(完整word版)SPWM逆变器原理讲解
SPWM原理以及具体实现方法

SPWMSPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.定义我们先说说什么叫PWMPWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。
广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。
所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。
它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。
三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。
该方法的实现有以下几种方案。
1.3.1等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。
通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。
SPWM逆变电路原理

对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。
更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。
这里仅介绍最常用的PWM脉宽调制方式。
面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。
7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。
图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。
根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。
要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。
SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。
s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。
图3上部分是SPWM波形控制信号生成的原理图,下部分是生成的SPWM波形。
(完整word版)SPWM全桥逆变器主功率电路和控制电路设计

SPWM全桥逆变器主功率电路和控制电路设计一.设计目的通过电力电子技术的学习,熟悉无源逆变概念;采用全桥拓扑并用全控器件MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。
熟悉全桥逆变器拓扑,掌握逆变原理,实现正弦波输出要素,设计SPWM逆变器控制信号发生电路。
输入:48VDC 输出:40VAC/400HZ二.设计任务(1) 掌握全桥逆变的概念,分析全桥逆变器中每个元件的作用;(2)分析正弦脉宽调制SPWM原理,及硬件电路实现形式;(3)应用Protel 制作SPWM 逆变器线路图;(4)根据线路图制作硬件,并调试;三.设计原理电路组成及工作原理分析:电路主要由正弦波和三角波发生电路,控制电路和逆变电路组成。
电路中所用到的元器件主要有ICL8038,运算放大器LF353,比较器LM311,IR2110,MOSFET,CD4069,电阻电容及齐纳二极管组成。
控制电路分析:当电路开始工作,首先由ICL8038产生的正弦波和三角波,正弦波和三角波的幅值由可调电阻来控制,得到的波可以通过LF353运算放大器构成的反相电路进行反向,得到方向相反的正弦波,正弦波与三角波信号通过LM311比较芯片产生SPWM脉冲。
主电路分析:本次设计我们采用倍频式SPWM技术,在开关频率不变的情况下,达到输出频率倍增的效果。
IR2110用于驱动全桥逆变器用以控制MOSFET的通断,在IR2110的外围电路使用二极管和齐纳二极管防止MOSFET的同时导通而击穿。
如下图所示,MOSFET采用2SK1825,4个2SK1825两两串联后并联成桥式逆变主电路,U输入为出入电压,VDC 输出电压,电容C1、C3为VCC的滤波电容,电容C2、C4为自举电容,二极管为自举二极管。
MOSFET的驱动采用芯片IR2110驱动,2个IR2110芯片分别驱动桥式逆变主电路的2个桥臂。
工作时,两个IR2110(1)和IR2110(2)的输入SPWM脉冲是相反的,两个IR2110分别驱动不同桥臂的MOSFET管,IR2110(1)的HO驱动Q1、IR2110(1)的LO驱动Q2,IR2110(2)的HO驱动Q3、IR2110(2)的LO 驱动Q4,由于输入的两个SPWM脉冲是相反的,2个桥臂上的MOSFET 管会交叉导通,即Q1、Q3同时导通或者Q2、Q4同时导通,两种情况依次循环导通,从而完成逆变。
单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解

