初二数学四边形压轴题专项练习

合集下载

中考数学与平行四边形有关的压轴题含答案解析

中考数学与平行四边形有关的压轴题含答案解析
【点睛】
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴ AB•CF= AC•PE﹣ AB•PD.
∵AB=AC,
∴CF=PD﹣PE;
结论运用:过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是长方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∴PG+PH的值为8;
迁移拓展:如图,
由题意得:A(0,8),B(6,0),C(﹣4,0)

四边形的相关概念、判定及性质(压轴突破)(解析版)—2024年中考数学【高分突破】压轴题培优专题精练

四边形的相关概念、判定及性质(压轴突破)(解析版)—2024年中考数学【高分突破】压轴题培优专题精练

A .134,55æöç÷èø【答案】A【分析】过点E 作EH 5OB OA AB ===,求得∵点()1,0A ,()0,2B ∴1,2OA OB ==,∵四边形ABCD 是正方形,∴90BAD Ð=°,AD,Q==PD BC AD\Ð=Ð,DPA DAP在矩形ABCD中,Q ABC BAD,==PC AB CDÐ=Ð=∴DPC CDP Ð=Ð,ACD BAC Ð=Ð,∴APD CDP ACD DPC BAC Ð=Ð+Ð=Ð+Ð,∵DPC DAP Ð>Ð,∴DPC BAC DAP BAC Ð+Ð>Ð+Ð,∴APD BADÐ>Ð∴ABC APD Ð<Ð;\B 项为真命题,不符合题意;如图,∵PC PD =,∴PCD PDC Ð=Ð,∵四边形ABCD 是矩形,∴AB CD P ,90ADC BAD Ð=Ð=°,∴PCD BAC PDC Ð=Ð=Ð,∵90PDC PDA BAC PAD Ð+Ð=Ð+Ð=°,∴PAD PDA Ð=Ð;故选项C 是真命题,不符合题意;如图,当PB PD =时,无法证明APB ACD Ð>Ð,故D 选项是假命题,符合题意.故选:D .3.如图,菱形OABC 边OA 在x 轴的正半轴上,且点B 的纵坐标为4,点P 从点O 开始向点A 运动,至点A 停止,过P 点与x 轴垂直的直线与菱形另一边交点为M ,记OP x =,OPM V 的面积为S ,且S 与x 的函数关系图象如右图,则cos AOC Ð的值为( )A .35B .45C .32【答案】A【分析】根据题意得OD a =,OA b OC ==,CD AE ==中,OD a =,2OC a =+,4CD =,利用勾股定理求得根据题意得OD a =,OA b ==∴2n a =,222n b a =+=+,在Rt OCD △中,OD a =,OC ∴()22242a a +=+,A .2B .65【答案】C 【分析】利用勾股定理得出答案.60A Ð=°Q ,四边形ABCD 是菱形,60GDE \Ð=°,30GED \Ð=°,设GD x =,则2DE x =,EGA.两问都正确B.两问都不正确C.第(1)问正确,第(2)问错误D.第(1)问错误,第(2)问正确【答案】A=,再根据中位线的判定,得出EO是V 【分析】根据平行四边形的性质,得出OA OC3,1B.A.()【答案】A【分析】根据题意易得OA=A.甲、乙正确B.甲、丙正确【答案】C【分析】尺规作图,得到AE平分是菱形,利用菱形的性质,勾股定理,含出结论.【点睛】本题考查角平分线,中垂线的作图,矩形的性质,菱形的判定和性质,勾股定理,含A.先是平行四边形,平移3个单位长度后是菱形B.先是平行四边形,平移3个单位长度后是矩形,再平移2C.先是平行四边形,平移3个单位长度后是矩形,再平移3V平移的过程中,依次出现平行四边形、矩形、菱形、正方形D.在Rt BCD【答案】B【分析】根据平移过程逐步分析,排除正方形的可能,再分矩形和菱形,利用性质求出平移距离即可.继续平移,当AB与C D¢¢共线时,¢¢是菱形,此时AB B D¢⊥,即四边形AB C D此时的总平移距离为333==,BD AD即再平移23个单位长度后是菱形;¢¢综上可得:平移过程中,四边形AB C D位长度后是菱形,故选B.【点睛】此题主要考查平行四边形、矩形、菱形的判定和性质,勾股定理,含利用了特殊四边形的判定和性质.二、填空题Т=.(1)EFD(2)线段AE的长是【答案】135°23Ð+Ð【分析】(1)证明AEF DFE∵菱形ABCD ,60ABC Ð=°,AD ∥∴18060120A BCD Ð=°-°=°=Ð,Ð∵A E AB ¢⊥,120EA C A ¢Ð=Ð=°,∴1209030BGC Ð=°-°=°,又∵60ABC Ð=°,∴603030BCG Ð=°-°=°,【答案】 75 84-【点睛】本题考查作图-轴对称变换,矩形的性质,等腰三角形的判定和性质等知识,解题的关键是掌握轴对称变换的性质,灵活运用所学知识解决问题.12.如图,将一副三角板放置在盒子中,动,12cm AC EF ==,则线段【答案】()(623cm AD -££【分析】依题意可知,当点B 度最大,分别求出两个最值即可得解.∵四边形BCHG 是矩形,∴BG CH =,GH BC =,BC ∵BC GH ∥,30ACB Ð=°∵90,CBG DBF DEF Ð=°Ð=Ð同理可得:6cmDH CH ==∴()636cmAD AH DH =-=-即()max 636cmAD =-【答案】 2 74【分析】根据题意可得BE =得到答案;连接CG ,作OM 2BI ED ==,HI GH =,Ð由题意可得2BI ED ==,HI 到BC 的距离,在Rt BGH △和Rt BIH V 中,GH IH BH BH =ìí=î,()Rt Rt HL BGH BIH \V V ≌,【答案】25【分析】当G ,E ,C 三点在同一条直线上时,过点的中点得到12AG DG ==∵点G 是矩形ABCD 的边∴132AG DG AD ===∵90D Ð=°,CD AB =【答案】(16,8)OA的解析式为y=【分析】根据题意求出直线1点1C,2C,3C,4C,的坐标即可.【详解】解:∵点1A坐标为(1,1),四边形1A BBC,\===(2,1)OB A B BB1,1,【答案】26【分析】证明四边形GCEF 是矩形,4AB BC CD AD ====,ECD Ð1212CEFG S S S +=正方形,设ED BG =()23121138322S S S x x =+-=+-=【详解】解:∵CE CG ⊥,EF ⊥HE点拨1:如图②,延长EH 交AD 于点M ,由题意可知AD EF P ,易证:()AAS AMH FEH V V ≌,可得∵四边形ABCD与四边形CEFG P∴AD EF∴AMH FEHÐ=Ð,MAHÐ又∵点H是AF的中点,即=(1)求证:AG GFAB=,AD=(2)若6【答案】(1)证明见解析(2)5CH=【分析】本题考查平行四边形的性质,矩形的性质,相似三角形的性质和判定,平行线分线段成比例性质(1)若2AD=,1tan2ADMÐ=,求AE(2)若FB NB=.①求ENFÐ的度数;②求证:23DE EC EP=×.【答案】(1)22;∵EN DF ⊥,∴90FEN Ð=°,∵在Rt FEN △中,FB NB =,∴FB EB BN ==,∴12Ð=Ð,设12x Ð=Ð=°,则3122x Ð=Ð+Ð=°,∵四边形ABCD 为正方形∴CD BC =,BCA DCA Ð=Ð,90BCD Ð=°,又AC AC =,∴BCE DCE ≌△△,∴432x Ð=Ð=°,∵90BCD Ð=°,∴1490Ð+Ð=°,即290x x +=,解得:30x =,∴1230Ð=Ð=°,又∵90FEN Ð=°,∴903060ENF Ð=°-°=°;②证明:∵EN DF ⊥,∴90FEN DEG Ð=Ð=°,∵四边形ABCD 为正方形,∴90BCD Ð=°,45BCA DCA Ð=Ð=°,∴180135ECG DCA Ð=°Ð=°-,18090FCG BCD Ð=°Ð=°-,∵90FEN FCG Ð=Ð=°,∴F 、E 、C 、G 四点在以FG 为直径的圆上,∴545ACB Ð=Ð=°,∴1805135EGP Ð=°-Ð=°,∵CEG GEP Ð=Ð,ECG EGP Ð=Ð,∴ECG EGP ∽△△,过点C 作CN AM ∥交DE 的延长线于点N ,则四边AMNC 是平行四边形(依据利用“等积变形”可得:ADEC AMNCS S =正方形平行四边形将AMNC Y 沿直线MQ 向下平移MA 的长度得到A M N C ¢¢¢¢Y 若点A ¢恰好与点Q 重合,即MA AQ =,则A M N C ¢¢¢¢Y 即为QACC ¢Y 延长CC ¢交QP 于点H ,利用“等积变形”可得:QACC QATHS S ¢=四边形四边形ADEC QATHS S =正方形四边形同理:BCFG BPHTS S =正方形四边形∵ABPQ QATH BPHTS S S =+正方形四边形四边形∴ABPQ ACED BCFGS S S =+正方形正方形正方形即222AB AC BC =+(1)上述证明过程中的依据是___________.(2)根据小明的思路,请你帮助小明证明“若点A ¢恰好与点Q 重合”这一猜想.(3)已知:(如图2)正方形ABCD 的边长为8,E 是边CD 上的一个动点,以CE 为一边在正方形ABCD 外作正方形CEFG ,连接BD ,BF ,点E 在运动的过程中,DBF V 的面积是否发生变化,若变化说出变化的理由,若不变,请直接写出DBF V 的面积.【答案】(1)两组对边分别平行的四边形是平行四边形(2)证明见解析(3)DBF V 的面积为32【分析】(1)由DE AC ∥,结合AM CN ∥,可得四边形AMNC 是平行四边形,从而可得推理的依据;(2)证明90AQP QAB MAB Ð=Ð=°=Ð,AB AQ =,90D DAC ACE ACB Ð=Ð=Ð=°=Ð,AD AC =,DAM BAC Ð=Ð,再证明ADM ACB V V ≌,可得AM AB =,从而可得结论;(3)设正方形CEFG 边长为a ,由DBF DEF ABD BGF ABCD CEFG S S S S S S =++--V V V V 正方形正方形可得结论.【详解】(1)解:∵正方形ADEC ,∴DE AC ∥,∵AM CN ∥,∴四边形AMNC 是平行四边形,∴依据是两组对边分别平行的四边形是平行四边形.(2)∵正方形ABPQ ,∵90AQP QAB MAB Ð=Ð=°=Ð,AB AQ =,∵正方形ADEC ,∴90D DAC ACE ACB Ð=Ð=Ð=°=Ð,AD AC =,∴DAM MAC MAC BAC Ð+Ð=Ð+Ð,∴DAM BAC Ð=Ð,∴ADM ACB V V ≌,∴AM AB =,而AB AQ =,∴AM AQ =,。

