线段的和差倍分计算复习过程

合集下载

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分一、证明线段或角的倍分1、方法:①长(或大)折半 ②短(或小)加倍2、判断:两种方法有时对同一个题都能使用,但存在易繁的问题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。

3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或利于利用已知条件而添。

4、传递:在加倍或折半后,还不易或不能证明结论,则要找与被证二量有等量关系的量来传递,或者添加这个量来传递。

此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。

参考例4、例5、例6。

例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和AC 为边向形外作的正方形。

求证:FH=2AD/ BAC+ / ACN=180证明:延长AD 至N 使AD=DN则ABNC 是平行四边形CN=AB=FA AC=AH又/ FAH+ / BAC=180 •••△ FAHY NCA ••• FH=AN例 2、△ ABC 中,/ B=2 / C ,AD 是高,M 是BC 边上的中点。

$•••1求证:DM=2 AB/ 2=Z B •••/ 2=2Z 1•••/ 1 = / DNM 又 AN=DN=ND • DM=2 A B1贝J BFAC••• BF=AE•••△ AEC 心 BFD •DF 二CE 二 CD=2CE作业:1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1线交AC 于F ,求证:AF=2 FC2、AB 和AC 分别切© O 于B 和C, BD 是直径。

求证/ BAC 二Z CBD3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。

求证:BD=2CE例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E ,证明:取AB 的中点N ,连接MN 、DN贝J MN // AC / 1 = / C••• DM=DN例 3 △ ABC 中,AB=AC , E 是AB 的中点,D 在AB 的延长线上,且 DB=AC 。

奥数重点:和差倍问题讲解

奥数重点:和差倍问题讲解

奥数重点:和差倍问题讲解1 考点分析和差倍问题是已知几个数的和或差以及它们的倍数关系,分别求几个数的应用题。

为了帮助我们理解题意,弄清量与量之间的关系,常采用画线段图的方法,以便找到解题的途径。

和差倍问题也是年龄问题的基础,经常出现在杯赛中。

基本功1、会画线段图2、公式(1)和倍问题:小数=和÷(倍数+1)大数=小数×倍数或大数=和-小数(2)差倍问题:小数=差÷(倍数-1)大数=小数×倍数或大数=小数+差一般解题步骤1、画线段图(先画倍数关系,再标明数量)2、求一倍数(数量与倍对应好才能相除!)根据题目要求求相应的解2 真题回放“1、(第一届小机灵杯第8题)有一堆围棋子,白子的个数是黑子的2倍,拿走96个白子后,黑子的个数是白子的2倍,原来黑子有()个。

2、【第11届三年级中环杯初赛第5题】有甲乙两支人数相等的运动队,由于训练的需要,从甲队调10人到乙队,这时乙队人数正好是甲队人数的3倍,甲队原有()人。

”3 经典解析1、【解析】根据题意可画出如下线段图:由此可得黑子个数为:96÷(2+1)×2=64考点:和差倍+移多补少2、【解析】从甲队调10人到乙队,所以现在的乙比甲多20人。

甲队现在有:20÷2=10人甲队原有:10+10=20人4 巩固练习1、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?2、果园里有桃树、梨树、苹果树共552棵。

桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?3、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?4、549是甲、乙、丙、丁4个数的和。

如果甲数加上2,乙数减少2.,丙数乘以2,丁数除以2以后,则4个数相等。

求4个数各是多少?5 练习详解1、【解析】把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。

线段和差倍分的证法

线段和差倍分的证法

设 = , = ) , ,
B D =五
D H _ / /
l 、
K B ’ 。 即A B= 3 A C
七、 借助辅助四法 例7 如图, 在 四边 形 A B C D 中, 对角线 A C平 分 / _ D A B, 若/ _D A B 1 2 0 。 , LB与 LD互补 , 试证 明 A 曰+

点 曰作 B E- L A D交 A D延长线 于 E 点 D为 A E 中点.


CE+BE=EF +E G=2 A D.
求证
A B= 3 A C .

