)
⑶拒绝域:()0.005{24 2.80}W t t =>= (6分) ⑷ 因为 1
3t =
= ( 8分) 所以接受0H
现在与过去的新生女婴无显著差异。

(10分)。

相关文档
最新文档