2021年中考复习数学压轴题:四边形 综合专题练习

2021年中考复习数学压轴题:四边形 综合专题练习

2021年中考数学压轴题专题练习:四边形综合复习1、如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.2、如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.3、如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.4、已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在对角线AC上,且BF=DE,AH=CG,连接FH 、HE 、BG 、FG .(1)求证:FG=EH .(2)若EG 平分∠AEH ,FH 平分∠CFG ,FG//AB ,∠ACD=68°,∠GFH=35°,求∠GHF 的度数.5、如图,点E 是正方形ABCD 的边BC 上一点,连接DE ,将DE 绕着点E 逆时针旋转90°,得到EG ,过点G 作GF ⊥CB ,垂足为F ,GH ⊥AB ,垂足为H ,连接DG ,交AB 于I .(1)求证:四边形BFGH 是正方形;(2)求证:ED 平分∠CEI ;(3)连接IE ,若正方形ABCD 的边长为,则△BEI 的周长为 .6、如图,正方形CD AB 的边长为1,点E 为边AB 上一动点,连结C E 并将其绕点C 顺时针旋转90得到CF ,连结DF ,以C E 、CF 为邻边作矩形CFG E ,G E 与D A 、C A 分别交于点H 、M ,GF 交CD 延长线于点N .(1)证明:点A 、D 、F 在同一条直线上;(2)随着点E 的移动,线段D H 是否有最小值?若有,求出最小值;若没有,请说明理由;(3)连结F E 、MN ,当//F MN E 时,求AE 的长.7、定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=_____;(2)如图2,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,求这个准矩形的面积.8、【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD 面积的时,请直接写出tan∠BAE的值.9、若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧CC 的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.10、△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.11、点P 是平行四边形ABCD 的对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F .点O 为AC 的中点.(1)如图1,当点P 与点O 重合时,线段OE 和OF 的关系是 ;(2)当点P 运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P 在线段OA 的延长线上运动,当∠OEF =30°时,试探究线段CF 、AE 、OE 之间的关系.12、如图(1),在矩形ABCD 中,8,6AB AD ==,点,E F 分别是边,DC DA 的中点,四边形DFGE 为矩形,连接BG .(1)问题发现在图(1)中,CE BG=_________; (2)拓展探究将图(1)中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图(2)的情形给出证明;(3)问题解决当矩形DFGE旋转至,,B G E三点共线时,请直接写出线段CE的长.13、如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.14、已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,FQ,当点Q停止运动时,△EFQ也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM :S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.15、问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN =60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.。

