简单的三角恒等变换练习题

合集下载

课时作业14:§4.3简单的三角恒等变换

课时作业14:§4.3简单的三角恒等变换

§4.3简单的三角恒等变换第Ⅰ卷一、选择题1.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35C .35D .452.化简π11πcos(π+)cos()cos()229πcos(π)sin(π)sin()2αααααα+----+的结果是( )A .-1B .1C .tan αD .-tan α3. 下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6)B .y =sin(2x +π3)C .y =sin(2x -π3)D .y =sin(2x -π6)4.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =cos2xB .y =2cos 2xC .y =1+sin(2x +π4)D .y =2sin 2x5.设扇形的周长为6,面积为2,则扇形的圆心角是(弧度)( ) A .1 B .4 C .πD .1或46.已知α、β为锐角,cos α=35,tan(α-β)=-13,则tan β的值为( )A .13B .3C .913D .1397.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且BC 边上的高为36a ,则c b +b c的最大值是( )A .8B .6C .32D .48. 在△ABC 中,若三个角A 、B 、C 成等差数列,对应三条边成等比数列,则△ABC 一定是( )A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形9.已知△ABC 中三内角A 、B 、C 的对边分别是a 、b 、c ,若B =30°,b =1,c =3,则△ABC 的面积为( )A .32B .34 C .32或34D .32或3 10.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2A -B2cos B -sin(A -B )sin B+cos(A +C )=-45,则cos A =( )A .-45B .45C .35D .-3511.若f (x )=2cos(ωx +φ)+m ,对任意实数t 都有f (t +π4)=f (-t ),且f (π8)=-1则实数m的值等于( )A .±1B .-3或1C .±3D .-1或312.函数f (x )=A sin(ωx +φ)+b 的图象如图,则f (x )的解析式和S =f (0)+f (1)+f (2)+…+f (2013)的值分别为( )A .f (x )=12sin2πx +1,S =2013B .f (x )=12sin2πx +1,S =201312C .f (x )=12sin π2x +1,S =2014D .f (x )=12sin π2x +1,S =201412第Ⅱ卷二、填空题13.在△ABC 中,sin C =513,cos B =-45,则角cos A =________.14.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则将y =f (x )的图象向左至少平移________个单位后,得到的图象解析式为y =A cos ωx .15.已知函数f (x )=sin(2x +φ)(其中φ为实数),若f (x )≤|f (π6)|对x ∈R 恒成立,且sin φ<0,则f (x )的单调递增区间是________.16.若cos x cos y +sin x sin y =12,sin2x +sin2y =23,则sin(x +y )=________.三、解答题(17.已知函数f (x )=3sin2x -2sin 2x .(1)若点P (1,-3)在角α的终边上,求f (α)的值; (2)若x ∈[-π6,π3],求f (x )的值域.18.将函数y =f (x )的图象向左平移1个单位,再纵坐标不变,横坐标伸长到原来的π3倍,然后再向上平移1个单位,得到函数y =3sin x 的图象.(1)求y =f (x )的最小正周期和单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,求当x ∈[0,1]时,函数y =g (x )的最小值和最大值.19.在△ABC 中,已知角A 为锐角,且f (A )=22π[cos(π-2)1]sin(π+)sin()222πsin ()sin (π)222A AA A A -----+cos 2A .(1)求f (A )的最大值;(2)若A +B =7π12,f (A )=1,BC =2,求△ABC 的三个内角与AC 边的长.20.已知A 、B 分别在射线CM 、CN (不含端点C )上运动,∠MCN =2π3,在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .(1)若a 、b 、c 依次成等差数列,且公差为2,求c 的值;(2)若c =3,∠ABC =θ,试用θ表示△ABC 的周长,并求周长的最大值. 21.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,tan B tan C =2a -cc .(1)求角B 的大小;(2)求函数f (x )=cos x ·cos(x +B )(x ∈[0,π2])的值域.22.已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(λ∈R )的图象关于直线x =π对称,其中ω,λ为常数且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数y =f (x )在区间[0,3π5]上的取值范围.参考答案 第Ⅰ卷一、选择题 1. B【解析】解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=|OP |2=a 2+(2a )2=5a 2, ∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2aa =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.2. C 3. D【解析】把x =π3代入解析式,函数应取到最值,经检验D 符合.4. B 5. D【解析】设扇形半径为R ,圆心角为α,则 ⎩⎪⎨⎪⎧2R +Rα=6 112R 2α=2 2由(2)得Rα=4R ,代入(1)得2R +4R =6,解之得R =1或2,当R =1时,α=4,当R =2时,α=1.∴选D . 6. B 7. D【解析】b c +c b =c 2+b 2bc ,这个形式很容易联想到余弦定理:cos A =c 2+b 2-a 22bc ,①而条件中的“高”容易联想到面积,12a ·36a =12bc sin A ,即a 2=23bc sin A ,②将②代入①得:b 2+c 2=2bc (cos A +3sin A ),∴b c +c b =2(cos A +3sin A )=4sin(A +π6),当A =π3时取得最大值4,故选D . 8. D【解析】∵A 、B 、C 成等差数列,∴B =π3,A +C =2π3,又b 2=ac ,∴sin 2B =sin A sin C ,即sin A sin C =34,∴sin A sin(2π3-A )=34,∴sin(2A -π6)=1,∵0<A <π,∴2A -π6=π2,∴A =π3,∴△ABC 为等边三角形. 9. C【解析】∵3sin30°=32<1<3,∴△ABC 有两解.