高三数学一轮复习 7-7数学归纳法课件 北师大版

合集下载

北师版高考总复习一轮理科数精品课件 第7章 不等式、推理与证明 第5节 数学归纳法

北师版高考总复习一轮理科数精品课件 第7章 不等式、推理与证明 第5节 数学归纳法
(+1)2
+…+
+
3×5
(2-1)(2+1)
(2+1)(2+3)
+1
=
2+1 2
+
+1
2+3
+1
=
2+1
(+2)(2+1)
·
2(2+3)
=
=
(+1)
(+1)2
+
2(2+1)
(2+1)(2+3)
(+1)[(+1)+1]
,
2[2(+1)+1]
即当 n=k+1,时等式也成立.
由 f(3)=70 得 9a+3b+c=70,③
联立①②③,解得
(+1)
a=3,b=11,c=10.∴f(n)=
(3n2+11n+10)(n∈N+).
12
证明:当 n=1 时,显然等式成立;假设当 n=k(k∈N+)时,等式成立,

(+1)
(+1)(+2)(3+5)
2
f(k)= 12 (3k +11k+10)=
由(1)(2)可知,原不等式对任意n∈N+都成立.
考点三
归纳—猜想—证明
1
例3有一个关于正整数n的恒等式1×22+2×32+…+n(n+1)2= 12 n(n+1)(?),
其中问号处只能看出它是关于n的二次多项式,具体的系数看不清楚.请你

2020版高考数学北师大版(理)一轮复习课件:7.3 归纳与类比 .pdf

2020版高考数学北师大版(理)一轮复习课件:7.3 归纳与类比 .pdf
象较为合适. ( × )
(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的
倍数”,这是三段论推理,但其结论是错误的. ( × )
(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是
an=n(n∈N+). ( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确. (
×)
知识梳理 考点自诊
-6-
2.下面几种推理过程是演绎推理的是( C )
A.在数列{an}中,a1=1, 的通项公式
(n≥2),由此归纳数列{an}
B.由平面三角形的性质,推测空间四面体性质
C.两直线平行,同旁内角互补,如果∠A和∠B是两条平行直线与
第三条直线形成的同旁内角,则∠A+∠B=180°
知识梳理 考点自诊
-4-
-5-
知识梳理 考点自诊
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正
确. ( × ) (2)归纳推理与类比推理都是由特殊到一般的推理. ( × )
(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对
考点4
思考形的归纳有几种?
-15-
-16-
考点1
考点2
考点3
考点4
解题心得1.归纳推理的一般步骤:一、通过观察个别情况发现某 些相同的性质.二、从已知的相同性质中推出一个明确表述的一般 性命题(猜想).
2.常见的归纳推理分为数的归纳和形的归纳两类: (1)与数字有关的等式的推理:观察数字的变化特点,找出等式左 右两侧的规律及符号可解. (2)与式子有关的归纳推理:
解析:由题干图中的数据可知,每行除首末两数外,其他数等于其 上一行两肩上的数字的乘积.

高考理科第一轮复习课件(6.7数学归纳法)

高考理科第一轮复习课件(6.7数学归纳法)

1.用数学归纳法证明2n≥n2(n≥4,n∈N+)第一步应验证n等
于(
(A)1
)
(B)2 (C)3 (D)4
【解析】选D.由n≥4,n∈N+可知,应验证n=4时不等式成立.
2.若 f n 1 1 1
1 则f(1)为( n N , 2 3 5n 1 1 A 1 B 4 1 1 1 1 C 1 D 1 4 2 3 4 【解析】选D. f 1 1 1 1 1 . 2 3 4
(3n 2+ + 11n 10)
对一切n∈N+都成立.
下面用数学归纳法证明:
(1)当n=1时,由上面可知等式成立.
(2)假设n=k(k≥1,k∈N+)时等式成立,
即 122+232++k k+ 2 = k k 1 3k 2+ + , 1 11k 10
12
则当n=k+1时,
2k 1 2k 2 k 1
=(k+1)(k+2)„(k+k)·2(2k+1), 所以多乘了2(2k+1).
5.在数列{an}中,a1= 1 且Sn=n(2n-1)an,通过求a2,a3,
3
a4,猜想an的表达式,其结果是. 【解析】由 a1=1 且Sn=n(2n-1)an得, 2= 1 ,a 3= 1 ,a 4= 1 , a
)
3.用数学归纳法证明:+ 1 1+ + 1
2 3
1 n (n∈N+且n>1) n 2 1
时,在第二步证明从 n=k 到 n=k+1 成立时,左边增加 的项数是( (A)2k ) (B)2k-1 (C)2k-1 (D)2k+1