因题设 中有 平行的条件 , 可 考虑用此法证.
曰 .
简证
延长 B E、 A C交 于

四、 代 数 法
例 4 如图, 已知 锐 角 AA B C中 , A D上B C且 A D=
▲ A 数学大{ } I 暴 0 . 1 ▲ I v; 。 . 。 + 。 . 。 . 。
则D E=C E・ c o s LC E D, = B C・ c o s LC B F,

。L C BF = C DE. . ‘ . DE =B F .

‘ .
A B+ A D:( A F+ F) +( A E— O E)= A F+ A E,
又 A E = A F : A C - c 0 s 6 o 。 = ÷ A c , . . . A B + A D = A C .
三、 比 例 法

( 2 ) 设 B=LA C B= a , 则P E=P B・ s i n c  ̄ ,
PF:PC ・s i n a.

线段的和差倍分问题的证明

线段的和差倍分问题的证明

ABE DC线段的和差倍分问题的证明证明线段的倍分问题: 一、运用定理法即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。

此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。

例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM =21AB 二、比例线段法即找出与所证明有关的比例式,通过对比例式进行变形或重新组合,从而得出线段之间的和差倍分关系。

例2 如图,在△ABC 中,BD 是∠B 的平分线,△ABD 的外接园交BC 于E ,若AB =21AC , 求证:CE =2AD 。

对应练习1、已知:如图所示,点D 、E 分别是等边ABC ∆的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 21=.2、如图所示,在ABC ∆中,AB=AC ,︒=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 21=. Q A DP C B E AEADF3、已知:如图所示,锐角ABC ∆中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD .4、如图,在ABC ∆中,延长BC 到D ,使CD=2BC ,E 在AC 上,且AE=2EC ,D 的延长线交AB 于F ,求证:EF DE 27=二、割补法证明线段的和差问题:这是证明线段的和差倍分问题的一种重要方法。

即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。

在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。

但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。

线段的和差与倍分

线段的和差与倍分

线段的和差与倍分学习目标:1.能用直尺和圆规作出线段的和、差。

2.理解线段中点的概念及意义,会用刻度尺画出一条线段的中点,并能用符号语言表示出来学习重难点:线段中点的应用学习过程一、知识回顾1.如何比较线段的长短?2.如图所示,A地到B地有a,b,c,d(图中从上到下)四条道路,其中最短的是,理由是。

二、预习自学活动一、作出符合要求的线段思考,木料截断的位置在什么地方?已知线段AB,画出它的中点C。

A B如图,如果点C把线段AB分成相等的两条线段AC与BC,那么点C叫做线段AB的中点。

几何语言:(1)(2)(3)三、例题分析例1、已知C是线段AB上的一点,AC=5厘米,CB=3厘米,M是线段AB的中点,画出符合要求的图形,并求出MC的长。

思考:若例1中点C是直线AB上一点,MC的长是多少呢?(四)课堂总结(1)要得到线段的中点,首先必须确保_________________________________. (2)等分点的概念:类似于中点定义,将线段等分成3份的点叫做线段的三等分点,把线段等分成4份的点叫做线段的四等分点四、达标练习1、如图,已知cm=,DC3=,D是AC的中点,且cmBC4则AB= ,AC=____.2、已知C是线段AB上的一点,6,8==,M是AB的中点。

画出符合要求的AC cm CB cm图形,并求出MC的长。

3、如图,已知线段20是线段的中点,在MB上,N为PB的中点,NB=4cm,=,M AB PAB cm求PM的长。

M P NA B五、课堂小结:本节课我们新学到哪些内容?六、课下作业1、如果点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 叫做线段AB 的中点.此时AM 、BM 和AB 有如下关系: .2、如图,已知cm AB 20=,cm CD 8=,E 、F 分别为AC 、BD 的中点,求EF 的长.3、已知线段cm AB 10=,C 是线段AB 的中点,E 、F 分别为AC 、CB 的中点,求EF 的长. 如果8AB cm =呢?12AB cm =呢?由此可以发现什么规律?4、如图:已知AB:BC:CD=2:3:4,E,F 分别是线段AB,CD 的中点,且AD=45cm ,求线段EF 的长。