备战中考数学—平行四边形的综合压轴题专题复习含答案

备战中考数学—平行四边形的综合压轴题专题复习含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,在△ABP 和△QBP 中,{90APB BPHA BQP BP BP∠=∠∠=∠=︒=,∴△ABP ≌△QBP (AAS ),∴AP=QP ,AB=BQ ,又∵AB=BC ,∴BC=BQ .又∠C=∠BQH=90°,BH=BH ,在△BCH 和△BQH 中,{90BC BQC BQH BH BH=∠=∠=︒=,∴△BCH ≌△BQH (SAS ),∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH 的周长是定值.(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .又∵EF 为折痕,∴EF ⊥BP .∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP .又∵∠A=∠EMF=90°,在△EFM 和△BPA 中,{EFM ABPEMF A FM AB∠=∠∠=∠=,∴△EFM ≌△BPA (AAS ).∴EM=AP .设AP=x在Rt △APE 中,(4-BE )2+x 2=BE 2.解得BE=2+28x , ∴CF=BE-EM=2+28x -x , ∴BE+CF=24x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,∴AP=2.考点:几何变换综合题.2.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x= 133, ∵BD=22AD AB + =213, ∴OB=12BD=13, ∵BD ⊥EF ,∴EO=22BE OB -=213, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 62233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33,综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,CF=BE=32,在Rt △OCE 中,OC=222231122OE CE ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭=622+. (3)、如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=2, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC=AB 进而求证△ABE ≌△ACF ,即可求得BE=CF ;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.6.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE =EG ,∴∠GAE =∠AGE ,在Rt △ACD 中,N 为AC 的中点,∴DN =12AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,∴DN ∥GF ,在Rt △GDF 中,M 是FG 的中点, ∴DM =12FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,∴DM ∥AE ,∴四边形DMEN 是平行四边形, ∴EM =DN =12AC , ∵AC =AB =5, ∴EM =52. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.7.(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C '处,若42ADB =∠,则DBE ∠的度数为______.(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】(1)如图1所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:CF=22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.8.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为23,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②2;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF≌△DOE根据全等三角形的性质证明;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;(2)首先过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系.【详解】(1)①证明:∵四边形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为23, ∴OG=12BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE , ∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.9.问题探究(1)如图①,已知正方形ABCD 的边长为4.点M 和N 分别是边BC 、CD 上两点,且BM =CN ,连接AM 和BN ,交于点P .猜想AM 与BN 的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD 的边长为4.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,求△APB 周长的最大值;问题解决(3)如图③,AC 为边长为23的菱形ABCD 的对角线,∠ABC =60°.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 向终点C 和A 运动.连接AM 和BN ,交于点P .求△APB 周长的最大值.【答案】(1)AM ⊥BN ,证明见解析;(2)△APB 周长的最大值2;(3)△PAB 的周长最大值3.【解析】试题分析:根据全等三角形的判定SAS 证明△ABM ≌△BCN ,即可证得AM ⊥BN ; (2)如图②,以AB 为斜边向外作等腰直角△AEB ,∠AEB=90°,作EF ⊥PA 于E ,作EG ⊥PB 于G ,连接EP ,证明PA+PB=2EF ,求出EF 的最大值即可;(3)如图③,延长DA 到K ,使得AK=AB ,则△ABK 是等边三角形,连接PK ,取PH=PB ,证明PA+PB=PK ,求出PK 的最大值即可.试题解析:(1)结论:AM ⊥BN .理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.10.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.(1)填空:AB= ,BC= .(2)将△ABC绕点B逆时针旋转,①当AC与x轴平行时,则点A的坐标是②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.③在②的条件下,旋转过程中AC扫过的图形的面积是多少?(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为.【解析】试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(-4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90°,∴BC=;(2)①如图1,∵B(0,3),∴OB=3,∵AB=5,∴AO=AB-BO=5-3=2,∴A(0,-2).当在x轴上方时,点A的坐标为(0,8),②如图2,过点C作CF⊥OA与点F,∵△ABC为等腰直角三角形,∴∠BAC=90°,AB=AC,∴∠BAO+∠CAF=90°,∵∠OBA+∠BAO=90°,∴∠CAF=∠OBA,在△AOB和△CFA中,,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(-7,4)∵A(-4,0)设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:,则直线AC解析式为y=x,∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,∴∠ABD=90°,∵∠CAB=90°,∴∠ABD=∠CAB=90°,∴AC∥BD,∴设直线BD的解析式为y=x+b1,把B(0,3)代入解析式的:b1=3,∴直线BD的解析式为y=x+3;③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,所以可得:S=;(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,平行四边CAA′C′的面积为(7+)×4=,三角形ABC的面积为×5×5=△ABC扫过的面积为:.考点:几何变换综合题.。

专题05 平行四边形选填题压轴训练(原卷版)八年级数学下学期期中考试压轴题专练(人教版)

专题05 平行四边形选填题压轴训练(原卷版)八年级数学下学期期中考试压轴题专练(人教版)