高三数学一轮复习 7-7数学归纳法 北师大版

高三数学一轮复习 7-7数学归纳法 北师大版

首页
上页
下页
末页
第六章 数列
(2)由此猜想 an=n(2n-1). 下面用数学归纳法加以证明: ①当 n=1 时,a1=1×(2-1)=1,结论成立. ②假设 n=k 时,结论正确,即 ak=k(2k-1), 则当 n=k+1 时,有aakk+ +11+ -aakk- +11=k
首页
上页
下页
末页
第六章 数列
知识梳理 数学归纳法 数学归纳法是用来证明某些与正整数n有关的数学命 题的一种方法,它的基本步骤是: (1)验证: n=1 时,命题成立; (2)在假设 n=k(k≥1) 时,命题成立的前提下,推出
n=k+1 时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立.
首页
上页
下页
末页
第六章 数列
②假设当n=2k-1(k∈N*)时命题成立,即(x+y)能整 除x2k-1+y2k-1则当n=2k+1时,
x2k+1+y2k+1=x2x2k-1+x2y2k-1-x2y2k-1+y2y2k-1 =x2(x2k-1+y2k-1)-(x+y)(x-y)y2k-1 ∵x+y能整除(x2k-1+y2k-1) 又x+y能整除(x+y)(x-y)y2k-1 ∴(x+y)能整除(x2k+1+y2k+1) 由(1)(2)可知当n为正奇数时xn+yn能被x+y整除.
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
[例 1] 用数学归纳法证明:n∈N*时,1×1 3+3×1 5 +…+2n-112n+1=2nn+1.
[解析] (1)当 n=1 时,左边=1×1 3, 右边=2×11+1=31,左边=右边.∴等式成立.

2017届一轮复习北师大版 数学归纳法 课件

2017届一轮复习北师大版      数学归纳法    课件
1 (1)证明:数列 a 是等差数 n
1 1 1 1 1 1 证明: 法一: + +„+S = 2+ 2+„+ 2 S1 S2 1 2 n n
1 1 1 1 1 1 > + +„+ = 1-2 + 2-3 1×2 2×3 nn+1 1 1 1 n +„+n-n+1 = 1 - = . n+ 1 n+ 1
1 1 1 1 k 则当 n= k+ 1 时, + + „ + S + > + S1 S2 Sk+1 k+1 k
演练冲关
k+1 1 k 1 1 , 又 + - = 1 - + 2 2 k + 1 k + 1 k + 1 k + 2 k + 1 1 (2)求数列a 的前 n 项 1 1 1 k 1 n = - 2-1+ 2= k+2 k+2 k+1 k+2k+12 1 1 k+1 和 Sn ,并证明: + S1 S2 >0, 1 n 1 1 1 1 k+1 +„+S > . ∴ + +„+S + > , n n+ 1 S1 S 2 Sk+1 k+2 k ∴原不等式成立.

{an}各项均为正 数, 且满足 an+1 =an-a2 n.
演练冲关
求证:对一切 n≥ 2 , 都 有 1 an≤ . n+ 2
2
4
等式成立, 假 设 当 n = k(k≥2) 时 , 不 等 式 成 立 , 即 1 ak≤ , k+2
第七节
数学归纳法
抓主干 知识回顾
研考向 考点研究
上页
下页
考点二
应用数学归纳法证明不等式注意的两个问题
典题悟法
(1)当遇到与正整数 n 有关的不等式证明时,应用其他 办法不容易证,则可考虑应用数学归纳法. (2)用数学归纳法证明不等式的关键是由 n=k 成立, 推 证 n=k+1 时也成立,证明时用上归纳假设后,可采 用分析法、 综合法、 求差(求商)比较法、 放缩法等证明.