由1sin30°=3sin C 得,sin C =32,∴C =60°或120°, 当C =60°时,A =90°,S △ABC =32; 当C =120°时,A =30°,S △ABC =12×3×1×sin30°=34,故选C .10. A 【解析】2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C ) =[cos(A -B )+1]cos B -sin(A -B )sin B +cos(π-B ) =cos(A -B )cos B -sin(A -B )sin B +cos B -cos B =cos(A -B +B )=cos A =-45,故选A .11. B【解析】由f (t +π4)=f (-t )得,f (π8+t )=f (π8-t ),∴f (x )的图象关于直线x =π8对称,又f (π8)=-1,∴m ±2=-1,∴m =1或-3. 12. D【解析】由图象知A =0.5,T =4=2πω,∴ω=π2,b =1,∴f (x )=0.5sin(π2x +φ)+1,由f (x )的图象过点(1,1.5)得,0.5sin(π2+φ)+1=1.5,∴cos φ=1,∴φ=2k π,k ∈Z ,取k =0得φ=0,∴f (x )=0.5sin(π2x )+1,∴f (0)+f (1)+f (2)+f (3)=(0.5sin0+1)+(0.5sin π2+1)+(0.5sinπ+1)+(0.5sin 3π2+1)=4,2013=4×503+1,∴S =4×503+f (2012)+f (2013)=2012+f (0)+f (1)=2014.5.第Ⅱ卷二、填空题 13.6365【解析】∵cos B =-45,0<B <π,∴sin B =35,且B 为钝角,∴C 为锐角,∵sin C =513,∴cos C =1213,∴cos A =cos[π-(B +C )]=-cos(B +C )=sin B sin C -cos B cos C =35×513-(-45)×1213=6365.14. π6【解析】由函数的图象可得A =1,34T =34·2πω=1112π-π6=3π4,∴ω=2.再根据五点法作图可得2×π6+φ=π2,∴φ=π6,∴函数f (x )=sin(2x +π6).把函数f (x )=sin(2x +π6)的图象向左平移π6个单位,可得y =sin[2(x +π6)+π6]=cos2x 的图象.15. [k π+π6,k π+2π3](k ∈Z )【解析】由条件知|f (π6)|=|sin(π3+φ)|=1,∴π3+φ=k π+π2,k ∈Z . ∴φ=k π+π6,∵sin φ<0,∴取k =1,φ=7π6,∴f (x )=sin(2x +7π6).由2k π-π2≤2x +7π6≤2k π+π2得,k π-5π6≤x ≤k π-π3.16. 23【解析】∵2x =(x +y )+(x -y ),2y =(x +y )-(x -y ),sin2x +sin2y =23,∴sin(x +y )cos(x -y )=13,又由cos x cos y +sin x sin y =12得cos(x -y )=12,∴sin(x +y )=23.三、解答题17.解 (1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12, 所以f (α)=3sin2α-2sin 2α=23sin αcos α-2sin 2α =23×(-32)×12-2×(-32)2=-3. (2)f (x )=3sin2x -2sin 2x =3sin2x +cos2x -1=2sin(2x +π6)-1,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,所以-12≤sin(2x +π6)≤1,所以f (x )的值域是[-2,1].18.解 (1)函数y =3sin x 的图象向下平移1个单位得y =3sin x -1, 再将各点的横坐标缩短到原来的3π倍得到y =3sin π3x -1,然后向右移1个单位得y =3sin(π3x -π3)-1.所以函数y =f (x )的最小正周期为T =2ππ3=6.由2k π-π2≤π3x -π3≤2k π+π2⇒6k -12≤x ≤6k +52,k ∈Z ,∴y =f (x )的递增区间是[6k -12,6k +52],k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,∴当x ∈[0,1]时,y =g (x )的最值即为当x ∈[3,4]时,y =f (x )的最值. ∵x ∈[3,4]时,π3x -π3∈[2π3,π],∴sin(π3x -π3)∈[0,32],∴f (x )∈[-1,12],∴y =g (x )的最小值是-1,最大值为12.19.解 (1)f (A )=cos2A +1sin A 2cosA2cos 2A 2-sin 2A 2+cos 2A=2cos 2A sin A 2cosA2cos A +cos 2A =12sin2A +cos 2A=12(sin2A +cos2A +1)=22sin(2A +π4)+12. ∵角A 为锐角,∴0<A <π2,π4<2A +π4<5π4,∴当2A +π4=π2时,f (A )取值最大值,其最大值为2+12.(2)由f (A )=1得22sin(2A +π4)+12=1, ∴sin(2A +π4)=22,∴2A +π4=3π4,A =π4.又∵A +B =7π12,∴B =π3,∴C =5π12.在△ABC 中,由正弦定理得:BC sin A =ACsin B ,∴AC =BC sin Bsin A= 6.20.解 (1)∵a 、b 、c 成等差数列,且公差为2,∴a =c -4,b =c -2, 又∠MCN =2π3,∴cos C =-12.由余弦定理得:242(2)(2)2(2)(4)c c c c c -+----=-12,∴c 2-9c +14=0,∴c =7或2, ∵c >4,∴c =7.(2)在△ABC 中,AC sin ∠ABC =BC sin ∠BAC =ABsin ∠ACB ,∴AC sin θ=πsin()3BC θ-=3sin 2π3=2,∴AC =2sin θ,BC =2sin(π3-θ).∴△ABC 的周长L =|AC |+|BC |+|AB | =2sin θ+2sin(π3-θ)+3=2[12sin θ+32cos θ]+3=2sin(θ+π3)+3,又∵θ∈(0,π3),∴π3<θ+π3<2π3.∴当θ+π3=π2,即θ=π6时,L 取得最大值2+ 3.21.解 (1)∵sin B cos C sin C cos B =2sin A -sin Csin C ,而sin C >0,∴sin B cos C =2sin A cos B -cos B sin C ,∴sin(B +C )=2sin A cos B ,∵sin(B +C )=sin A ,∴cos B =12,∴B =π3. (2)f (x )=12cos 2x -32sin x cos x =1+cos2x 4-34sin2x =12cos(2x +π3)+14, ∵2x +π3∈[π3,43π],∴-1≤cos(2x +π3)≤12, ∴f (x )的值域为[-14,12]. 22.解 (1)∵f (x )=a ·b +λ=(cos ωx -sin ωx )·(-cos ωx -sin ωx )+sin ωx ·23cos ωx +λ =sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=3sin(2ωx )-cos(2ωx )+λ=2sin(2ωx -π6)+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin(2ωπ-π6)=±1, ∴2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ), 又ω∈(12,1),k ∈Z ,所以k =1,ω=56. ∴f (x )=2sin(53x -π6)+λ, ∴f (x )的最小正周期为65π. (2)∵函数y =f (x )的图象过点(π4,0), ∴f (π4)=2sin(53×π4-π6)+λ=0,故λ=-2sin π4=- 2. 故f (x )=2sin(53x -π6)-2, ∵0≤x ≤3π5,∴-π6≤53x -π6≤5π6, ∴-12≤sin(53x -π6)≤1, ∴-1-2≤2sin(53x -π6)-2≤2-2, 故函数f (x )在[0,3π5]上的取值范围为[-1-2,2-2].。