专题05 平行四边形选填题压轴训练(原卷版)一.选择题(共25小题)1.平行四边形一边长是10cm,那么它的两条对角线的长度可以是()A.8cm和6cm B.8cm和8cm C.8cm和12cm D.8cm和16cm2.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,且∠ACD=30°,DE∥BC交AC于点E,BF⊥CD于点F,连接EF.若AC=2,则EF的长是()A.2B.C.1D.3.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别与AD,AC,BC相交于点E,O,F.下列结论正确的个数有()①四边形AFCE为菱形;②△ABF≌△CDE;③当F为BC中点时,∠ACD=90°.A.0个B.1个C.2个D.3个4.如图,在平行四边形ABCD中,N是CD的中点,AB=2BC,BN=m,AN=n,则CD的长为()A.+n B.m+C.D.5.如图,在矩形ABCD中,AB=10,P是CD边上一点,M、N、E分别是P A、PB、AB的中点,以下四种情况,哪一种四边形PMEN不可能为矩形()A.AD=3B.AD=4C.AD=5D.AD=66.已知矩形ABCD,一条直线将该矩形分割成两个多边形,则所得任一多边形的内角和度数不可能是()A.180°B.360°C.540°D.720°7.如图,矩形ABCD中,点E在BC上,且AE平分∠BAC,AE=CE,BE=2,则矩形ABCD的面积为()A.24B.24C.12D.128.如图,正方形ABCD的边长为3,点P为对角线AC上任意一点,PE⊥BC,PQ⊥AB,垂足分别是E,Q,则PE+PQ 的值是()A.B.3C.D.9.如图,在正方形ABCD中,AB=4,E是BC上的一点且CE=3,连接DE,动点M从点A以每秒2个单位长度的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点M的运动时间为t秒,当△ABM和△DCE全等时,t的值是()A.3.5B.5.5C.6.5D.3.5或6.510.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使四边形AECF是平行四边形,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠211.如图,在▱ABCD中,BC=6,∠A=135°,S▱ABCD=12.若点E、F分别在边BC、AD上,且AF=CE,∠EFD=30°,则AF的长为()A.﹣1B.2﹣1C.6﹣6D.4﹣212.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.413.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0),(0,4),OD=5,点P在线段BC上运动,当△ODP是腰长为5的等腰三角形时,则满足条件的点P有()A.4个B.3个C.2个D.1个14.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2﹣2B.2C.3﹣1D.215.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个16.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,点B的横坐标为,则矩形AOBC的面积为()A.B.5C.D.317.如图,P为菱形ABCD内一动点,连接P A,PB,PD,∠APD=∠BAD=60°,AB=2,则PB+PD的最大值为()A.B.C.D.18.如图,在矩形ABCD中,AB=1,AD=,O是对角线的交点,过C作CE⊥BD于点E,EC的延长线与∠BAD的平分线相交于点H,AH与BC交于点F.给出下列四个结论:①AF=FH;②BF=BO;③AC=CH;④BE =3DE.其中正确结论有()A.1个B.2个C.3个D.4个19.如图,在平行四边形ABCD中,AD=2AB,作CE⊥AB于点E,点F是AD的中点,连接CF,EF.关于下列四个结论:①∠BCF=∠DCF;②∠FEC=∠FCE;③∠AEF=∠CFD;④S△CEF=S△BCE,则所有正确结论的序号是()A.①②③④B.①②③C.②③④D.③④20.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.D.221.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=2,AB=6,给出下列结论:①AE=10,②∠COD=45°,③△COF的面积S△COF=6,④CF=BD=2,其中正确的是()A.①②③B.②③④C.①②④D.①③④22.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P 为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.23.矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个24.在平面直角坐标系中,点B,C的坐标分别为B(﹣,﹣),C(,).任意一点A都满足|AB﹣AC|=2.作∠BAC的内角平分线AE,过点B作AE的垂线交AE于点F,已知当点A在平面内运动时,点F与坐标原点O的距离为()A.B.C.D.125.如图,正方形ABCD的边长为,E在正方形外,DE=DC,过D作DH⊥AE于H,直线DH,EC交于点M,直线CE交直线AD于点P,则下列结论正确的是()①∠DAE=∠DEA;②∠DMC=45°;③;④若MH=2,则S△CMD=A.1个B.2个C.3个D.4个二.填空题(共20小题)26.在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则点C的坐标为.27.如图,矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF的延长线交CD于点H.过F作MN ∥DC,交AD于M,交BC于N.若AB=6,则CH的长为.28.如图,在平行四边形ABCD中,∠ABC=135°,AD=4,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为.29.如图,等边△AOB,点C是边AO所在直线上的动点,点D是x轴上的动点,在矩形CDEF中,CD=6,DE =,则OF的最小值为.30.正方形ABCD中,点E、F分别在边BC、CD上,AE⊥BF于点G,过点F作AE的平行线,交AD于点M,交BC的延长线于点N,CN=3DM,AM=,则FG的长为.31.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q 同时出发秒后其中一个新四边形为平行四边形.32.如图,四边形ABCD是边长为4的菱形,∠C=60°,点P是射线CE上的动点,线段AP的垂直平分线MN 交AD于点F,连接PF,若△DPF是等腰三角形,则PF的长为.33.如图,在平行四边形ABCD中,∠B=60°,AB=6,BC=4,点E为边AB上的一个动点,连接ED并延长至点F,使得DE=2DF,以EC、EF为邻边构造平行四边形EFGC,连接EG,则EG的最小值为.34.如图是一个边长大于16cm的正方形,以距离正方形的四个顶点8cm处沿45°角画线,将正方形纸片分成5部分,则中间阴影部分的面积.35.如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动,当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于.36.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列四种说法:①CE⊥FG;②四边形ABGF是菱形;③BC=2EG;④∠DFC=∠EFG.正确的有.(填序号)37.如图,以△ABC的边AB、AC为边往外作正方形ABEF与正方形ACGD,连接BD、CF、DF,若AB=2,AC =4,则BC2+DF2的值为.38.如图,△ABC中,∠BAC=90°,AB=BC=a,点D在边AC上运动(不与点A,C重合),以BD为边作正方形BDEF,使点A在正方形BDEF内,连接EC,则下列结论:①△BCD≌△ECD;②当CD=2AD时,∠ADE=30°;③点F到直线AB的距离为a;④△CDE面积的最大值是a2.其中正确的结论是(填写所有正确结论的序号)39.如图,正方形ABCD的对角线BD上有一点E,且BE=3DE,点F在AB的延长线上,连接EF,过点E作EG ⊥EF,交BC的延长线于点G,连接GF并延长,交DB的延长线于点P,若AB=4,BF=1,则线段EP的长是.40.在▱ABCD中,对角线AC,BD交于点O,E是边AD上的一个动点(与点A,D不重合),连接EO并延长,交BC于点F,连接BE,DF.下列说法:①对于任意的点E,四边形BEDF都是平行四边形;②当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;③当AB<AD时,至少存在一个点E,使得四边形BEDF是菱形;④当∠ADB=45°时,至少存在一个点E,使得四边形BEDF是正方形.所有正确说法的序号是.41.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为.42.如图,在△ABC中,BC=12,AC=16,∠C=90°,M是AC边上的中点,N是BC边上任意一点,且2CN<BC,若点C关于直线MN的对称点C'恰好落在△ABC的中位线上,则CN=.43.如图,在矩形OAHC中,OC=8,OA=12,B为CH中点,连接AB.动点M从点O出发沿OA边向点A运动,动点N从点A出发沿AB边向点B运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM,CN,MN,设运动时间为t(秒)(0<t<10).则t=时,△CMN为直角三角形.44.如图,在矩形ABCD中,AB=1,BC=3,AC和BD交于点O,点E是边BC上的动点(不与点B,C重合),连接EO并延长交AD于点F,连接AE,若△AEF是等腰三角形,则DF的长为.45.已知正方形ABCD的边长为1,P为射线AD上的动点(不与点A重合),点A关于直线BP的对称点为E,连接PE,BE,CE,DE.当△CDE是等腰三角形时,AP的值为.。

