加热炉的控制系统(PPT 50页)
加热炉结构 ppt课件

三、加热原理
1、钢坯加热的目的: (1)提高钢坯的塑性,以降低钢坯在热加工
时的变形抗力,从而减少轧制中轧辊的磨损和断 辊等机械设备事故。
(2)使坯料内外温度均匀,以避免由于温度 应力过大造成成品的严重缺陷或废品。
(3)改善金属的结晶组织或消除加工时所形 成的内应力。
Page 30
2、钢坯的加热工艺: (1)加热温度:加热终了时钢坯出炉前的表
Page 22
烟道布置时要尽量缩短长度和减少烟气流动 阻力损失,要与厂房柱基、设备基础和电缆等保 持一定的距离,以免它们受烟道温度的影响。为 了控制排烟量以调节炉膛压力,烟道上必须设置 烟道闸板。 (3)烟囱:烟囱是通常用的一种排烟装置。烟囱 结构有砖烟囱、钢筋混凝土烟囱和金属烟囱。绝 大多数的烟囱采用钢筋混凝土烟囱修建。
Page 25
6.余热回收系统
(1)换热器:换热器是余热回收装置的一种, 主要用于回收烟气余热,以提高炉子的热利用效 率。
换热器按材质可分为金属换热器和陶瓷换热 器,金属换热器导热系数高、体积小、气密性好 等;陶瓷换热器可以承受很高的烟气温度,可将 空气预热到800~1000℃,且寿命长。
Page 26
砌筑的炉墙,主墙厚度为1.5~2块砖厚(464~ 580mm)。用耐火浇注料砌筑的炉墙,主墙厚度一 般为250~300mm。其余部分为绝热耐火材料,构 成复合炉墙。为提高炉子强度和气密性,炉墙外 面包上4~10mm厚的钢板。
Page 8
炉顶:按结构形式分为拱顶和吊顶两种。拱 顶可用楔形砖砌筑或不定形耐火材料捣制而成, 吊顶是由一些特制的异形砖组成,异形砖用金属 吊杆单独地或成组的吊在钢结构上。
(2)加热炉余热回收的途径: ①利用排出炉外的烟气来预热空气和煤气,
加热炉控制系统.ppt

控制系统的构成
整个热介质系统从物理构成上大致可分为热 介质系统和加热炉系统两大部分。
热介质系统: 包括膨胀罐、热媒泵、去用户热媒差压、去 用户热媒流量和热媒泵等的控制。
加热炉系统: 包括加热炉的启停、安全联锁保护、负荷调 节(所有这些都将涉及到燃料系统和助燃风 系统等)和报警管理、与DCS间的通讯等。
加热炉的热媒进出炉的 压力、温度;
各炉分支盘管的温度; 加热炉的排烟温度; CO2灭火. 所有这些工艺参数均由
PLC负责采集和处理, 并通过Pro-face GP2500触摸显示屏进 行人工监视和对各相关 设定值进行修改操作。 炉体参数检测子程序如下:
燃烧器
燃烧器是加热炉进行燃烧加热的关键设备。文昌 加热炉采用的是威索一体化燃烧器RGL70/2ZMD (双燃料燃烧器)。
燃烧器各部件在PLC的控制下有机的结合在一起, 相互谐调工作,完成燃烧加热工作。
与燃烧器配合工作是燃料供给系统。 燃料供给系统又分为燃气供给和燃油供给两个部 分。 燃烧系统和燃油供给的PI控制大致如下图所示。
燃烧系统的PI控制图
加热炉的启停控制
为了保证加热炉实现安全的启停,必须按照加热炉的工艺设计要
文昌加热炉控制系统
控制系统特点: 文昌锅炉控制系统均采用先进的基于PLC的自动化控制系统。它
是以Modicon TSX Micro 3721可编程控制器和Pro-face GP2500触摸显示屏为核心组成一个全新的控制系统,操作 简单方便,具有良好的人机界面。 控制系统设计的原则是: 热介质炉控制系统应全面满足热介质炉的工艺系统的安全 平稳运行; 现场所有仪表的设置必须满足对热介质炉的工艺系统运行 状态的监视和保护; 就地控制柜操作按钮和指示灯要便于操作员现场操作和监 视; 全部控制由PLC完成; Pro-face GP2500触摸显示屏,提高显示和操作的性能; 借助通讯,实现与中控DCS系统的通讯,同时为中控准备 了所有可供使用的技术数据;
石化厂加热炉的温度控制系统设计课件

(1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中 心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热 电阻插入深度应选择100毫米;