三角恒等变形-练习题

三角恒等变形-练习题

三角恒等变形-练习题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--3-1-1两角差的余弦公式一、选择题1.cos39°cos9°+sin39°sin9°等于( )C .-12D .-32 2.cos555°的值为( ) B .-6+243.已知α∈⎝⎛⎭⎫0,π2,sin α=45,则cos ⎝⎛⎭⎫π4-α等于( )2C .-210D .-254.若sin α·sin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1 D .-1 5.cos75°+cos15°的值是( )6.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( )A .sin2xB .cos2yC .-cos2xD .-cos2y7.若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( ) A .-558.cos π12+3sin π12的值为( ) A .- 29.已知sin ⎝⎛⎭⎫π6+α=35,π3<α<5π6,则cos α的值是( )10.已知sin α+sin β=45,cos α+cos β=35,则cos(α-β)的值为( ) D .-12 二、填空题11.cos α=35,cos β=513,sin α=-45,sin β=1213,则cos(α-β)=________.12.cos(61°+2α)cos(31°+2α)+sin(61°+2α)sin(31°+2α)=________.13.已知cos ⎝⎛⎭⎫α-π3=cos α,则tan α=________.14.化简2cos10°-sin20°cos20°=________. 三、解答题 15.求值:(1)sin285°;(2)sin460°sin(-160°)+cos560°cos(-280°). 16.已知sin α=13,α∈⎝⎛⎭⎫0,π2,cos β=27,β是第四象限角,求cos(α-β)的值.17.设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2.18.若α,β为锐角,且cos α=45,cos(α+β)=-1665,求cos β的值.3-1-2-1两角和与差的正弦、余弦一、选择题1.下列等式成立的是( )A .cos80°cos20°-sin80°sin20°=12 B .sin13°cos17°-cos13°sin17°=12 C .sin70°cos25°+sin25°sin20°=22 D .sin140°cos20°+sin50°sin20°=32 2.cos 5π12的值等于( )3.在△ABC 中,已知sin(A -B )·cos B +cos(A -B )sin B ≥1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰非直角三角形sin ⎝⎛⎭⎫π4-x +6sin ⎝⎛⎭⎫π4+x 的化简结果是( ) A .22sin ⎝⎛⎭⎫5π12+x B .22sin ⎝⎛⎭⎫x -5π12C .22sin ⎝⎛⎭⎫7π12+xD .22sin ⎝⎛⎭⎫x -7π12 5.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a6.已知cos(α+β)=45,cos(α-β)=-45,则cos αcos β的值为( )A .0 C .0或45 D .0或±457.若α、β均为锐角,sin α=255,sin(α+β)=35,则cos β等于( )或2525 D .-2525 8.若α、β为两个锐角,则( )A .cos(α+β)>cos α+cos βB .cos(α+β)<cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<sin α+sin β9.若sin α-sin β=1-32,cos α-cos β=-12,则cos(α-β)的值是( )D .110.(2012·重庆)sin47°-sin17°cos30°cos17°( ) A .-32 B .-12 二、填空题11.化简:cos(35°-x )cos(25°+x )-sin(35°-x )sin(25°+x )=________.12.若cos(α+β)cos α+sin(α+β)sin α=-45,且450°<β<540°,则sin(60°-β)=________.13.已知α、β为锐角,且tan α=23,tan β=34,则sin(α+β)=________. 的值是________. 三、解答题15.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.16.已知sin α=23,cos β=-14,且α,β为相邻象限的角,求sin(α+β)和sin(α-β)的值. 17.求证:sin?2α+β?sin α-2cos(α+β)=sin βsin α.18.(暂时不做)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.3-1-2-2两角和与差的正切一、选择题1.若α、β∈(0,π2)且tan α=12,tan β=13,则tan(α-β)( )A .-17 B .1 C .17 D .152.tan(α+β)=25,tan(α-β)=14,则tan2α=( )3.已知α∈(π2,π),sin α=35,则tan(α+π4)的值等于( )A .-7B .7C .-174.在△ABC 中,若0<tan B tan C <1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不能确定5.化简tan10°tan20°+tan20°tan60°+tan60°tan10°的值等于( )A .1B .2C .tan10°D .3tan20°6.已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,则α+β的值为( )B .-2π3 或-2π3 D .-π3或2π37.(2011~2012·长春高一检测)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ)的值是( )C .2 3 的值为( )A .2+ 3 C .2- 39.已知α、β为锐角,cos α=45,tan(α-β)=-13,则tan β的值为( )10.在△ABC 中,若tan B =cos?C -B ?sin A +sin?C -B ?,则这个三角形是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 二、填空题11.若tan α=2,tan(β-α)=3,则tan(β-2α)的值为____.12.化简3-tan18°1+3tan18°=________.13.已知tan ⎝⎛⎭⎫α-β2=12,tan ⎝⎛⎭⎫β-α2=-13,则tan α+β2=________.14.不查表求值:tan15°+tan30°+tan15°tan30°=______. 三、解答题15.(2011~2012·学军高一检测)已知△ABC 中,3tan A tan B -tan A -tan B = 3.求C 的大小.16.已知tan α、tan β是方程x 2-3x -3=0的两根,试求sin 2(α+β)-3sin(α+β)cos(α+β)-3cos 2(α+β)的值.17.首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅已知A ,B ,C 是△ABC 的三内角,向量m =(-1,3),n =(cos A ,sin A ),且m ·n =1.(1)求角A ;(2)若tan ⎝⎛⎭⎫π4+B =-3,求tan C .18.是否存在锐角α、β,使得(1)α+2β=2π3,(2)tan α2·tan β=2-3同时成立若存在,求出锐角α、β的值;若不存在,说明理由.3-1-3二倍角的正弦、余弦、正切公式一、选择题1.12-sin 215°的值是( )2.若sin α=1213,α∈⎝⎛⎭⎫π2,π,则tan2α的值为( )C .-60119D .-1201193.若x =π12,则cos 2x -sin 2x 的值等于( )4.已知sin θ=45,sin θcos θ<0,则sin2θ的值为( )A .-2425B .-1225C .-455.已知sin ⎝⎛⎭⎫π4-x =35,则sin2x 的值为( )6.定义向量的模:设向量a =(),x y ,则a 的模为22x y +.现已知向量a =⎝⎛⎭⎫cos θ,12的模为22,则cos2θ等于( )-32 B .-14C .-127.已知等腰三角形底角的余弦值为23,则顶角的正弦值是( )C .-459D .-2598.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α的值是( ) A .-79 B .-139.(2009·广东)函数y =2cos 2(x -π4)-1是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数10.(2011·宁夏、海南)3-sin70°2-cos 210°=( )C .2 二、填空题11.3tan π81-tan 2π8=________. 12.在△ABC 中,cos A =513,则sin2A =________.13.设cos2θ=23,则cos 4θ+sin 4θ的值是________.14.2002年北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形接成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于________. 三、解答题15.已知cos α=-1213,α∈⎝⎛⎭⎫π,3π2,求sin2α,cos2α,tan2α的值.16.已知cos(x -π4)=210,x ∈(π2,3π4).(1)求sin x 的值. (2)求sin(2x +π3)的值.17.已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos2x cos ⎝⎛⎭⎫π4+x的值. 18.设函数f (x )=2cos x sin(x +π3)-3sin 2x +sin x cos x ,当x ∈[0,π2]时,求f (x )的最大值和最小值.3-2-1三角恒等变换一、选择题1.设-3π<α<-5π2,则化简1-cos?α-π?2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α22.已知cos α=-15,π2<α<π,则sin α2等于( )A .-105 C .-155 ·2cos 2αcos2α等于( )A .tan αB .tan2αC .14.已知钝角α满足cos α=-13,则sin α2等于( )5.化简cos2αtan ⎝⎛⎭⎫π4+α=( ) A .sin α B .cos α C .1+sin2α D .1-sin2α6.函数f (x )=cos ⎝⎛⎭⎫2x +π3+12-12cos2x ,则f (x )可化为( )-32sin2x +32sin2x C .1-3sin2x D .-32sin2x 7.函数f (x )=cos 2x +sin x cos x 的最大值是( )A .28.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C .12 D .729.(山东)若θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,则sin θ=( )10.已知-3π2<α<-π,则12+12·12+12cos2α的值为( )A .-sin α2B .cos α2 C .sin α2 D .-cos α2 二、填空题11.已知tan α2=13,则cos α=________. 12.若tan α=2,则tan α2=________.13.若sin ⎝⎛⎭⎫3π2-2x =35,则tan 2x =________.14.若cos2θ=-34,那么sin 4θ+cos 4θ=________. 三、解答题15.若已知tan θ2=2,求cos θ、sin θ的值.16.化简12sin 2x ·⎝ ⎛⎭⎪⎪⎫1tan x 2-tan x 2+32cos2x 为A sin(ωx +φ)的形式.17.已知sin(2α+β)=5sin β.求证:2tan(α+β)=3tan α. 18.已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈.(1)求函数f (x )的最大值及此时自变量x 的集合; (2)求函数f (x )的单调递增区间.3-2-2三角恒等式的应用一、选择题1.函数f (x )=-12sin x cos x 的最大值是( )B .-12 D .-142.函数y =cos 2x 2-sin 2x2的最小值等于( )A .-1B .1 D .23.函数y =sin x1+cos x的周期等于( )B .πC .2πD .3π4.函数y =cos 4x -sin 4x +2的最小正周期是( )A .πB .2π5.函数y =12sin2x +sin 2x 的值域是( )6.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π3,则函数g (x )=a sin x +cos x 的最大值是( )7.化简1+cos80°-1-cos80°等于( )A .-2cos5°B .2cos5°C .-2sin5°D .2sin5°8.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π4)的一个单调递增区间是( )A .[-π2,π2]B .[5π4,9π4]C .[-π4,3π4]D .[π4,5π4] 9.(2011·重庆) 首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅.设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C 等于( )10.设M ={平面内的点(a ,b )},N ={f (x )|f (x )=a cos2x +b sin2x },给出M 到N 的映射f :(a ,b )→f (x )=a cos2x +b sin2x ,则点(1,3)的象f (x )的最小正周期为( )A .π2B .π4C .πD .2π 二、填空题11.函数y =2sin x +2cos x 的值域是________.12.已知函数f (x )=3sin ωx cos ωx -cos 2ωx (ω>0)的周期为π2,则ω=________.13.函数f (x )=3sin x -cos x 的单调递增区间是______.14.关于函数f (x )=sin2x -cos2x ,有下列命题:①函数y =f (x )的周期为π;②直线x =π4是y =f (x )的图象的一条对称轴;③点⎝⎛⎭⎫π8,0是y =f (x )的图象的一个对称中心; ④将y =f (x )的图象向左平移π4个单位,可得到y =2sin2x 的图象.其中真命题的序号是________. 三、解答题15.已知函数f (x )=23sin x cos x +2cos 2x -1.(1)求f ⎝⎛⎭⎫π6的值及f (x )的最小正周期; (2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的最大值和最小值. 16.已知函数f (x )=2sin 2ωx +23sin ωx sin ⎝⎛⎭⎫π2-ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间⎣⎡⎦⎤0,2π3上的值域. 17.已知函数f (x )=3sin2x -2sin 2x .(1)若点P (1,-3)在角α的终边上,求f (α)的值;(2)若x ∈⎣⎡⎦⎤-π6,π3,求f (x )的值域. 18.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1m ,求割出的长方形桌面的最大面积(如图).。