高三一轮复习6.7 数学归纳法

高三一轮复习6.7 数学归纳法

)
【解析】 当 n=1 时,左边=1+2+22,故选 C.
3.用数学归纳法证明:(n+1)+(n+2)+„+(n+n) n3n+1 * = ( n ∈ N )的第二步中,当n=k+1时等式左边与n 2 =k时的等式左边的差等于________.
答案
解析
3k+2
n=k+1比n=k时左边变化的项为(2k+1)+(2k
答案 B
)
B.8 D.10
1 1- n 1 1 1 2 127 解析 1+ + +„+ n-1= > 2 4 1 64 2 1- 2 整理得2n>128,解得n>7 ∴初始值至少应取8.
2.用数学归纳法证明 1+2+22+„+2n 1=2n 2-1(n∈N*)
+ +
的过程中,在验证 n=1 时,左端计算所得的式子应为( A.1 C.1+2+22 B.1+2 D.1+2+21 6×8
+„+
1 2k2k+2

1 2k+1[2k+1+2] k 1 = + 4k+1 4k+1k+2 kk+2+1 k+12 = = 4k+1k+2 4k+1k+2 k+1 = , 4[k+1+1]
即n=k+1时等式成立. 由(1)、(2)可知,对任意n∈N*等式均成立.
5 1 1 1 1 > +( + + - ) 6 3k+1 3k+2 3k+3 k+1 5 1 1 5 > +(3× - )= 6 3k+3 k+1 6 ∴当n=k+1时不等式亦成立. ∴原不等式对一切n≥2,n∈N*均成立.
探究2
由n=k到n=k+1时,要弄清命题的变化,
应用放缩技巧. 思考题2 1 (2009· 陕西理)已知数列{xn}满足x1= ,xn 2
这两个步骤缺一不可,前一步是递推的基础,后一 步是递推的依据,缺了哪一步得出的结论也是错误的. 另外,归纳假设中要保证 n 从第一个数 n0 开始,即 假设 n= k(k≥n0)时结论成立,括号内限制条件改为 k>n0 就错了.