第8课线段的和差倍分的计算

第8课线段的和差倍分的计算

A 第8课 线段和、差、倍、分的计算班别:___________ 姓名:__________ 学号:一.学习目标1.熟练掌握线段的和、差、倍、分的计算.二.重点和难点线段的和、差、倍、分的计算既是重点也是难点.三.新课学习环节一:线段长度的和、差、倍、分(一)观察1.如图,M 在线段AB 上,(1)若AM=3,MB=4,则AB=AM + MB = ;(2)若 AB=9,AM=4,则BM=AB - = ;(3)若AB=10,MB=6,则AM= -AM= ;(4)若AM=a ,BM=b ,则AB= ;(5)若AB=c ,BM=d ,则AM= ;2.如图,M 为AB 的中点,(1)若AB=8,则AM= AB= ;(2)若AB=7,则BM= AB= ;(3)若AM=5,则AB= AM = ;(4)若AB= a ,则AM= AB= ;(5)若MB= a ,则AB= MB= .3.如图,点M 、N 为线段AB 的三等分点,(1)若AB =a ,则MN = AB = ;(2)若AM =a ,则AB = AM = ; M B A N M BF E B A (3)若AB =a ,则MB = AB = ;(二)例题学习:例1 如图,AB =6cm ,点C 是线段AB 的中点,点D 是线段CB 的中点,那么AD 有多长呢?解:∵点C 是线段AB 的中点∴AC =CB = AB = cm∵点D 是线段CB 的中点∴CD = CB = cm∴AD = + = cm答:AD 的长度为 .四.课堂练习A 组1.看图填空:(1)AD = + + ;(2)BD = + = - ;(3)BC = - - =AB CD2.如图,AB =6cm ,点C 是线段AB 的中点,点D 是线段CB 的中点,求线段C D 的长?B 组1.如图,点E 是AF 的中点,AF=10,EB=8,求BF 的长。

D BC CD B D B CF C E B A2.如图,C 为线段AB 的中点,D 在线段CB 上,DA =6,DB =4,求AB 、AC 、CD 的长.3.如图,E 、F 分别是线段AC 、AB 的中点,若AE =6cm ,AF =4cm ,求BC 的长.D BC A。

和差倍分问题

和差倍分问题

和差倍分问题基础知识:一、掌握利用线段图解和差倍分应用题的方法;二、掌握好设单位1,设份数的方法:可以直接将题目中的某些量设成为“1”份或者是多份;三、解题时需要注意认真审题,多注意观察题目中的隐含条件,特别是对于题目中的不变量,要十分注意。

根据倍数关系将不变量设为多份往往可以大大简化解题的过程;四、对于涉及到3个以上的对象并且给出了部分对象之和的题目,通常利用将条件累加或者对条件进行比较的方法来解题。

基本类型:1. 和倍问题是已知大小两个数的和与它们的倍数关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

和÷(倍数+1)=小数(1倍数)小数×倍数=大数和-小数=大数2.“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。