简单的三角恒等变换练习题.doc

简单的三角恒等变换练习题.doc

简单的三角恒等变换练习题.doc 1. sin14°cos16°+cos14³in16"地值是( )A.√32B、12C.√32D.−122.已知cos(π+θ)=√32,则cos2θ=( )A.12B.−12C.14D.−143. cos75⁰cos15⁰-sin 255⁰sin165°地值是( )A.12B.−12C.√32D.04.已知sinα=√22,cosβ=45,且αβ∈(0]π2),则sin(α+β)地值等于( )A.7√210B.√210C.150D.49505.函数f(x)=sin x2cos x2地最小正周期是( )A.π2B.πC.2πD.4π6.函数y=√3sinxcosx+cos2x−12地最小正周期是( )A.π4B.π2C. πD. 2πA.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形8.计算sin105°. cos75°地值等于.9.已知α,β为锐角, 且sinα=√55,sinβ=√1010,求α+β地值.11.已知向量a⃗=(cosβ,sinα),b⃗=(cosβ,sinβ),|a⃗−b⃗|=2√55,求cos(α-β)地值.10.设tan2θ=2√2,θ∈(π2,π)求2cos2θ2−sinθ−1sinθ+cosθ地值12.已知点P(cos2x+1,1), 点Q(1,√3sin2x+1)(x∈R).且函数(O为坐标原点),(Ⅰ)求函数f(x)地解析式:(Ⅱ)求函数f(x)地最小正周期及最值.13.求函数y=12cos2x+√32sinxcosx+1地最大值,最小值,周期.14.设函数f(x)=cos2x+2√3sinxcosx(x∈R)地最大值为M,最小正周期为T.求M、 T地值.15.已知函数f(x)=√32sinx−12cosx,x∈R。

求f(x)地最大值,并求使f(x)取得最大值时x地集合.16.已知函数f(x)=sin2x−cos(2x−π6),其中x∈R.(1)求函数f(x)地最小正周期; (2)求f(x)地递增区间.17.已知:tanα=−13,cosβ=√55,α,β∈(0|π).(1) 求tan(α+β)地值; (2)求函数.f(x)=√2sin(x−α)+cos(x+β)原创为文档解三角形练习题A.1B.2C.3D.42.在△ABC中, 已知a=4,b=6,C=120°,则sinA地值是( )A.√5719B.√217C.√338D.−√57193.边长为5,7,8地三角形地最大角与最小角地和是()A. 90ºB. 120ºC. 135°D. 150°4.在△ABC中,若((a+b+c)(b+c-a)=3bc, 则A= ( )A. 90°B. 60°C. 135°D. 150°5.在△ABC中,若a=7,b=8,cosC=1314,则最大角地余弦是()A.−15B.−16C.−17D.−186.在△ABC中, 若b=2,B=30°,C=135°,则a=7.在△ABC中, b=3,c=5,A=120°, 则a=8.在△ABC中,已知a=3,b=4,C=π3,则c=9.在△ABC中,若(a+c)(a-c)=b(b+c),则∠A等于10.在△ABC中,内角A、B、C、地对边分别为a,b,c,若(a=1,b=√3,A=30∘,则c=版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有1.在△ABC中, 已知a=√3, c=2, B=30⁰, 则b= ( )This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本。