高考数学北师大版(通用,理)总复习讲义 7.6 数学归纳法

高考数学北师大版(通用,理)总复习讲义 7.6 数学归纳法

§7.6 数学归纳法数学归纳法证明某些与正整数n 有关的命题,它的基本步骤是: (1)验证:当n 取第一个值n 0(如n 0=1或2等)时,命题成立;(2)在假设当n =k (k ∈N +,k ≥n 0)时命题成立的前提下,推出当n =k +1时,命题成立. 根据(1)(2)可以断定命题对一切从n 0开始的正整数n 都成立.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立. ( × ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明. ( × ) (3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ ) (6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )2.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于 ( )A .1B .2C .3D .0答案 C解析 凸n 边形的边最少有三条,故第一个值n 0取3. 3.若f (n )=1+12+13+…+16n -1(n ∈N +),则f (1)为( )A .1 B.15C .1+12+13+14+15D .非以上答案 答案 C解析 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.4.设f (n )=1n +1+1n +2+…+1n +n,n ∈N +,那么f (n +1)-f (n )=________.答案12n +1-12n +2解析 f (n +1)-f (n )=1n +2+1n +3+…+1n +n +1n +1+n +1n +1+n +1-(1n +1+1n +2+…+1n +n)=12n +1+12n +2-1n +1=12n +1-12n +2. 5.用数学归纳法证明:“1+12+13+…+12n -1<n (n ∈N +,n >1)”时,由n =k (k >1)不等式成立,推理n =k+1时,左边应增加的项数是________. 答案 2k解析 当n =k 时,要证的式子为1+12+13+…+12k -1<k ;当n =k +1时,要证的式子为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +1.左边增加了2k 项.题型一 用数学归纳法证明等式例1 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N +).思维启迪 证明时注意等式两边从n =k 到n =k +1时的变化. 证明 ①当n =1时,等式左边=2,右边=2,故等式成立; ②假设当n =k (k ∈N +)时等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2k ·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1),这就是说当n =k +1时等式也成立. 由①②可知,对所有n ∈N +等式成立. 思维升华 用数学归纳法证明恒等式应注意 (1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:对任意的n ∈N +,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1.证明 (1)当n =1时,左边=11×3=13, 右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N +)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3)=2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1, 所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N +等式都成立. 题型二 用数学归纳法证明不等式例2 已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈[14,12]时,f (x )≥18.(1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N +,证明:a n <1n +1.思维启迪 (1)利用题中条件分别确定a 的范围,进而求a ; (2)利用数学归纳法证明.(1)解 由题意,知f (x )=ax -32x 2=-32(x -a 3)2+a 26.又f (x )max ≤16,所以f (a 3)=a 26≤16.所以a 2≤1.又x ∈[14,12]时,f (x )≥18,所以⎩⎨⎧f (12)≥18,f (14)≥18,即⎩⎨⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明 用数学归纳法证明:①当n =1时,0<a 1<12,显然结论成立.因为当x ∈(0,12)时,0<f (x )≤16,所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N +)时,不等式0<a k <1k +1成立. 因为f (x )=ax -32x 2的对称轴为直线x =13,所以当x ∈(0,13]时,f (x )为增函数.所以由0<a k <1k +1≤13,得0<f (a k )<f (1k +1).于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立.根据①②,知对任何n ∈N +,不等式a n <1n +1成立.思维升华 用数学归纳法证明不等式的关键是由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.用数学归纳法证明:对一切大于1的自然数,不等式(1+13)(1+15)·…·(1+12n -1)>2n +12均成立.证明 (1)当n =2时,左边=1+13=43;右边=52. ∵左边>右边,∴不等式成立.(2)假设n =k (k ≥2,且k ∈N +)时不等式成立,即(1+13)(1+15)·…·(1+12k -1)>2k +12.则当n =k +1时,(1+13)(1+15)·…·(1+12k -1)[1+12(k +1)-1]>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12.∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 题型三 归纳—猜想—证明例3 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N +.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.思维启迪 通过计算a 1,a 2,a 3寻求规律猜想{a n }的通项公式,然后用数学归纳法证明. (1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N +).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N +)时,通项公式成立, 即a k =2k +1-2k -1.由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式并整理得 a 2k +1+22k +1a k +1-2=0,解得:a k +1=2k +3-2k +1(a n >0).即当n =k +1时,通项公式也成立.由①和②,可知对所有n ∈N +,a n =2n +1-2n -1都成立.思维升华 (1)猜想{a n }的通项公式是一个由特殊到一般的过程,注意两点:①准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);②证明a k +1时,a k +1的求解过程与a 2、a 3的求解过程相似,注意体会特殊性与一般性的辩证关系.(2)“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性,这种思维方式是推动数学研究和发展的重要方式.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. 解 ∵f ′(x )=x 2-1,且a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1,∵函数g (x )=(x +1)2-1在[1,+∞)上单调递增. 于是由a 1≥1得a 2≥(a 1+1)2-1≥22-1, 进而a 3≥(a 2+1)2-1≥24-1>23-1, 由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设n =k (k ≥1且k ∈N +)时结论成立,即a k ≥2k -1.当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上单调递增知a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N +,都有a n ≥2n -1, 即1+a n ≥2n ,∴11+a n ≤12n ,∴11+a 1+11+a 2+11+a 3+…+11+a n≤12+122+123+…+12n =1-(12)n <1.归纳—猜想—证明问题典例:(12分)设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N +. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.思维启迪 通过计算a 2,a 3,a 4观察规律猜想a n ,然后用数学归纳法证明. 规范解答(1)解 ∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a 2+a ;a 4=f (a 3)=a 3+a . [2分] 猜想a n =a(n -1)+a(n ∈N +).