差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法。

被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题。

差÷(倍数-1)=小数(1倍数)小数×倍数=大数小数+差=大数例1.爸爸和小明一起搬砖,爸爸所搬的砖头是小明的6倍。

后来父子二人每个人又搬了18块砖头,于是爸爸所搬的砖头变成了小明的4倍。

那么最终爸爸和小明共搬了多少块砖?[答疑编号0518430101]【答案】225【解答】分析:“图解法”是解决这类问题最经典的方法。

注意到原来和后来父子二人所搬砖头数的差是一个“不变量”,可以利用这个特点来解题。

原来爸爸所搬的砖头是小明的6倍,因此两个人的差应为5的倍数;后来爸爸所搬的砖头变成了小明的4倍,因此两个人的差又应该是3的倍数。

综合起来看这两个条件,差既是5的倍数又是3的倍数,因此这个差应该是15的倍数,它可能是15、30、45、60……。

所以可以假设爸爸和小明的差为“15”份。

解法1:如图,画出线段图表示题目条件的含义。

小明原来搬了“1”,后来又搬了18块。

第三讲--线段的和差倍分问题

第三讲--线段的和差倍分问题

如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C 向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.26.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.25.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【考点】四边形综合题.【分析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC 得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF 可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF=DP.【点评】本题主要考查等腰直角三角形的性质、全等三角形的判定与性质、矩形的性质的综合运用,灵活运用全等三角形的判定与性质将待求证线段关系转移至其他两线段间关系是解题的关键.例4 (2013•黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.思路分析:(1)过点B 作BG ⊥OE 于G ,可得四边形BGEF 是矩形,根据矩形的对边相等可得EF=BG ,BF=GE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG ,然后利用“角角边”证明△AOE 和△OBG 全等,根据全等三角形对应边相等可得OG=AE ,OE=BG ,再根据AF-EF=AE ,整理即可得证;(2)选择图2,过点B 作BG ⊥OE 交OE 的延长线于G ,可得四边形BGEF 是矩形,根据矩形的对边相等可得EF=BG ,BF=GE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG ,然后利用“角角边”证明△AOE 和△OBG 全等,根据全等三角形对应边相等可得OG=AE ,OE=BG ,再根据AF-EF=AE ,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B 作BG ⊥OE 于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.2.(2015•随州)问题:如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,试判断BE 、EF 、FD 之间的数量关系.【类比引申】如图(2),四边形ABCD 中,∠BAD ≠90°,AB=AD ,∠B+∠D=180°,点E 、F 分别在边BC 、CD 上,则当∠EAF 与∠BAD 满足 关系时,仍有EF=BE+FD .26.已知二次函数y=x 2﹣(2k +1)x +k 2+k (k >0),若该二次函数与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于C 点,P 是y 轴负半轴上一点,且OP=1,直线AP 交BC 于点Q ,求证:.(3)由题意可得:点P的坐标为(0,1),则0=x2﹣(2k+1)x+k2+k0=(x﹣k﹣1)(x﹣k),故A(k,0),B(k+1,0),当x=0,则y=k2+k,故C(0,k2+k)则AB=k+1﹣k=1,OA=k,可得,y BC=﹣kx+k2+k,当x﹣1=﹣kx+k2+k,解得:x=k+,则代入原式可得:y=,则点Q坐标为运用距离公式得:AQ2=()2+()2=,则OA2=k2,AB2=1,故+=+1==,则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的和差倍分作图与计算
1、已知线段AB=80 , M为AB中点,P在MB上,N为PB中点,且NB=14,求AP长。

P
■■ • ■ ■
A M N B
2、已知P为线段AB上一点,M、N分别是AP、BP中点,试说明MN=1/2AB。

M N
* -------- v ------- * ----- ■---- V-
A P B
3、线段AB = 1.8,延长AB至C,使得BC = 3AB,D为BC中点,求BD的长。

4、已知线段AB上有C、D两点,AD=35,BC=44,AC=2/3BD,求AB的长。

A CD B
5、如图,C、D是AB上两点,E、F分别是AC、DB中点,EF= m,CD = n,求AB长
E F
A ~~ 'B
6 已知线段AB = 12,点C在直线AB上,且BC = 6,M是AC中点,求AM长。

(提示: 不只一种
可能哦)
7、已知线段AB=12 ,在AB 上有C、D、M、N 四点,且AC : CD : DB=1 : 2 : 3, AM=1/2AC ,
DN=1/4DB,求MN的长。

(提示:上题提示了,还要提示?!)
8、如图,C、D将AB分成2 : 3 : 4三部分,E是AB中点,ED = 2,求AB的长。

E
■ ----- P ---- * -■ --------- *
AC D B
9、在一条直线上有A、B、C三点,M为AB中点,N为BC中点,若AB= a,BC= b,试用a、b
表示线段MN的长度。

10、已知:线段a、b,求作:
① a + b
② 2 a + b
③ 2 b — a。

相关文档
最新文档