高考数学一轮复习练习 简单的三角恒等变换

高考数学一轮复习练习   简单的三角恒等变换

简单的三角恒等变换基础巩固组1.函数f (x )=(√3sin x+cos x )(√3cos x-sin x )的最小正周期是( ) A.π2B.πC.3π2D.2π2.(2020陕西榆林一模,理7)已知α∈(0,π),2sin 2α=cos 2α-1,则sin α=( ) A.15B.√55C.-√55D.2√553.已知2sin 2α=1+cos 2α,则tan 2α=( ) A.43B.-43C.43或0D.-43或04.(2020山东德州二模,5)已知α终边与单位圆的交点P (x ,-35),且sin αcos α>0,则√1-sin2α+√2+2cos2α的值等于( ) A.95 B.75 C.65D.35.已知cos 2π3-2θ=-79,则sin π6+θ的值等于( ) A.13B.±13C.-19D.196.已知α∈0,π2,sin α-cos α=√55,则tan α+π4=( )A.-32B.-23C.-3D.-137.(多选)下列各式中,值为12的是( ) A.cos 2π12-sin 2π12B.tan22.5°1-tan 222.5°C.2sin 195°cos 195°D.√1+cos π628.(多选)(2020山东潍坊临朐模拟二,10)已知函数f (x )=sin x sin (x +π3)−14的定义域为[m ,n ](m<n ),值域为[-12,14],则n-m 的值可能是( ) A.5π12B.7π12C.3π4D.11π129.(2020山东历城二中模拟四,14)已知tan α2=√52,则sin π2+α= . 10.(2020山东济南一模,13)已知cos 2α-π3=23,则12-sin 2α-π6的值为 .11.(2020山东潍坊二模,14)已知α∈0,π2,sin α-π4=√55,则tan α= .12.(2020陕西西安中学八模,文14)若α∈0,π2,且2cos 2α=sin α+π4,则sin 2α的值为 .综合提升组13.已知f (x )=sin 2x+sin x cos x ,则f (x )的最小正周期和一个单调递增区间分别为( ) A.π [0,π] B.2π -π4,3π4 C.π-π8,3π8D.2π-π4,π414.已知m=tan (α+β+γ)tan (α-β+γ),若sin 2(α+γ)=3sin 2β,则m=( )A.-1B.34 C.32D.215.已知cos α=13,cos(α+β)=-13,且α,β∈0,π2,则cos(α-β)的值为 . 16.(2020山东泰安一模,13)已知α,β∈3π4,π,sin(α+β)=-35,sin β-π4=1213,则cos α+π4= .创新应用组17.(多选)(2020山东滨州二模,11)已知函数f (x )=(a sin x+cos x )cos x-12的图像的一条对称轴为x=π6,则下列结论中正确的是( ) A.f (x )是最小正周期为π的奇函数 B.(-7π12,0)是f (x )图像的一个对称中心 C.f (x )在区间[-π3,π3]上单调递增D.先将函数y=2sin 2x 图像上各点的纵坐标缩短为原来的12,然后把所得函数图像再向左平移π12个单位长度,即可得到函数f (x )的图像18.(2020河北邢台模拟,理12)已知定义域为R 的函数f (x )满足f 12=12,f'(x )+4x>0,其中f'(x )为f (x )的导函数,则不等式f (sin x )-cos 2x ≥0的解集为 ( )A.-π3+2k π,π3+2k π,k ∈Z B.-π6+2k π,π6+2k π,k ∈Z C.π3+2k π,2π3+2k π,k ∈Z D.π6+2k π,5π6+2k π,k ∈Z参考答案课时规范练21 简单的三角恒等变换1.B f (x )=2sin x+π6×2cos x+π6=2sin 2x+π3,故最小正周期T=2π2=π,故选B .2.D ∵α∈(0,π),∴sin α>0,∵2sin 2α=cos 2α-1,即4sin αcos α=(1-2sin 2α)-1,整理得cos α=-12sin α,代入sin 2α+cos 2α=1,解得sin α=2√55.故选D .3.C 因为2sin 2α=1+cos 2α,所以2sin 2α=2cos 2α.所以2cos α(2sin α-cos α)=0,解得cos α=0或tan α=12.若cos α=0,则α=k π+π2,k ∈Z ,2α=2k π+π,k ∈Z ,所以tan 2α=0.若tan α=12,则tan 2α=2tanα1-tan 2α=43.综上所述,故选C .4.A 已知α终边与单位圆的交点P x ,-35,且sin αcos α>0,∴x<0,故x=-45,∴sin α=-35,cos α=x=-45.则√1-sin2α+√2+2cos2α=|cos α-sin α|+√4cos 2α=15+85=95.故选A . 5.B ∵cos2π3-2θ=-79,∴cos π-π3+2θ=-cosπ3+2θ=-cos 2π6+θ =-1-2sin 2π6+θ=-79,解得sin 2π6+θ=19,∴sinπ6+θ=±13.故选B .6.C ∵sin α-cos α=√55,则(sin α-cos α)2=15,即1-sin 2α=15,得sin 2α=45,∴(sin α+cos α)2=1+sin 2α=1+45=95,则sin α+cos α=3√55,又sin α-cos α=√55,∴sin α=2√55,cos α=√55,∴tan α=2,∴tan α+π4=tanα+11-tanα=2+11-2=-3.7.BC cos 2π12-sin 2π12=cos 2×π12=cos π6=√32,故A 错误;tan22.5°1-tan 222.5°=12·2tan22.5°1-tan 222.5°=12tan 45°=12,故B 正确;2sin 195°cos 195°=2sin(180°+15°)cos(180°+15°)=2sin 15°cos 15°=sin 30°=12,故C 正确; √1+cos π62=√2+√34=√2+√32≠12,故D 错误.故选BC .8.AB f (x )=sin x sin x+π3-14=sin x 12sin x+√32cos x -14 =14(1-cos 2x )+√34sin 2x-14 =12√32sin 2x-12cos 2x =12sin 2x-π6.作出函数f (x )的图像如图所示,在一个周期内考虑问题.易得{m =π2,5π6≤n ≤7π6或{π2≤m ≤5π6,n =7π6满足题意,所以n-m 的值可能为区间[π3,2π3]上的任意实数.故选AB . 9.-19 sin π2+α=cos α=cos 2α2-sin 2α2=cos2α2-sin2α2cos2α2+sin2α2=1-tan2α21+tan2α2=1-541+54=4-54+5=-19.10.13∵cos2α-π3=23,∴12-sin2α-π6=12−1-cos2(α-π6)2=12cos2α-π3=12×23=13.11.3∵α∈0,π2,∴α-π4∈-π4,π4,由sinα-π4=√55,得cosα-π4=2√55.∴sin α=sinα-π4+π4=sinα-π4cosπ4+cosα-π4sinπ4=√55×√22+2√55×√22=3√1010,cos α=√1-sin2α=√1010,∴tan α=3.12.78由2cos 2α=sinα+π4,得2cos 2α=√22sin α+√22cos α,两边平方得4cos22α=12(1+sin 2α),即8(1-sin22α)=1+sin 2α,整理得(7-8sin 2α)(1+sin 2α)=0,又α∈0,π2,所以sin 2α=78或sin 2α=-1(舍去).13.C f(x)=sin2x+sin x cos x=1-cos2x2+12sin 2x=1 2+√22√22sin 2x-√22cos 2x=1 2+√22sin2x-π4,则T=2π2=π.又∵2k π-π2≤2x-π4≤2k π+π2(k ∈Z ),∴k π-π8≤x ≤k π+3π8(k ∈Z )为函数的单调递增区间.故选C . 14.D ∵sin 2(α+γ)=3sin 2β,∴sin[(α+γ+β)-(β-α-γ)]=3sin[(α+γ+β)-(α+γ-β)],∴sin(α+γ+β)cos(β-α-γ)-cos(α+γ+β)sin(β-α-γ)=3sin(α+γ+β)cos(α+γ-β)-3cos(α+γ+β)sin(α+γ-β),即-2sin(α+γ+β)cos(α+γ-β)=-4cos(α+β+γ)sin(α+β-γ),∴12tan(α+γ+β)=tan(α+γ-β), 故m=tan (α+β+γ)tan (α-β+γ)=2,故选D . 15.2327 ∵α∈0,π2,∴2α∈(0,π).∵cos α=13,∴cos 2α=2cos 2α-1=-79,∴sin 2α=√1-cos 22α=4√29. ∵α,β∈0,π2,∴α+β∈(0,π),∴sin(α+β)=√1-cos 2(α+β)=2√23,∴cos(α-β)=cos[2α-(α+β)] =cos 2αcos(α+β)+sin 2αsin(α+β) =-79×-13+4√29×2√23=2327.16.-5665∵α,β∈3π4,π,∴α+β∈3π2,2π,∴cos(α+β)=√1-sin 2(α+β)=45. 又β-π4∈π2,3π4,sin β-π4=1213,∴cos β-π4=-√1-sin 2(β-π4) =-513.∴cos α+π4=cos (α+β)-β-π4=cos(α+β)cos β-π4+sin(α+β)sin β-π4=45×-513+-35×1213=-5665. 17.BD 函数f (x )=(a sin x+cos x )cos x-12=a sin x cos x+cos 2x-12=12a sin 2x+12cos 2x ,因为f (x )图像的一条对称轴为x=π6,所以f (0)=f (π3),即12=12a ×√32+12×(-12),解得a=√3,所以f (x )=√32sin 2x+12cos2x=sin (2x +π6).所以f (x )的最小正周期为π,但不是奇函数,故A 错误;f (-7π12)=sin (-7π6+π6)=f (-π)=0,所以(-7π6,0)是f (x )图像的一个对称中心,故B 正确;x ∈[-π3,π3]时,2x+π6∈[-π2,5π6],所以f (x )在区间[-π3,π3]上不是单调函数,故C 错误;将函数y=2sin 2x 图像上各点的纵坐标缩短为原来的12(横坐标不变),得y=sin 2x 的图像,再把所得函数图像向左平移π12个单位长度,得y=sin 2(x +π12)=sin 2x+π6的图像,即函数f (x )的图像,故D 正确.故选BD .18.D 令g (x )=f (x )+2x 2-1,g'(x )=f'(x )+4x>0,故g (x )在R 上单调递增,且g 12=f 12+2×122-1=0,所以f (sin x )-cos 2x=f (sin x )+2sin 2x-1≥0,即g (sin x )≥g 12,则sin x ≥12,解得π6+2k π≤x ≤5π6+2k π,k ∈Z .故选D .。