单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解随着电力电子技术的发展,人们对逆变电源的要求也越来越高。
在大功率逆变电源场合,流过主电路上的器件电流非常大,作为开关管的IGBT 上流过的电流可达几百安,所以一般所选的开关管容量比较大,这就导致调制时的开关频率不能过高。
本文首先介绍了主电路与三环控制,其次介绍了单极性倍频SPWM调制,最后阐述了系统实验分析wNN,具体的跟随小编一起来了解一下。
一、主电路与三环控制逆变器主电路结构如图1所示,主电路采用全桥结构,输出端连接了LC 滤波器滤除高次谐波。
开关管的驱动信号由三角波和正弦波比较匹配得到。
三环控制结构图如图2所示,由内到外分别为瞬时值电容电流环、瞬时值电压环和电压有效值环。
其中:瞬时值电流环的主要作用是校正输出电压波形;瞬时值电压环主要作用是校正输出电压的相位,并提高系统的动态性能;电压有效值环的主要作用是使输出电压稳定在所需要的电压幅值。
电流瞬时值内环和电压瞬时值外环均采用P调节器,最外环电压有效值环采用PI 调节器。
图3和图4 分别为采用三环控制的逆变电源系统从满载到空载和空载到满载的波形仿真图,图3中Uo为输出电流。
由图3-4 可知,切载时电压幅值基本保持不变,说明系统具有较好的动态特性。
在常规SPMW波调制中,开关频率和输出脉冲频率是相等的,但是在大功率条件下,开关频率不能过高,原因主要:
①开关频率过高会导致开关损耗增大;
②会使开关管发热严重,长时间运行会损坏开关器件;
③开关频率过高,出现擎住效应的几率增大;
④大容量开关器件高速通断,会产生很高的电压尖峰,有可能造成开关管或其他元件被击。
SPWM原理

SPWM 原理:
以正弦波作为逆变器输出的期望波形,以频率比期望波高的多的等腰三角波作为载波,并用频率和期望波相同的正弦波作为调制波,当调制波与载波相交时,由他们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄,中间宽的一系列等福不等宽的矩形波。
SPWM 的原理为在控制电路中调制,在主电路中输出。
在控制电路中,一个频率为r f 幅值为r U 的参考正弦波sin W (调制信号)加载于频率为c f 幅值为c U 的三角波∆W (载波)后,得到一个脉冲宽度变化的SPWM 波spwm W (已调制波),用已调制波的高低逻辑电平经分配与放大后去驱动逆变器的主开关元件,即可得逆变器输出与已调制波spwm W 相似的SPWM 电压波形。
调制度M ;正弦调制波参考信号幅值rm U 与三角载波幅值cm U 之比。
cm
rm U U M = 载波比N ;三角载波频率c f 与正弦调制波参考信号频率r f 之比。
r
c f f N = 同步调制是N 为常数的调制方式。
采样点和开关点重合的调制方式为自然采样。
自然采样的优点为:1.基波幅值与调制度M 成正比,利于调压。
2.高次谐波随着载波比N 与调制度M 的增大而减小,有利于波形的正弦化。
spwm原理

spwm原理
SPWM(Sinusoidal Pulse Width Modulation)是一种调制技术,用于将直流电压转换成交流电压。
它通过改变一个周期内脉冲的宽度,以在不同的时间点上施加不同的电压,并最终形成一个近似正弦波的输出。
SPWM的原理是通过将一个完整的周期分成很多短时间段,
并在每个时间段内施加一定的电压。
这些时间段可以被视为不同的采样点,通过改变每个时间段内脉冲的宽度来改变电压的幅值。
为了生成一个近似正弦波形的输出,这些脉冲的宽度需要按照正弦函数的规律变化。
SPWM的关键在于如何确定每个时间段内脉冲的宽度。
一种
常见的方法是使用三角波载波信号和参考信号进行比较,以得到需要施加的电压值。
三角波载波信号的频率通常比参考信号的频率高,因此每个周期内会产生多个脉冲。
通过比较三角波载波信号与参考信号的大小,确定脉冲的宽度。
如果参考信号的幅值大于三角波的幅值,则脉冲宽度增加,反之则减小。
通过不断调整每个时间段内脉冲的宽度,就可以在输出端生成一个接近正弦波形的电压信号。
这种调制技术被广泛应用于交流电压变换、电机控制等领域,能够提供高效、稳定的电压输出。
总结一下,SPWM利用调整脉冲的宽度来改变电压幅值,通
过比较三角波载波信号和参考信号来确定脉冲宽度的变化,从
而生成一个近似正弦波形的输出电压。
这种调制技术在电压变换和电机控制等领域有着广泛的应用。
SPWM逆变原理及控制方法