中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。

2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】

2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】

专题32四边形与新定义综合问题【例1】(2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【例2】.(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是(填序号);(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;(3)如图2,已知在△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.6.(2022春•南浔区期末)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.7.(2022春•长汀县期末)在平面直角坐标系中,如果点p(a,b)满足a+1>b且b+1>a,则称点p为“自大点”:如果一个图形的边界及其内部的所有点都不是“自大点”,则称这个图形为“自大忘形”.(1)判断下列点中,哪些点是“自大点”,直接写出点名称;p 1(1,0),,.(2)如果点N(2x+3,2)不是“自大点”,求出x的取值范围.(3)如图,正方形ABCD的初始位置是A(0,6),B(0,4),C(2,4),D(2,6),现在正方形开始以每秒1个单位长的速度向下(y轴负方向)平移,设运动时间为t秒(t>0),当正方形成为“自大忘形”时,求t的取值范围.8.(2022春•江北区期末)定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论:;.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.9.(2022春•铜山区期末)新定义;若四边形的一组对角均为直角,则称该四边形为对直四边形.(1)下列四边形为对直四边形的是(写出所有正确的序号);①平行四边形;②矩形;③菱形,④正方形.(2)如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.①求证:BD的垂直平分线经过点O;②若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.10.(2022春•盐田区校级期末)给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD的中点,连接EF,AD=4,BC=6.求EF的长.11.(2022春•玄武区期末)【概念认识】在四边形ABCD中,∠A=∠B.如果在四边形ABCD内部或边AB上存在一点P,满足∠DPC=∠A,那么称点P是四边形ABCD的“映角点”.【初步思考】(1)如图①,在四边形ABCD中,∠A=∠B,点P在边AB上且是四边形ABCD的“映角点”.若DA∥CP,DP∥CB,则∠DPC的度数为°;(2)如图②,在四边形ABCD中,∠A=∠B,点P在四边形ABCD内部且是四边形ABCD 的“映角点”,延长CP交边AB于点E.求证:∠ADP=∠CEB.【综合运用】在四边形ABCD中,∠A=∠B=α,点P是四边形ABCD的“映角点”,DE、CF分别平分∠ADP、∠BCP,当DE和CF所在直线相交于点Q时,请直接写出∠CQD与α满足的关系及对应α的取值范围.12.(2022春•北仑区期末)定义:对角线相等的四边形称为对美四边形.(1)我们学过的对美四边形有、.(写出两个)(2)如图1,D为等腰△ABC底边AB上的一点,连结CD,过C作CF∥AB,以B为顶点作∠CBE=∠ACD交CF于点E,求证:四边形CDBE为对美四边形.(3)如图2,对美四边形ABCD中,对角线AC、BD交于点O,AC=BD,DC∥AB.①若∠AOB=120°,AB+CD=6,求四边形ABCD的面积.②若AB⋅CD=6,设AD=x,BD=y,试求出y与x的关系式.13.(2022春•玄武区校级期中)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB、EF、CD为铅直方向的边,AF、DE、BC为水平方向的边,点E在AB、CD之间,且在AF、BC之间,我们称这样的图形为“L图形”,若一条直线将该图形的面积分为面积相等的两部分,则称此直线为该“L图形”的等积线.(1)如图2所示四幅图中,直线L是该“L图形”等积线的是(填写序号).(2)如图3,直线m是该“L图形”的等积线,与边BC、AF分别交于点M、N,过MN 中点O的直线分别交边BC、AF于点P、Q,则直线PQ(填“是”或“不是”)该图形的等积线.(3)在图4所示的“L图形”中,AB=6,BC=10,AF=2.①若CD=2,在图中画出与AB平行的等积线l(在图中标明数据);②在①的条件下,该图形的等积线与水平的两条边DE、BC分别交于P、Q,求PQ的最大值;③如果存在与水平方向的两条边DE、BC相交的等积线,则CD的取值范围为.14.(2022•姑苏区一模)定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD 是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH =6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.15.(2022•江北区开学)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,CD=3BE,QB=6,求邻余线AB的长.16.(2022春•西城区校级期中)平面直角坐标系xOy中,正方形ABCD的四个顶点坐标分别为:A(﹣,),B(﹣,﹣),C(,﹣),D(,),P、Q是这个正方形外两点,且PQ=1.给出如下定义:记线段PQ的中点为T,平移线段PQ得到线段P'Q'(其中P',Q'分别是点P,Q的对应点),记线段P'Q'的中点为T.若点P'和Q'分别落在正方形ABCD的一组邻边上,或线段P'Q'与正方形ABCD的一边重合,则称线段TT'长度的最小值为线段PQ到正方形ABCD的“回归距离”,称此时的点T'为线段PQ到正方形ABCD 的“回归点”.(1)如图1,平移线段PQ,得到正方形ABCD内两条长度为1的线段P1Q1和P2Q2,这两条线段的位置关系为;若T1,T2分别为P1Q1和P2Q2的中点,则点(填T1或T2)为线段PQ到正方形ABCD的“回归点”;(2)若线段PQ的中点T的坐标为(1,1),记线段PQ到正方形ABCD的“回归距离”为d1,请直接写出d1的最小值:,并在图2中画出此时线段PQ到正方形ABCD的“回归点”T'(画出一种情况即可);(3)请在图3中画出所有符合题意的线段PQ到正方形ABCD的“回归点”组成的图形.17.(2022秋•福田区期中)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD 是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=;(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF 对角线的交点,连接BD.①四边形ABCD损矩形(填“是”或“不是”);②当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由;③若∠ACE=60°,AB=4,BD=5,求BC的长.18.(2022春•江阴市校级月考)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)在题(1)的矩形ABCD中,点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN 的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=4,则DR的最小值=.19.(2022春•柯桥区月考)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(1)阅读与理解:如图1,四边形内接于⊙O,点A为弧BD的中点.四边形ABCD(填“是”或“不是”)等补四边形.