三角恒等变换练习题一

三角恒等变换练习题一

三角恒等变换练习题一三角恒等变换练题一一、选择题1.已知sin(π/2+θ)=3/5,则cos(π-2θ)=()A。

-12/25B。

-5/25C。

-5/12D。

25/252.若cosα=-4/5,且α在第二象限内,则cos(2α+π/4)为() A。

-31/50B。

31/50C。

-172/50D。

50/503.已知α∈R,sinα+2cosα=10/2,则tan2α=() A。

4/3B。

3/4C。

-4/3D。

-3/44.已知sinα-cosα=2,α∈(0,π),则sin2α=() A。

-1B。

-2/2C。

2/2D。

15.已知sin(x-π/4)=3/5,则sin2x的值为()A。

-7/25B。

79/16C。

25D。

26.计算sin43°cos13°-cos43°sin13°的结果等于() A。

13√2/2B。

3C。

2D。

2√3/27.函数f(x)=sinx(cosx-sinx)的最小正周期是()A。

π/4B。

π/2C。

πD。

2π8.函数f(x)=2sin^2(π/4+x)-3cos^2x(π/4≤x≤2)的最大值为() A。

2B。

3C。

2+3D。

2-39.为了得到函数y=sin(2x-π/3)的图像,只需把函数y=sin(2x+π/6)的图像()A.向左平移π/4个长度单位B.向右平移π/4个长度单位C.向左平移π/2个长度单位D.向右平移π/2个长度单位10.函数y=sinxsin(x+π/3)+cosxcos2x的最大值和最小正周期分别为()A.1,πB.2,2πC.1+3√3/2,πD.2+2√3/3,2π11.函数y=sin2x+3cos2x-的最小正周期等于()A.πB.2πC.π/4D.π/212.若cos(3π-x)-3cos(x+π/4)=,则tan(x+π/4)等于()A.-B.-2C.D.213.将函数y=3cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.5π/2B.3π/5C.2π/5D.π/514.若sin(-α) = 1/3,则cos(2α)的值为 -43/3.15.若f(x) = 2tan(x/2) - 1,则f(π/4)的值为 4/3.16.已知α∈(π/2,π),sinα + cosα = -1,则tan(α+π/4)等于 -7.17.若cosθ = 2/5,sinθ = -2/5,则角θ的终边所在的直线为24x + 7y = 0.18.已知锐角α的终边上一点P(sin40°,1+cos40°),则锐角α的度数为 50°。