(2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流 体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用 热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于 75mm;热套式热电偶的标准插入深度为100mm;
热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。
采用热电阻法测量温度时,一般将电阻测温信号通过电桥转换成电压,当热电阻的链接导 线很长时,导线电阻对电桥的影响不容忽视。为了消除导线电阻带来的测量误差,不 管热电阻和测量一边之间的距离远近,必须使导线电阻的阻值符合规定的数值,如果 不足,用锰铜电阻丝凑足。同时,热电阻必须用三线接法,如图5.3所示,热电阻用三 根导线引出,一根连接电源,不影响电桥平衡,另外两根被分别置于电桥的两臂内, 使引线电阻值随温度变化对电桥的影响大致抵消。
达到调节温度θ1的目的。
图2.1 管式加热炉工艺流程图
控制方案确定
1简单控制系统 温度调节器TC是根据原料油的出
口温度θ1与设定值的偏差进行控
制。当燃料部分出现干扰后,控 制系统并不能及时产生控制作用,
克服干扰对被控参数θ1的影响控
制质量差。当生产工艺对原料油
出口温度θ1要求很严格时,简单
控制系统很难满足要求。 被控变量:原料油出口温度; 操控变量:燃料流量。 当对出口温度控制要求不高时,简
3、逐步逼近法是一种依次整定主回路、副回路,然 后循环进行,逐步接近主、副回路最佳整定的一种 方法。
加热炉的控制系统

蒸汽
FT 101 LI 101
LC 101
PF
Pc
给水
30
方框图
R+
-
Gc
C2
C1
GV
Gm
U G ff
GPD
GPC
Y
双冲量控制的另一种形式
蒸汽
FT
锅炉
LI 101
气包
101
+
LC 101
缺点:因控制阀的非线性,很难做到稳态补偿 不能克服给水量的扰动
4、三冲量控制
水位、负荷、给水流量的复合控制系统 方案一:
FT 102
给水
32
4.6.3 燃烧系统控制 1、控制系统的目的 ①保证锅炉出口蒸汽压力稳定 ②保持燃料良好地燃烧 ③保持炉膛负压不变 ④维持喷嘴背压在一定范围内 2、蒸汽压力控制和燃料与空气的比值控制 压力对燃料量的单回路控制适用于负荷及燃料波动较小的场合 燃料量波动较大时,可采用压力对燃料量的串级控制
C1、C2 :加法器的系数。C2 的正、负取决于阀的特性
锅炉 气包
气关阀:负荷 给水量 P0 C2 应取“-”
气开阀:负荷 给水量 P0 C2 应取“+”
C2 :根据阀的特性数据计算 现场凑试,在只有负荷干扰的条件下, 调整到水位基本不变
C1:可取1,也可小于1
C0 :在正常负荷下,C0 与C2PF 近似或正好抵消
Gd (s)
TC 101
FT
TT
101
101
Gd (s)
TC
101
FT
101
TT
101
前馈主要克服进料流量的干扰
加热炉操作PPT课件

返回
.
20
装置加热炉设计与 实际热效率对比表
返回
92 90 88 86 84 82 80
H101
H102
H103
H204 三合一炉
.
21
目前存在的主要问题
• 三合一炉对流室堵塞 • 三合一炉排烟温度过高 • E151供风量不足 • 三合一炉火嘴
返回
.
22
下一步工作思路
• 三合一炉对流室清灰 • 对流室炉管检查、清焦 • E151更新 • 三合一炉火嘴改造 • 根据需要对三合一炉的瓦斯控制进一步
优化
返回
.
23
.
4
本装置各加热炉的设计 与实际热效率对比
• 经过长期的工作,在全车间职工的共同 努力下,我车间八台加热炉的热效率一 直保持在较高的水平,尤其是三合一炉, 在分公司和总部的多次检查中,一直处 于分公司第一名。
• 装置加热炉设计与实际热效率对比表
.
5
目前车间加热炉情况
1、存在的问题 2、下一步工作思路
.
6
谢谢大家
.
7
正平衡法
热效率=(热负荷/燃料发热量)×100%
返回
.
8
反平衡法
热效率=(1-各种热损失热量/燃料发热量)×100%
●在实际计算中,由于反平衡法的误差较小,因而 多采用反平衡法进行计算。
返回
.