(2)探究与运用:①如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;②如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,若CD=10,AF=5,求DF的长.(3)思考与延伸:在等补四边形ABCD中,AB=AD=3,∠BAD=120°,当对角线AC长度最大时,以AC 为斜边作等腰直角三角形ACP,直接写出线段DP的长度.20.(2021秋•荔湾区期末)如图,共顶点的两个三角形△ABC,△AB′C′,若AB=AB',AC=AC',且∠BAC+∠B′AC′=180°,我们称△ABC与△AB′C'互为“顶补三角形”.(1)如图2,△ABC是等腰三角形,△ABE,△ACD是等腰直角三角形,连接DE;求证:△ABC与△ADE互为顶补三角形.(2)在(1)的条件下,BE与CD交于点F,连接AF并延长交BC于点G.判断DE与AG 的数量关系,并证明你的结论.(3)如图3,四边形ABCD中,∠B=40°,∠C=50°.在平面内是否存在点P,使△PAD 与△PBC互为顶补三角形,若存在,请画出图形,并证明;若不存在,请说明理由.【例1】2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=90度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【分析】(1)①设∠A=3x°,则∠B=2x°,∠C=x°,利用“对补四边形”的定义列出方程,解方程即可求得结论;②连接AC,利用“对补四边形”的定义和勾股定理解答即可得出结论;(2)在DC上截取DE=DA,连接BE,利用全等三角形的判定与性质,等腰三角形的性质和“对补四边形”的定义解答即可.【解答】(1)解:①∵∠A:∠B:∠C=3:2:1,∴设∠A=3x°,则∠B=2x°,∠C=x°,∵四边形ABCD是“对补四边形”,∴∠A+∠C=180°,∴3x+x=180,∴x=45°.∴∠B=2x=90°.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°,∴∠D=90°.故答案为:90;②连接AC,如图,∵∠B=90°,∴AB2+BC2=AC2.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°.∴∠D=90°.∴AD2+CD2=AC2.∴AB2+BC2=AD2+CD2,∴CD2﹣CB2=AB2﹣AD2,∵AB=3,AD=2,∴CD2﹣CB2=32﹣22=5.故答案为:5;(2)证明:在DC上截取DE=DA,连接BE,如图,∵BD平分∠ADC,∴∠ADB=∠EDB.在△ADB和△EDB中,,∴△ADB≌△EDB(SAS),∴∠A=∠DEB,AB=BE,∵AB=CB,∴BE=BC,∴∠BEC=∠C.∵∠DEB+∠BEC=180°,∴∠DEB+∠C=180°,∴∠A+∠C=180°,∴四边形ABCD是“对补四边形”.【例2】(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =55度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【分析】(1)由等邻角四边形的定义和四边形内角和定理可求解;(2)①由角平分线的性质和平行线的性质可得∠EDB=∠ABD,可得结论;②由三角形内角和定理和四边形内角和定理可求∠C=60°,即可求解;(3)由面积关系可求解;(4)由直角三角形的性质可得AM=DM=ME,EN=NB=CN,由勾股定理可求DG=1,BG=6,即可求解.【解答】(1)解:∵四边形ABCD为等邻角四边形,∠A=130°,∠B=120°,∴∠C=∠D,∴∠D=55°,故答案为:55;(2)①证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵ED∥BC,∴∠EDB=∠DBC,∴∠EDB=∠ABD,∴四边形ABDE为等邻角四边形;②解:△BDC是等边三角形,理由如下:∵∠BDC=∠C,∴BD=BC,∠DBC=180°﹣2∠C,∵∠A+∠E+∠ABD+∠BDE=360°,∴∠A+∠E=360°﹣2∠ABD,∵∠A+∠C+∠E=300°,∴300°﹣∠C=360°﹣2(180°﹣2∠C),∴∠C=60°,又∵BD=BC,∴△BDC是等边三角形;(3)解:PM+PN=CE,理由如下:如图,延长BA,CD交于点H,连接HP,∵∠B=∠BCD,∴HB=HC,=S△BPH+S△CPH,∵S△BCH∴×BH×CE=×BH×PM+×CH×PN,∴CE=PM+PN;(4)解:如图,延长AD,BC交于点H,过点B作BG⊥AH于G,∵ED⊥AD,EC⊥CB,M、N分别为AE、BE的中点,∴AM=DM=ME,EN=NB=CN,∵AB2=BG2+AG2,BD2=BG2+DG2,∴52﹣(3+DG)2=37﹣DG2,∴DG=1,∴BG==6,由(3)可得DE+EC=BG=6,∴△DEM与△CEN的周长之和=ME+DM+DE+EC+EN+CN=AE+BE+BG=AB+BG=(6+2)dm.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【分析】(1)根据邻余四边形的定义证明结论即可;(2)连接AB,在∠A+∠B=90°的基础上选择合适的E点和F点连接作图即可;(3)邻余四边形的定义可得∠H=90°,由勾股定理可求解.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:如图所示(答案不唯一),(3)解:如图3,延长AD,CB交于点H,∵四边形ABCD是以AB为邻余线的邻余四边形,∴∠A+∠B=90°,∵∠ADC=135°,∴∠HDC=45°,∴∠HDC=∠HCD=45°,∴CH=DH,∵AB2=AH2+BH2,∴225=(6+DH)2+(3+DH)2,∴DH=6(负值舍去),∴CD=6.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有1个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为(6+2)cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.【分析】(1)利用同底等高的面积关系求解即可;(2)根据钝角三角形垂线的特点进行判断即可;(3)作A点关于DE的对称点F,连接BF,则△ABC周长≥AC+BF,求出BF+AC即可求解;(4)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长即可;(5)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长,取最小值即可.=×AB×AE,S矩形ABDE=AB×AE,【解答】解:(1)∵S△ABC=S矩形ABDE,∴S△ABC故答案为:;(2)由定义可知,钝角三角形以钝角所对的边为矩形一边,能够构造出一个“矩形框”,故答案为:1;(3)如图①,作A点关于DE的对称点F,连接BF,∴CF=AC,∴AC+BC≥BF,∴△ABC周长=AB+AC+BC≥AC+BF,∵AB=6cm,AE=2cm,在Rt△ABF中,BF=2,∴△ABC周长的最小值(6+2)cm,故答案为:(6+2);(4)如图②﹣1,以AB边为矩形一边时,作“矩形框”ABDE,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,=×3×4=×5×AE,∵S△ABC∴AE=,∴矩形ABDE的周长=2×(5+)=(cm);如图②﹣2,以BC边为矩形一边时,作“矩形框”BCAF,∴矩形BCAF的周长=2×(3+4)=14(cm);同理,以AB为矩形一边时,“矩形框”的周长为14cm;综上所述:△ABC的“矩形框”的周长为cm或14cm;(5)如图③﹣1,以AB为一边作“矩形框”ABDE,过点C作CG⊥AB交于G,∴CG2=AC2﹣AG2=BC2﹣BG2,AG+BG=AB,又∵AB=14cm,AC=15cm,BC=13cm,∴AG=9cm,BG=5cm,∴CG=12cm,∴“矩形框”ABDE的周长=2×(14+12)=52cm;如图③﹣2,以BC为一边作“矩形框”BCNM,过点A作AH⊥CB交于H,=×CG×AB=×12×14=×AH×BC,∵S△ABC∴AH=cm,∴“矩形框”BCNM的周长=2×(13+)=cm;如图③﹣3,以AC为矩形一边,作“矩形框”ACTS,过点B作BK⊥AC交于点K,=×CG×AB=×12×14=×BK×AC,∵S△ABC∴BK=cm,∴“矩形框”ACTS的周长=2×(15+)=cm;∵<52<,∴该木板的“矩形框”周长的最小值为cm.