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。

A。

0.B。

1/2.C。

1/4.D。

1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。

1/2.B。

2/3.C。

3/4.D。

4/53.函数y=sin(x)+cos(x)的最小正周期为:A。

π。

B。

2π。

C。

4π。

D。

π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。

-2/3.B。

-1/3.C。

1/3.D。

2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。

-7/24.B。

-1/8.C。

1/8.D。

7/247.函数y=sin(x)+cos(x)的值域是:A。

[0,1]。

B。

[-1,1]。

C。

[-1/2,1/2]。

D。

[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。

向右平移π/4个单位。

B。

向左平移π/4个单位C。

向右平移π/2个单位。

D。

向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。

x=π/4.B。

x=π/6.C。

x=π/2.D。

x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。

12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。

高中数学 第五章 三角函数 5.5 三角恒等变换 5.5.2 简单的三角恒等变换精品练习(含解析)新

高中数学 第五章 三角函数 5.5 三角恒等变换 5.5.2 简单的三角恒等变换精品练习(含解析)新

5.5.2 简单的三角恒等变换知识点三 三角恒等变换的应用7.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B.⎣⎢⎡⎦⎥⎤5π4,9π4C.⎣⎢⎡⎦⎥⎤-π4,3π4D.⎣⎢⎡⎦⎥⎤π4,5π48.在△ABC 中,求证:tan A 2tan B 2+tan B 2tan C 2+tan C 2tan A2=1.9.如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?关键能力综合练 一、选择题1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2 C .-21+a2D .-21-a22.若2sin x =1+cos x ,则tan x2的值等于( )A.12B.12或不存在学科素养升级练1.(多选题)对于函数f (x )=sin x +3cos x ,给出下列选项其中不正确的是( )A .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称B .存在α∈⎝⎛⎭⎪⎫0,π3,使f (α)=1C .存在α∈⎝ ⎛⎭⎪⎫0,π3,使函数f (x +α)的图象关于y 轴对称D .存在α∈⎝⎛⎭⎪⎫0,π3,使f (x +α)=f (x +3α)恒成立 2.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是________,最小值是________.3.(学科素养—数学建模)如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.5.5.2 简单的三角恒等变换必备知识基础练1.解析:∵3π<θ<7π2,sin θ=-35,∴cos θ=-1-⎝ ⎛⎭⎪⎫-352=-45,∵3π<θ<7π2,∴3π2<θ2<7π4.则tan θ2=-1-cos θ1+cos θ=-1+451-45=-3. 答案:B2.解析:因为2π<θ<3π,所以π<θ2<3π2.又cos θ=m ,所以sin θ2=-1-cos θ2=-1-m2,故选A. 答案:A3.解析:y =1+cos ⎝ ⎛⎭⎪⎫2x -π62+1-cos ⎝ ⎛⎭⎪⎫2x +π62-1=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π6-cos ⎝ ⎛⎭⎪⎫2x +π6=12sin 2x ,是奇函数.故选A.答案:A4.解析:f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6=sin x -32cos x +12sin x =32sin x -32cos x =3sin ⎝⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3],故选B. 答案:B5.解析:∵f (x )=2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3.∴f (x )∈[-2,2]. 答案:[-2,2]6.解析:(1)2(cos x -sin x )=2×2⎝⎛⎭⎪⎫22cos x -22sin x=2⎝ ⎛⎭⎪⎫cos π4cos x -sin π4sin x =2cos ⎝ ⎛⎭⎪⎫π4+x .(2)315sin x +35cos x =65⎝⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin π3sin x +cos π3cos x =65cos ⎝ ⎛⎭⎪⎫x -π3.7.解析:y =cos 2ωx -sin 2ωx =cos 2ωx (ω>0), 因为函数的最小正周期为π,故2π2ω=π,所以ω=1.则f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4=2sin ⎝ ⎛⎭⎪⎫x +π4. 由2k π-π2≤x +π4≤2k π+π2,得2k π-3π4≤x ≤2k π+π4(k ∈Z ),当k =1时,函数的一个单调递增区间是⎣⎢⎡⎦⎥⎤5π4,9π4.答案:B8.证明:∵A ,B ,C 是△ABC 的三个内角, ∴A +B +C =π,从而有A +C 2=π2-B2.左边=tan B 2⎝ ⎛⎭⎪⎫tan A2+tan C 2+tan A 2tan C2=tan B 2tan ⎝ ⎛⎭⎪⎫A 2+C 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+tan A 2tan C2=tan B 2tan ⎝ ⎛⎭⎪⎫π2-B 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+tan A 2tan C2=1-tan A 2tan C 2+tan A 2tan C2=1=右边, ∴等式成立.9.解析:设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝ ⎛⎭⎪⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.关键能力综合练1.解析:若5π<θ<6π,则5π4<θ4<3π2,则sin θ4=-1-cosθ22=-1-a2=-21-a2. 答案:D2.解析:由已知得sin x 1+cos x =12,tan x2=sinx2cosx2=2sin x 2cosx22cos 2x 2=sin x 1+cos x =12.当x =π+2k π,k ∈Z 时,tan x2不存在.答案:B3.解析:由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.答案:C 4.解析:cos ⎝⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1.∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫π3+α=π2, ∴cos ⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π6-α=13.∴cos ⎝⎛⎭⎪⎫2π3+2α=2×⎝ ⎛⎭⎪⎫132-1=-79.故选A.答案:A5.解析:由cos α=-45,α是第三象限角,可得sin α=-1-cos 2α=-35.所以1+tan α21-tan α2=cos α2+sin α2cos α2-sin α2=1+sin αcos α=1-35-45=-12.答案:A6.解析:f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎪⎫2x +π6+a +1. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴f (x )min =2·⎝ ⎛⎭⎪⎫-12+a +1=-4. ∴a =-4. 答案:C7.解析:1+sin 2=sin 21+cos 21+2sin 1cos 1 =sin 1+cos 12=|sin 1+cos 1|,因为1∈⎝⎛⎭⎪⎫0,π2,所以sin 1>0,cos 1>0,则1+sin 2=sin 1+cos 1. 答案:sin 1+cos 18.解析:由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos2θ2=1+cos θ2得cos2θ2=925. 又θ2是第一、三象限角,所以cos θ2=±35.答案:±359.解析:y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎪⎫2x -π4+32.最小正周期T =2π2=π.令-π2+2k π<2x -π4<π2+2k π,k ∈Z ,解得-π8+k π<x <3π8+k π,k ∈Z .所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫k π-π8,k π+3π8(k ∈Z ).答案:π ⎝ ⎛⎭⎪⎫k π-π8,k π+3π8,k ∈Z10.证明:左边=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x =sin x 1+cos x =2sin x 2cosx22cos2x 2=tan x2=右边. 所以原等式成立.学科素养升级练1.解析:函数f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,对于A :函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,当x =π6时,2sin ⎝ ⎛⎭⎪⎫π6+π3=2,不能得到函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称.∴A 不对.对于B :α∈⎝ ⎛⎭⎪⎫0,π3,可得α+π3∈⎝ ⎛⎭⎪⎫π3,2π3,f (α)∈(3,2],不存在f (α)=1.∴B 不对.对于C :函数f (x +α)的对称轴方程为:x +α+π3=π2+k π,可得x =k π+π6-α(k ∈Z ),当k =0,α=π6时,可得图象关于y 轴对称.∴C 对.对于D :f (x +α)=f (x +3α)说明2α是函数的周期,函数f (x )的周期为2π,故α=π,∴不存在α∈⎝⎛⎭⎪⎫0,π3,使f (x +α)=f (x +3α)恒成立,∴D 不对.故选A ,B ,D.答案:ABD2.解析:∵A +B =2π3,∴cos 2A +cos 2B =12(1+cos 2A +1+cos 2B )=1+12(cos 2A +cos 2B )=1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B )=1-12cos(A -B ),∴当cos(A -B )=-1时, 原式取得最大值32;当cos(A -B )=1时,原式取得最小值12.答案:32123.word - 11 - / 11解析:如图所示, 设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC 的中点,在Rt△ONC 中,=sin α,ON =cos α,OM =DM tan π6=3DM =3=3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2=2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α-3=2⎝ ⎛⎭⎪⎫12sin 2α+32cos 2α- 3=2sin ⎝ ⎛⎭⎪⎫2α+π3- 3.因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3.故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值,此时S 矩形ABCD =2- 3.。