9
排烟温度的影响
排烟温度的升高意味着热效率的降低,当 炉子热效率较高时(90%以上),排烟损失占总 损失的70~80%。
为什么 要提高加热炉热效率?
• 提高加热炉热效率可以大量的节约燃料气用量, 减少能源消耗;
• 降低装置能耗是提高装置经济效益的重要手段 之一,本装置加热炉的瓦斯消耗占装置总输入 能耗的74.98%;
加热炉温度控制系统

加热炉温度控制系统标题:加热炉温度控制系统摘要:加热炉温度控制系统是一种用于控制加热炉温度的设备。
它通过监测加热炉内的温度并相应地调节加热器的工作状态,以保持加热炉内的温度在设定范围内稳定。
本文将介绍加热炉温度控制系统的原理、组成部分以及工作流程,并探讨其在工业生产中的应用。
关键词:加热炉、温度控制、加热器、工业生产1. 引言加热炉是一种常见的热处理设备,广泛应用于冶金、机械加工和材料研究等领域。
在加热炉的使用过程中,保持加热炉内的温度稳定是非常重要的。
过低的温度会导致加热不充分,影响产品的质量;过高的温度则会造成能源的浪费,甚至导致设备损坏。
因此,开发一种稳定且可靠的加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。
2. 温度控制系统的原理温度控制系统通常由温度传感器、控制器和执行器组成。
温度传感器用于实时监测加热炉内的温度变化,将温度信号传输给控制器。
控制器根据设定的温度范围和温度传感器反馈的实时温度,计算出相应的控制信号。
执行器根据控制信号调节加热器的工作状态,从而实现加热炉温度的稳定控制。
3. 温度控制系统的组成部分3.1 温度传感器温度传感器是温度控制系统中的重要组成部分。
常用的温度传感器有热电阻和热电偶两种。
热电阻传感器的工作原理是利用金属电阻随温度变化而发生的电阻变化,通过测量电阻的变化来确定温度。
热电偶传感器则是利用两种不同材料的接触产生的热电势随温差变化而变化,通过测量热电势的变化来确定温度。
3.2 控制器控制器是温度控制系统的核心部件,负责计算控制信号并将其传输给执行器。
控制器根据设定的温度范围和温度传感器反馈的实时温度,做出相应的控制决策。
常见的控制器包括PID控制器和模糊控制器。
PID控制器根据比例、积分和微分三个方面来调节控制信号;模糊控制器则利用模糊逻辑推断得出控制信号。
3.3 执行器执行器根据控制器传输的控制信号调节加热器的工作状态。
常见的执行器包括电动阀和可调电阻。
加热炉温度控制PPT

控制原理:利用对燃料量的控制最终来实现 对加热炉温度的控制(加热温度的理论上 应当是1400-1530℃ )。
传感器: B型热电偶(铂铑30-铂铑6 )
对加热炉炉温的监测
主要有了两大方面的温度检测: (一)炉出口温度的监测; (二)炉膛温度的监测;
——最终是要保持原料(钢板)出口温度恒 定
那么如何保证原料出口温度恒定?