[4分] (2)证明 ①易知,n =1时,猜想正确.[6分] ②假设n =k 时猜想正确,即a k =a(k -1)+a ,[8分]则a k +1=f (a k )=a ·a ka +a k=a ·a (k -1)+a a +a (k -1)+a=a (k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确.[11分] 由①②知,对于任何n ∈N +,都有a n =a(n -1)+a .[12分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论; 第二步:验证一般结论对第一个值n 0(n 0∈N +)成立.第三步:假设n =k (k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N +成立.温馨提醒 解决数学归纳法中“归纳—猜想—证明”问题及不等式证明时,还有以下几点容易造成失分,在备考时要高度关注:(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成使用的不是纯正的数学归纳法.(3)不等式证明过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.方法与技巧1.数学归纳法的两个步骤相互依存,缺一不可有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础. 2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点:(1)归纳假设就是已知条件;(2)在推证n =k +1时,必须用上归纳假设. 3.利用归纳假设的技巧在推证n =k +1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n =k 与n =k +1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用. 失误与防范1.数学归纳法证题时初始值n 0不一定是1;2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.A 组 专项基础训练 (时间:40分钟)一、选择题1.用数学归纳法证明2n >2n +1,n 的第一个取值应是( )A .1B .2C .3D .4答案 C解析 ∵n =1时,21=1,2×1+1=3,2n >2n +1不成立; n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立. ∴n 的第一个取值应是3.2.用数学归纳法证明“1+a +a 2+…+an +1=1-a n +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3答案 C3.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·2·…·(2n -1)(n ∈N +)”时,从“n =k 到n =k +1”时,左边应增添的式子是( )A .2k +1B .2k +3C .2(2k +1)D .2(2k +3)答案 C解析 左边应增添的式子等于 (k +2)(k +3)·…·[(k +1)+(k +1)](k +1)(k +2)·…·(k +k )=(k +2)(k +3)·…·(2k )(2k +1)(2k +2)(k +1)(k +2)·…·(2k )=2(2k +1).4.对于不等式n 2+n <n +1(n ∈N +),某同学用数学归纳法证明的过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立,则上述证法( )A .过程全部正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案 D解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)答案 C解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5.当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7.故猜想a n =1(2n -1)(2n +1).二、填空题6.设S n =1+12+13+14+…+12n ,则S n +1-S n =________.答案12n+1+12n +2+12n +3+…+12n +2n 解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n ,S n =1+12+13+14+…+12n ,∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n.7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真. 答案 2k +1解析 因为n 为正奇数,所以与2k -1相邻的下一个奇数是2k +1.8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用 n 表示).答案 5 12(n +1)(n -2)解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1) =12(n +1)(n -2). 三、解答题9.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n-1n (n +1)2. 证明 (1)当n =1时,左边=12=1, 右边=(-1)0·1×(1+1)2=1,∴原等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k-1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2. ∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N +有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2. 10.已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n .求证:当n ∈N +时,a n <a n +1.证明 (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2.(2)假设当n =k (k ∈N +,k ≥1)时,0≤a k <a k +1,则由a 2k +1-a 2k =(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1)>0,得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立,根据(1)和(2),可知a n <a n +1对任何n ∈N +都成立.B 组 专项能力提升(时间:30分钟)1.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.2.下列代数式(其中k ∈N +)能被9整除的是( ) A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )答案 D 解析 (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N +)时,命题成立,即3(2+7n )能被9整除,那么当k =n +1时有3(2+7n +1)=21(2+7n )-36. 这就是说,k =n +1时命题也成立.由(1)(2)知,命题对k ∈N +成立.3.已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N +),通过计算a 1,a 2,a 3,a 4,可猜想a n =_____. 答案 2n -12n -1 解析 ∵a 1=1,∴a 2=12a 1+1=32, a 3=12a 2+1=74,a 4=12a 3+1=158. 猜想a n =2n -12n -1. 4.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N +. (1)当n =1,2,3时,试比较f (n )与g (n )的大小;(2)猜想f (n )与g (n )的大小关系,并给出证明.解 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2. 那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-[12k 2-1(k +1)3] =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N +,都有f (n )≤g (n )成立.5.若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解 当n =1时,11+1+11+2+13+1>a 24, 即2624>a 24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立.(2)假设当n =k (k ∈N +)时,不等式成立,即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时,有1(k +1)+1+1(k +1)+2+…+13(k +1)+1 =1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-23(k +1)]. 因为13k +2+13k +4-23(k +1)=6(k +1)(3k +2)(3k +4)-23(k +1)=18(k +1)2-2(9k 2+18k +8)(3k +2)(3k +4)(3k +3)=2(3k +2)(3k +4)(3k +3)>0, 所以当n =k +1时不等式也成立.由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524,所以a 的最大值等于25.。