如何利用电力电子器件的开通和关断两 种状态实现 电能四大基本状态之间的转换 就是电力电子学所要研究的核心内容
3
2.1 SPWM基本原理
理想开关:
¾ ¾ ¾ ¾ ¾ ¾ 导通电阻为0,即:通态压降为0 关断电阻为∞ 不考虑开通和关断时间,即:瞬时开通和关断 导通电阻不为0,通态压降为2V左右 关断电阻也不为∞,有少量漏电流 需要一定时间才能完全开通和关断,一般在10us以下
实际电力电子器件(开关):
理论分析一般都采用理想开关。在涉及散热系 统设计、死区时间选取、器件串并联设计、器件保 护等方面时,将必须按实际电力电子器件考虑
4
2.1 SPWM基本原理
实现电能四种基本形态的转换就是利用PWM 调制 • PWM(Pulse Width Modulation)脉宽调制技 术:通过对一系列脉冲的宽度进行调制,来等 效的获得所需要的波形(形状和幅值) • SPWM(Sinusoidal Pulse Width Modulation) 正弦脉宽调制技术:通过对一系列宽窄不等的 脉冲进行调制,来等效正弦波形(幅值、相位 和频率)
V4
V1
TD
V1
V1* V4 V4*
21
2.2 SPWM逆变及其控制方法
• 特定谐波消去法(计算法)
Selected Harmonic Elimination PWM—SHEPWM 这是计算法中一种较有 代表性的方法 输出电压半周期内,器 件通、断各3次(不包括 0和π),共6个开关时 刻可控 为减少谐波并简化控 制,要尽量使波形对称
2.2 SPWM逆变及其控制方法
• 自然采样法
1
TC
为简单起见,在计算机内部一般进行标称化,假定三角波最大 值为1
正弦波脉冲宽度调制(SPWM)逆变电路