控制对象:某钢铁厂加热炉
控制目的:实现加热炉炉温的控制
控制依据:燃料量的变化首先引起炉膛温度 的变化,由于炉膛温度产生变化,进而引 起炉出口温度的变化,由此可见,对炉出 口温度的控制采用炉膛温度与炉出口温度 进行控制方案是合理而且可行的
运用系统软件
采用的系统软件:PLC以及组态王
我们小组将会用PLC和组态王来模拟加热炉 的温度控制设计及模拟。
加热炉炉温控制系统设计
班级:电气自动化1301 组员:沈钰杰、李豪
胡佳栋、傅浩 时间:2016.1.11
加热炉炉温控制系统的重要性
目前在我国钢铁冶金行业中,能源问题 日益严峻以及企业面临越来越激烈的市场 竞争,节能增效就显得尤为重要。这就需 要对钢铁冶金行业中的主要耗能设备—— 加热炉的运行状态进行及时和准确的分析 并进行优化,以提高加热炉的运行效率, 达到节能降耗的目的。近年来,随着自动 化程度的不断提高,轧钢加热炉燃烧控制 已实现串级控制。
本小组初步设计 将会实现以下功能
加热炉的基本的系统控制
利用对燃料量的控制最终来实现对原料出 口处原料温度的控制。在原料出口处设置 温度传送器,由其带动回路温度控制器从 而进行对燃料阀的流量控制,这样便构成 了以原料出口温度为主要被控参数的加热 炉简单温度控制系统 如后图所示
加热炉简单控制系统
加热炉温控器的原理(1)幻灯片PPT

假使设置温度高于系统的温度,球1打开,球2关闭,输出 压力为零。
随着系统温度球2,引起输出压力增加。
当温度降低时(母火灭),反向作用,输出压力为零,切断主 母火系统。
第一课:火焰探测器的工作原理
第二课:温控器的工作原理
温度控制器是由不锈钢管组成的,它用于检测温 度的变化,不锈钢管与连在膜片或膜盒上的低膨胀合 金相连,随着不锈钢管长度的变化,作用在膜片或膜 盒组件上的压力也在变化,导向插座是由两个钢性连 接在一起的不锈钢球组成,球1缝合处是供给压力入口 端,球2缝合处是压力放空端。
11 10
9
7
6
P
5
8
4
3
2
1
1.进气球阀2.减压阀3.过滤器4.MOTOR阀5. MOTOR阀6.气源调节阀7.气量调 节阀8.主火截止阀9.母火针阀10.火焰探测器11.温控器
第四课:加热炉启停标准操作
见单体操作卡
第五课:加热炉常见故障及排除
一、常见故障: 1、回火:风门调整不合适、进气压力较低、烟道堵塞(烟道堵塞降低了
减压阀,调整起源压力。
假使温度控制器的设置温度高于系统的温度,球2关 闭,球1打开,在球2处输出压力(黄色)被送到某个导 向器。随着系统温度的升高,不锈钢管的长度应随之 增加,推动控制器的膜片首先关闭球1,打开球2,输 出压力降低。随着系统温度的降低,动作过程与上述 相反,输出压力增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gd (s)
TC 101
FT
TT
101
101
Gd (s)
TC
101
FT
101
TT
101
前馈主要克服进料流量的干扰
2019/11/20
FC 102 FT 102
16
加热炉安全联锁保护控制系统
在以燃料气为燃料的加热炉中,主要危险包括: 被加热工艺介质流量过少或中断; 熄火; 回火;(什么情况下发生?) 脱火。(什么情况下发生?)
2019/11/20
17
4.5.5 加热炉的安全联锁保护系统
联锁保护系统的作用:为安全生产、防止事故 1、燃气加热炉 ①工艺介质流量过小或中断,切断燃料气 ②某种原因灭火时,切断燃料气 ③燃料气压力不能过低,流量不能太小 ④燃料压力不能过高,否则会引起脱气灭火
TT TC 101 101
加热炉
PC 101
燃料
雾化状况,空气量,喷嘴阻力等
2、控制回路 (1) 主要控制系统:出口温度控制
TC TT 101 101
(2) 辅助控制系统:
① 工艺介质的流量控制系统; ② 燃料压力控制系统;
PC PT
回 101 101 油
加热炉
③ 燃料油雾化蒸汽压力控制。
燃
雾化蒸汽
料 油
PC 102
PT 102
FT 101
2019/11/20
操作特点: 避免温度过高,炉管内物料可能分解、结焦 严格控制加热炉出口温度
2019/11/20
TT 101
燃料
3
4.5.2 加热炉的单回路控制
1、对象分析 主要控制指标:工艺介质的出口温度 操作手段:燃料油或燃料气的流量
干扰因素:负荷量、进料温度、组分;
TT 101
工艺 介质
燃料油(气)压力、性质、
2019/11/20
8
2、炉出口温度对燃料流量的串级 优点:有利于克服燃料量变化 缺点: 燃料量小、粘度大时,
流量测量困难