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF是(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.【分析】(1)由旋转的性质可得∠ABF=∠CBE,BF=BE,根据正方形的性质得∠ABC=∠D=90°,可得出∠EBF=∠D=90°,即可得出答案;(2)①首先证明四边形CDEF是矩形,则DE=CF,EF=CD=2,再证△ABE≌△BCF,根据全等三角形的判定和性质可得BE=CF,AE=BF,等量代换即可得BE=DE;由AE=BF,EF=CD=2可得AE=BE﹣2,设BE=x,根据勾股定理求出x的值即可;②延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,证明△ABE∽△CGH,根据相似三角形的性质求出CH、HG的值,在Rt△BHG中,根据勾股定理求出BG,即可求解.【解答】解:(1)∵将△BCE绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,∴∠ABF=∠CBE,BF=BE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE+∠CBE=90°,∴∠ABE+∠ABF=90°,即∠EBF=∠D=90°,∴∠EBF+∠D=180°,∵∠EBF=90°,BF=BE,∴四边形BEDF是“直等补”四边形.故答案为:是;(2)①证明:∵四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BE⊥AD,CF⊥BE,∴∠DEF=90°,∠CFE=90°,∴四边形CDEF是矩形,∴DE=CF,EF=CD=2,∵∠ABE+∠A=90°,∠ABE+∠CBE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵DE=CF,∴BE=DE;∵四边形CDEF是矩形,∴EF=CD=2,∵△ABE≌△BCF,∴AE=BF,∴AE=BE﹣2,设BE=x,则AE=x﹣2,在Rt△ABE中,x2+(x﹣2)2=102,解得:x=8或x=﹣6(舍去),∴BE的长是8;②∵△BCM周长=BC+BM+CM,∴当BM+CM的值最小时,△BCM的周长最小,如图,延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,∵∠ADC=90°,∴点C与点G关于AD对称,∴BM+CM=BM+MG≥BG,即BM+CM≥BM′+M′C,∴当点M与M′重合时,BM′+M′C的值最小,即△BCM的周长最小,在Rt△ABE中,AE===6,∵四边形ABCD是“直等补”四边形,∴∠A+∠BCD=180°,∵∠BCD+∠GCH=180°,∴∠A=∠GCH,∵∠AEB=∠H=90°,∴△ABE∽△CGH,∴===,即=,∴GH=,CH=,∴BH=BC+CH=10+=,∴BG===2,∴△BCM周长的最小值为2+10.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.【分析】(1)由题意得出∠D=2∠B或∠B=2∠D或∠A=2∠C,根据梯形的性质可得出答案;(2)过点D作DE∥AB,交BC于点E,证明四边形ABED为平行四边形,得出AD=BE,∠B=∠DEC=∠ADE,证出∠ADC=2∠B,则可得出结论;(3)过点E作AE∥DC交BC于点E,由等腰三角形的性质求出∠B=∠ACB=36°,证明△ABE∽△CBA,由相似三角形的性质得出,设AE=BE=CD=x,得出方程22=x (x+2),求出x=﹣1,则可得出答案.【解答】解:(1)∵AD∥BC,∴∠A+∠B=180°,∵∠A=100°,∴∠B=80°,∵四边形ABCD是倍角梯形,∴∠D=2∠B或∠B=2∠D或∠A=2∠C,若∠D=2∠B,则∠D=160°;若∠B=2∠D,则∠D=40°,若∠A=2∠C,则∠C=50°,∴∠D=130°,故所有满足条件的∠D的度数为160°或40°或130°;(2)证明:过点D作DE∥AB,交BC于点E,∵∠BAD+∠B=180°,∴AD∥BC,∵DE∥AB,∴四边形ABED为平行四边形,∴AD=BE,∠B=∠DEC=∠ADE,∵BC=BE+CE,∴BC=AD+CE,又∵BC=AD+CD,∴CE=CD,BC>AD,∴∠CDE=∠DEC,∴∠ADC=∠ADE+∠CDE=2∠B,∴四边形ABCD是倍角梯形;(3)过点E作AE∥DC交BC于点E,∵AB=AC,∴∠B=∠ACB,∵AD=AC,∴∠ACD=∠D,∵AD∥BC,∴∠ACB=∠DAC,设∠B=α,则∠D=2α,∵∠DAC+∠D+∠ACD=180°,∴α+2α+2α=180°,∴α=36°,∴∠B=∠ACB=36°,∴∠BAC=∠AEB=108°,∵∠B=∠B,∴△ABE∽△CBA,∴,设AE=BE=CD=x,则BC=2+x,∴22=x(x+2),∴x=﹣1(负值舍去),∴CD=﹣1.∴BC=AD+CD=2+﹣1=+1.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)由等腰三角形的三线合一定理先证AD⊥BC,再证∠DAB+∠DBA=90°,由邻余四边形定义即可判定;(2)由等腰三角形的三线合一定理先证BD=CD,推出CE=5BE,再证明△DBQ∽△ECN,推出==,即可求出NC,AC,AB的长度.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB =3,∴NC =5,∵AN =CN ,∴AC =2CN =10,∴AB =AC =10.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:矩形或正方形;(2)问题探究;如图1,在等邻角四边形ABCD 中,∠DAB =∠ABC ,AD ,BC 的中垂线恰好交于AB 边上一点P ,连结AC ,BD ,试探究AC 与BD 的数量关系,并说明理由;(3)应用拓展;如图2,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC )得到Rt △AB ′D ′(如图3),当凸四边形AD ′BC 为等邻角四边形时,求出它的面积.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)结论:AC =BD ,证明△APC ≌△DPB (SAS );(3)分两种情况考虑:Ⅰ、当∠AD ′B =∠D ′BC 时,延长AD ′,CB 交于点E ,如图1,由S 四边形ACBD ′=S △ACE ﹣S △BED ′,求出四边形ACBD ′面积;Ⅱ、当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图2,由S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′,求出四边形ACBD ′面积即可.【解答】解:(1)矩形或正方形是一个等邻角四边形.故答案为:矩形,正方形;(2)结论:AC=BD,理由:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S △ACE =AC ×EC =×4×(3+4.5)=15;S △BED ′=×BE ×D ′F =××4.5×=,则S 四边形ACBD ′=S △ACE ﹣S △BED ′=15﹣=;(ii )当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图3(ii )所示,∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得:AE ==,∴S △AED ′=×AE ×ED ′=××3=,S 矩形ECBD ′=CE ×CB =(4﹣)×3=12﹣3,则S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′=+12﹣3=12﹣.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是②④(填序号);(2)如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且EC =DF ,连接EF ,AF ,求证:四边形ABEF 是等角线四边形;(3)如图2,已知在△ABC 中,∠ABC =90°,AB =4,BC =3,D 为线段AB 的垂直平分线上一点,若以点A ,B ,C ,D 为顶点的四边形是等角线四边形,求这个等角线四边形的面积.。