5.3.1 SPWM波形控制基本原理 5.3.2 单相SPWM控制原理 5.3.3 三相桥式SPWM逆变电路 5.3.4 SPWM逆变电路的同步调制和异步调制
第4章 电工测量与工厂输配电和安全用电
5.3.1 SPWM波形控制基本原理
5.3.1 SPWM波形控制基本原理 面积相等而形状不同的窄脉冲加在具有惯性的环节上,
一定频率范围内,采用同步调制可以保持波形对称 的优点;低频段又采纳了 异步调制的长处。
11 目录 返回
上页 下页 退出
53正弦波脉冲宽度调制spwm逆变电路531531spwmspwm波形控制基本原理波形控制基本原理532532单相spwm控制原理533533三相桥式三相桥式spwmspwm逆变电路逆变电路534534spwmspwm逆变电路的同步调制和异步调制逆变电路的同步调制和异步调制目录退出返回上页下页531spwm531spwm波形控制基本原理波形控制基本原理面积相等而形状不同的窄脉冲加在具有惯性的环节上其效果基本相同
1. 载波比N为常数,变频时三角载波频率和正弦 调制频率同步变化的调制方式称为同步调制方式
2异步调制 载波比N不为常数,变频范围内三角载波频率和正弦 调制频率不保持同步变化关系的调制方式称为异步
调制方式。 一般来说,同步调制适用于输出的高频段,
异步调制适用于输出的低频段。
10 目录 返回
上页 下页 退出
如把上述脉冲列用同数量等幅不等宽的矩形脉冲列来 代替,使矩形脉冲的中点和相应正弦等分的中点重合,
且使矩形脉冲和相应正弦部分面积(冲量)相等, 就得到图6-10(b)所示的脉冲序列PWM波形。如 PWM波形的脉冲宽度按正弦规律变化称为SPWM波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPWM 逆变器原理
所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图1 所示,等效的原则是每一区间的面积相等
1 概述
逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。
PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:
(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。
(2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。
(3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。
2 SPWM 逆变器原理
2.1 SPWM 波形
所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图 1 所示,等效的原则是每一区间的面积相等。
如图把一个正弦波分作几等分(如图1a 中,n=12)然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合(如图1b),这样由几个等幅不等宽的矩形脉冲所组成的波形就与正弦波等效,称作SPWM 波形。
同样,正弦波的负半周也用同样的方法与一系列负脉冲波等效。
图2 为SPWM滤波线为等效正弦波UmSinω1t,SPWM 脉冲序列波的幅值为Us/2,各脉冲不等宽,但中心间距相同为π/n ,n 为正弦波半个周期内的脉冲数,令第i 个矩形脉冲宽度为δi , 其中心点相位角为θi ,则根据面积相等的等效原则,可分成
这就是说,第i 个脉冲的宽度与该处正弦波值近似成正比,因此半个周期正弦波的SPWM 波是两侧窄,中间宽,脉宽按正弦规律逐渐变化的序列脉冲波形。
2.2 SPWM 调制及逆变桥工作原理
今以SPWM 三相逆变桥为例进行说明,SPWM三相逆变器主电路由六个全控式功率开关器件构成三相逆变桥,它们各有一个继流二极管反并联结,整个逆变器由三相不可控整流器提供电压为Us的直流电压。
图3 为单极式脉宽调制波的形式图。
a 图中Ut 为等腰三角形的载波,Ura 及Ura’为正弦调制波,调制波和载波的交点决定了SPWM 脉冲序列的宽度和脉冲间的间隔宽度,如图b 所示,当A 相的Ura>Ut 时,VT1 导通,输出正弦脉冲电压Us/2,当Ura<Ut 时,VT1 关断Uda=0,在Ura 负半周,用同样方法控制VT4,输出负的脉冲电压序列,改变调制波频率时,输出电压基波频率随之改变,降低调制波幅值时如Ura,各段脉冲的宽度变窄,输出电压基波幅值减少。
这种SPWM 每相只有一个开关器件反复通断,称单极性SPWM 波形。
若有同一桥臂上下两个开关交替地导通与关断,则输出脉冲在“+”和“-”之间变化,这样得到双极式的SPWM 波形,如图4 所示,其调制方法与单极式相似,只是输出脉冲电压的极性不同,当Ura>Ut 时,VT1 导通VT4 关断,Uao=+Us/2;当Urs<Ut 时VT1 关断,VT4 导通,输出相电压Uao=-Us/2,同理VT3 和VT6,VT3 和VT5 交替导通得到UAO,UCO 如图c 和d 所示,UAB=UAO-UBO,可得逆变器输出的线电压波形UAB=f(t)如e 所示。
3 SPWM 波形的分析
对负载(交流异步电机)来说,有用的是电压的基波,希望SPWM 波形中基波成分越大越好,通过对SPWM 脉冲序列波U (t)展开成付利叶极数分析可知,输出基波电压幅值Um 与δi 有着直接的关系,它说明调节调制波幅值从而改变各个脉冲宽度时,可使逆变器输出电压基波幅值平滑调节。
SPWM 逆变器输出脉冲序列波的基波电压正是调制时所要求的等效正弦波,当然这必须是在满足n 不太小近似条件下得到的。
但SPWM 逆变器输出相电压的基波幅值有常规六拍阶梯波的86%~90%,为弥补这一不足,常在SPWM 逆变器的直流回路中并联相当大的滤波电容,以提高逆变器的直流电压Us.
由以上分析可知n 越大即功率开关器件半周内要开关n 次,脉冲数n=N/2,其中N 为载波比,即:
N=ft/fr=载波频率/参考调制波频率
即希望N 越大越好。
但从功率开关器件本身的允许开关频率来看,N 不能太大:
N ≤功率开关器件的允许开关频率/最高的正弦调制信号频率
上式中分母实际上就是SPWM 变频器的最高输出频率。
现常用功率开关频率如下:BJT(1~5 kHz)GTO(1~2 kHz) MOSFET(50 kHz)IGBT(20 kHz)随着全控型快速半导体器件性能价格比的提高和PWM 技术的日渐完善和新技术新工艺新材料的使用,SPWM 技术将在电气传动及电力系统中得到更广泛的运用。