三串级: 出口温度、 炉膛温度、 燃料量三参数串级
特点:关联回路多,实施困难
2019/11/20
TT TC 101 101
加热炉 工艺 介质
FC 101
FT 101
燃料
TC
TT
加热炉的控制
2019/11/20
2
4.5 加热炉的控制
4.5.1 概述
加热炉是石油化工生产过程的主要设备之一
作用: 工艺介质的升温或气化
结构形式:箱式炉、立式炉、圆筒炉
工作原理: 燃料(油)分几路(雾化喷嘴)进炉燃烧
炉膛火焰辐射给炉管
工艺
炉管经热传导、对流传热给工艺介质
介质
对象特点:
炉膛容量大、时间常数大、滞后时间长; 属多容过程;可用一阶加纯滞后环节近似描述; 理论分析比较困难。
也可采用流量比值控制
加热炉负荷大、时间常数和滞后时间较大, 单回路控制很难满足要求,炉出口温度波动较大
3、单回路控制适用场合 对炉出口温度要求不高的场合 干扰较小,且不频繁 炉膛容量较小,滞后小
燃料 油
K
PC
102
雾化 蒸汽
至 PT 喷嘴
101
PT
102
2019/11/20
5
4.5.3 加热炉的串级控制
燃 101 料 油
工艺 介质
TT 101
TT 102
FT 101
加热炉
工艺 介质
TT TC 101 101
加热炉
PC 101
PT
101 燃 料
进料
出料
2019/11/20
燃料油
10
浮动(压力平衡式)阀工作原理
2019/11/20
11
加热炉的串级控制方案 总结
TC TC 燃料油
TC PC
进料 燃料油
101
101
TC
TT
102
102
FC FT
燃 101 101 料 油
加热炉
工艺 介质
9
3、出口温度对燃料阀后压力的串级
燃料量小、粘度大时,流量测量困难 压力测量较方便
特点:应用较广 应注意管道堵塞
4、采用压力平衡式控制阀 这种阀本身兼有压力控制器功能,相 当于炉出口温度对燃料压力的串级。
TC
TC 101 TC 102 FC
炉出口温度对炉膛温度的串级控制 炉出口温度对燃料流量的串级控制 炉出口温度对燃料阀后压力的串级控制 采用压力平衡式控制阀的控制
2019/11/20
6
4.5.3 加热炉的串级控制
TC TC 燃料油
出料 进料
TC FC
进料
燃料油
出料
TC
PC 进料
出料
燃料油
2019/11/20
TC 进料
燃料油
出料
7
TC
2019/11/20
出料
TC
FC 进料
进料
优点?
燃料油
缺点?
TC
进料 出料
燃料油
统
原料油加热到一定温度送给反应器
开工气体为燃料,出口温度控制浮动阀 正常生产重质油为燃料,采用炉出口温度 与燃料阀后压力串级
2019/11/20
13
例1:催化裂化装置加热炉 控制系统
LS
PT 101
自分馏塔来 的回炼油
去反应器
FC
TC
PC
原料油 FC
开关 PC
回油罐 2019/11/20
正常 燃料油
PC
去瓦斯罐 开工
干气 ( 热裂解气 )
14
例2:常减压装置加热炉控制系统
原油加热到一定温度送至常压塔分馏
要求炉出口温度稳定
TC TT 101 101
常压塔
TT TC 103 103
温度控制:炉出口温度对炉膛 温度的串级
TC TT 加热炉 TT TC
102 102
104 104
FC
FC
101 PT
102 PT
101
FT
FT
102
101
102
PC 101
来自初馏塔
PC 102
燃料油
负荷控制:单回路流量控制 燃料干扰:单回路压力控制
2019/11/20
15
4.5.4 加热炉的前馈 — 反馈控制
实际生产中,有时遇到进料量变化频繁、幅度较大 炉子时间常数大、滞后时间长 单回路或串级均很难满足要求 设计前馈 — 反馈控制系统
TT
101
101
1、炉出口温度对炉膛温度的串级控制
干扰(燃料压力、性质等)
炉膛温度
炉出口温度
炉膛温度比出口温度滞后小
副回路克服干扰,减小对出口温度的影响
TC 102
燃 料 油
TT 102
加热炉
工艺 介质
优点:有利于克服燃料性质变化
注意:(1) 炉膛温度的检测点位置,选择有代表性且反应较快的点;
(2) 副控制器参数不应整定得过于灵敏; (3) 副控制器不引入微分作用; (4) 炉膛温度不应有大的波动; (5) 炉膛温度测温元件及保护套管应耐高温。
工艺 介质
FC 101
4
燃料油压力较平稳时,③回路可以 满足雾化要求。
燃料油压力波动较大时,单回路不能 保证良好雾化,可采用以下方案:
燃 料 油 PdC PdT
至 喷嘴
①用燃料油阀后压力与雾化蒸汽压力之差来
101 101
雾化
调节雾化蒸汽。
蒸汽
②燃料油阀后压力与雾化蒸汽压力比值控制。
(前提条件:管道应畅通)