高考数学北师大(理)一轮复习课件:7.5 数学归纳法

高考数学北师大(理)一轮复习课件:7.5 数学归纳法

+
4)
(n∈N+)中,当n=1
时,n+3=4,而等式左边是起始为1的连续的正整数的和,故n=1时,等
式左边的项为:1+2+3+4,故选D.
知识梳理 考点自诊
随堂巩固
-5-
3.(2018河北武邑中学二调,7)用数学归纳法证明 1+12 + 13+…+2���1���-1<n(n∈N+,n>1)时,由n=k(k>1)时不等式成立,推证
考点1
考点2
考点3
-11-

(1)Sn=1+2+������…! +������
=
������ +1
2.
(������-1)!
(2)������2 = 2 , ������3 = 11 , ������4 = 7,
������2 3 ������3 6 ������4 2
2 3
=
4������
+
=k[f(k)-1]+f(k)=(k+1)f(k)-k
=(k+1)
f(k+1)-������
1 +1
-k
=(k+1)f(k+1)-(k+1)
=(k+1)[f(k+1)-1],
∴当 n=k+1 时结论成立.
由(1)(2)可知,当 n≥2,n∈N+时,f(1)+f(2)+…+f(n-1)=n[f(n)-1].
n=k+1时,左边应增加的项数是( C )
A.2k-1 B.2k-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页
上页
下页
末页
第六章 数列
6.用数学归纳法证明“当n∈N+时,1+2+22+23 +…+25n-1是31的倍数”时,n=1时的原式是________, 从k到k+1时需添加的项是__________.
[答案] 1+2+22+23+24 25k+25k+1+25k+2+25k+3 +25k+4
首页
[解析] 若原命题正确,则其逆否命题正确,所以若 n=k(k∈N*)时该命题成立,那么可推得n=k+1时该命题 也成立,可推得若n=k+1时命题不成立可推得n= k(k∈N*)时命题不成立,所以答案为C.
首页
上页
下页
末页
第六章 数列
2.用数学归纳法证明“当n为正奇数时,xn+yn能被x +y整除”,第二步归纳假设应该写成( )
首页
上页
下页
末页
A.假设当n=k(k∈N*)时,xn+yn能被x+y整除 B.假设当n=2k(k∈N*)时,xn+yn能被x+y整除 C.假设当n=2k+1(k∈N*)时,xn+yn能被x+y整除 D.假设当n=2k-1(k∈N*)时,xn+yn能被x+y整除 [答案] D
首页
上页
下页
末页
第六章 数列
[解析] ①显然,当n=1时,命题成立,即x1+y1能 被x+y整除
第六章 数列
4.欲用数学归纳法证明2n>n2,n的第一个取值应是
()
A.1
B.2
C.5
D.6
[答案] C
[解析] ∵21>12,22=22,23<32,24=42,25>52,26>62,
∴n的第一个数应是5.
首页
上页
下页
末页
第六章 数列
5.若不等式n+1 1+n+1 2+n+1 3+…+21n>2m4对 n ∈N*都成立,则正整数 m 的最大值为____________.
[答案] 11
首页
上页
下页
末页
第六章 数列
[解析] 设 f(n)=n+1 1+n+1 2+…+21n, ∴f(n+1)=n+1 2+n+1 3+…+2n1+1 =n+1 1+n+1 2+…+21n+2n1+1+2n1+2-n+1 1 =f(n)+(2n1+1-2n1+2)=f(n)+2n+112n+2>f(n), ∴f(n+1)>f(n)>…>f(1)=12=1224,∴m=11.
基础自测 1.某个命题与正整数n有关,若n=k(k∈N*)时该命 题成立,那么可推知n=k+1时该命题也成立,现已知当n =5时该命题不成立,那么可推得( ) A.当n=6时该命题不成立 B.当n=6时该命题成立 C.当n=4时该命题不成立 D.当n=4时该命题成立 [答案] C