中考数学与平行四边形有关的压轴题附答案解析

中考数学与平行四边形有关的压轴题附答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.413【答案】(1)证明见解析;(2【解析】分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵∴OB=12∵BD ⊥EF ,∴∴EF=2EO=3. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.5.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2 .【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2 .证明方法类似;【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM . (2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.6.如图,抛物线y=mx 2+2mx+n 经过A (﹣3,0),C (0,﹣32)两点,与x 轴交于另一点B .(1)求经过A ,B ,C 三点的抛物线的解析式;(2)过点C 作CE ∥x 轴交抛物线于点E ,写出点E 的坐标,并求AC 、BE 的交点F 的坐标 (3)若抛物线的顶点为D ,连结DC 、DE ,四边形CDEF 是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在面积为的平行四边形ABCD中,AB=CD=4,AD=BC=6,过点A作AE垂直于
直线BC于点E,作AF垂直于直线CD于点F,则CE+CF的值为()
A.10+B.10-
C.10+或10-D.10+2
2.在平面直角坐标系中,平行四边形的,顶点A、B、C的坐标分别为(0,1),(2,3),(1.4),则第四个顶点D的坐标为
3.如图,在矩形ABCD中,AB=6,BC=6,点E是边BC上一动点,B关于AE的对称点为B′,过B′作B′F⊥DC于F,连接DB′,若△DB′F为等腰直角三角形,则BE的长是()
A.6B.3C.3D.6﹣6
4.如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE 交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.
A.1B.2C.3D.4
5.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接AP ,EF .给出下列结论:①PD =
EC ;②四边形PECF 的周长为8;
③△APD 一定是等腰三角形;④AP =EF ;⑤EF 的最小值为2;⑥AP ⊥EF .其中正
确结论的序号为( )
A .①②④⑤⑥
B .①②④⑤
C .②④⑤
D .②④⑤⑥
6.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .若13AG =,5BG =,则CF 的长为 .
7.如图,已知ABC ∆中,90ABC ∠=︒,AB BC =,三角形的顶点在相互平行的三条直线a 、b 、c 上,且a 、b 之间的距离为1,b 、c 之间的距离为2,则2(AC = )
A .13
B .20
C .25
D .26
8.如图,O 为矩形ABCD 对角线AC ,BD 的交点,6AB =,M ,N 是直线BC 上的动点,且2MN =,则OM ON +的最小值是 .
9.如图,ABC ∆中,AC BC =,90ACB ∠=︒,点D 在AC 上,点E 在BC 延长线上,CD CE =,
BD 的延长线交AE 于点F ,连CF ,下列结论:①AE BD =;②2222FD FE CD +=;③
ACF CBF ∠=∠;④FE FD +=,其中一定成立的结论是( )
A .①②
B .①②④
C .①③④
D .②③④
10.如图,矩形ABCD 中,5AD =,30CAB ∠=︒,点P 是线段AC 上的动点,点Q 是线段CD 上的动点,则AQ QP +的最小值是 .
11.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上:.
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别a、a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
12.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1)
(1)求证:EO平分∠AEB.
(2)试猜想线段OE与EB,EA之间的数量关系,请写出结论并证明.
(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.
13.如图,在Rt ABC ∆中,90B ∠=︒,40AC cm =,60A ∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(010)t <.过点D 作DF BC ⊥于点F ,连接DE ,EF .
(1)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (2)当t 为何值时,DEF ∆为直角三角形?请说明理由.
14.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长;
(3)当AF的长为多少时,四边形BFEG是正方形?
15.已知正方形ABCD中,点E和点G分别在边AD和BC上,连接AG交BE于点F,交BD于点K,若∠AKD=∠FBG.
(1)如图1,求证:∠BAG=∠EBD;
(2)如图2,连接DF并延长交AB于点H,若BH=FH=1,求DE长.
16.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,
(1)求DE的长;
(2)过点E作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
17.如图1,在△ABO中,∠OAB=90∘,∠AOB=30∘,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长。

18.如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).
(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;
(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.
19.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.
20.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E 是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.。

相关文档
最新文档