首页
上页
下页
末页
第六章 数列
上页
下页
末页
第六章 数列
7.已知数列{an},其中 a2=6 且aann+ +11+ -aann- +11=n. (1)求 a1,a3,a4; (2)求数列{an}的通项公式. [解析] (1)∵a2=6,aa22+-aa11-+11=1, aa33-+aa22+-11=2,aa44-+aa33+-11=3, 解得 a1=1,a3=15,a4=28.
首页
上页
下页
末页
第六章 数列
3.记凸 k 边形的内角和为 f(k),则凸 k+1 边形的
内角和 f(k+1)=f(k)+____________( )
π A.2
B.π
C.32π
D.2π
[答案] B
[解析] 由凸k边形变为凸k+1边形时,增加了一个三
角形,故f(k+1)=f(k)+π.
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
考纲解读 1.了解数学归纳法的原理; 2.能用数学归纳法证明一些简单的数学命题. 考向预测 1.归纳——猜想——证明将是2012年高考热点; 2.与函数、不等式等知识交汇命题.
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
[例 1] 用数学归纳法证明:n∈N*时,1×1 3+3×1 5 +…+2n-112n+1=2nn+1.
[解析] (1)当 n=1 时,左边=1×1 3, 右边=2×11+1=31,左边=右边.∴等式成立.
首页
上页
下页
末页
第六章 数列
(2)假设 n=k(k≥1,k∈N*)时,等式成立 ,即有 1×1 3+3×1 5+…+2k-112k+1=2k+k 1 则当 n=k+1 时, 1×1 3+3×1 5+…+2k-112k+1+2k+112k+3 =2k+k 1+2k+112k+3=2kk+2k1+32k++13
②假设当n=2k-1(k∈N*)时命题成立,即(x+y)能整 除x2k-1+y2k-1则当n=2k+1时,
x2k+1+y2k+1=x2x2k-1+x2y2k-1-x2y2k-1+y2y2k-1 =x2(x2k-1+y2k-1)-(x+y)(x-y)y2k-1 ∵x+y能整除(x2k-1+y2k-1) 又x+y能整除(x+y)(x-y)y2k-1 ∴(x+y)能整除(x2k+1+y2k+1) 由(1)(2)可知当n为正奇数时xn+yn能被x+y整除.
首页
上页
下页
末页
第六章 数列
(2)由此猜想 an=n(2n-1). 下面用数学归纳法加以证明: ①当 n=1 时,a1=1×(2-1)=1,结论成立. ②假设 n=k 时,结论正确,即 ak=k(2k-1), 则当 n=k+1 时,有aakk+ +11+ -aakk- +11=k
首页
上页
Hale Waihona Puke 下页末页第六章 数列
∴(k-1)ak+1=(k+1)ak-(k+1) =(k+1)·k(2k-1)-(k+1) =(k+1)(2k2-k-1) =(k+1)(2k+1)(k-1)(k-1≠0). ∴ak+1=(k+1)[2(k+1)-1]. 即当 n=k+1 时,结论也成立. 由①②可知,{an}的通项公式为 an=n(2n-1).
知识梳理 数学归纳法 数学归纳法是用来证明某些与正整数n有关的数学命 题的一种方法,它的基本步骤是: (1)验证: n=1 时,命题成立; (2)在假设 n=k(k≥1) 时,命题成立的前提下,推出
n=k+1 时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立.
首页
上页
下页
末页
第六章 数列
相关文档
最新文档