简单三角恒等变换典型例题

简单三角恒等变换典型例题

简单三角恒等变换一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=±⇔)sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =±⇔)cos(sin sin cos cos βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=±⇔ 去分母得)tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2c o s 2c o s 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2s i n 24c o s 12=- 或 αα2s i n 24c o s 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:①)10tan 31(50sin 0+②035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-7、 a,b 型化简8、降幂公式1. 已知函数1cos sin 2cos 2)(2++-=x x x x f ,(R x ∈).(1)求函数 ()f x 的最小正周期;(2)求函数 ()f x 的最大值,并求此时自变量x 的集合.2. 已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.3.已知函数2()1cos 2cos f x x x x =-++(1)求函数()f x 的最小正周期;(2)求函数()f x 的单调减区间.4.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.5.设函数.cos cos sin 3)(2m x x x x f ++=(1)写出函数的最小正周期及单调递增区间; (2)若]3,6[ππ-∈x 时,函数()f x 的最小值为72,求此时()f x 的最大值,并指出x 为何值时,()f x 取得最大值.6.已知函数).,(2cos )62sin()62sin()(为常数a R a a x x x x f ∈++-++=ππ(1)求函数的最小正周期;(2)若.,2)(,]2,0[的值求的最小值为时a x f x -∈π7.已知函数x x x x f cos sin sin 3)(2+-=(1)求函数)(x f 的最小正周期;(2)求函数⎥⎦⎤⎢⎣⎡∈32,245)(ππx x f 在的值域.(3)对称轴和对称点巩固练习1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3-B .3C .13-D .133、cos5πcos52π的值等于( )A .41 B .21 C .2 D .44、已知02A π<<,且3cos 5A =,那么sin 2A 等于( ) A .425B .725C .1225D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813 B.223 C.2213 D.1836、sin165º=() A .21B .23C .426+ D .426-7、sin14ºcos16º+sin76ºcos74º的值是()A .23B .21C .23D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan () A .247B .247-C .724D .724- 9、化简2sin (4π-x )·sin (4π+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin12π—3cos 12π的值是() A .0 B . —2 C .2D . 2 sin125π11、)( 75tan 75tan 12的值为︒︒-A .32B .332C .32-D .332-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 简单的三角恒等变换
一、填空题
1.若
25π<α<411π,sin2α=-54,求tan 2α________________
2.已知sin θ=-
53,3π<θ<2π7,则tan 2θ的值为___________.
4.已知α为钝角、β为锐角且sin α=
54,sin β=1312,则cos 2-βα的值为____________.
5. 设5π<θ<6π,cos
2θ=a ,则sin 4θ的值等于________________
二、解答题
6.化简
θθθθ2cos 2sin 12cos 2sin 1++-+.
7.求证:2sin (
4π-x )·sin (4π+x )=cos2x .
8.求证:
α
ααααtan 1tan 1sin cos cos sin 2122+-=-⋅-a .
9.在△ABC 中,已知cos A =B b a b B a cos cos ⋅--⋅,求证:b a b a B A
-+=2tan 2tan 2
2

10. 求sin15°,cos15°,tan15°的值.
11. 设-3π<α<-
2π5,化简2)πcos(1--α.
12. 求证:1+2cos 2θ-cos2θ=2.
13.
求证:4sin θ·cos 22θ=2sin θ+sin2θ.
14. 设25sin 2x +sin x -24=0,x 是第二象限角,求cos
2x 的值.
15. 已知sin α=
1312,sin (α+β)=54,α与β均为锐角,求cos 2
β.
参考答案
一、填空题
1. 2
15+. 2.-3 4. 65657 5.-21a - 二、解答题
6.解:原式=θ
θθθ2cos 2sin 12cos 2sin 1++-+ =1)
-(+⋅+)-(-⋅+θθθθθθ22cos 2cos sin 21sin 21cos sin 21 =θ
θθθθθ22cos 2cos sin 2sin cos sin 2+⋅2+⋅ =)
cos (sin cos 2sin cos sin 2θθθθθθ+⋅)+(⋅ =tan θ.
7.证明:左边=2sin (
4π-x )·sin (4π+x ) =2sin (
4π-x )·cos (4π-x ) =sin (2
π-2x ) =cos2x
=右边,原题得证.
8.证明:左边=α
ααα22sin cos cos sin 21-⋅- =)
sin (cos )sin (cos cos sin 2sin cos 22αααααααα+⋅-⋅-+ =)
sin )(cos sin (cos )sin (cos 2
αααααα+-- =
ααααsin cos sin cos +- =α
αtan 1tan 1+- =右边,原题得证.
9.证明:∵cos A =
B b a b B a cos cos ⋅--⋅, ∴1-cos A =
B b a B b a cos )cos 1()(⋅--⋅+, 1+cos A =
B b a B b a cos )cos 1()(⋅-+⋅-. ∴)
cos 1()()cos 1()(cos 1cos 1B b a B b a A A +⋅--⋅+=+-. 而2
tan 2
cos 22sin 2cos 1cos 1222A B A
A A ==+-, 2
tan cos 1cos 12B B B =+-, ∴tan 2)()(2b a b a A -+=·tan 22B ,即b a b a B A -+=2tan 2tan 2
2

10.解:因为15°是第一象限的角,所以
sin15°=4264)26(434823222312
30cos 12-=-=-=-=-=︒-, cos15°=
4264)26(43482322231230cos 12+=+=+=+=+=︒+, tan15°=︒
+︒-30cos 130cos 1=2-3. 11.解:∵-3π<α<-2π5,∴-2π3<2α<-4π5,cos 2α<0. 又由诱导公式得cos (α-π)=-cos α, ∴2+=--ααcos 12)πcos(1=-cos 2
α. 12.证明:左边=1+2cos 2θ-cos2θ=1+2·2
2cos 1θ+-cos2θ=2=右边. 13.证明:左边=4sin θ·cos 22θ=2sin θ·
2cos 22θ=2sin θ·(1+cos θ) =2sin θ+2sin θcos θ=2sin θ+sin2θ=右边.
14.解:因为25sin 2x +sin x -24=0,
所以sin x =25
24或sin x =-1. 又因为x 是第二象限角, 所以sin x =
2524,cos x =-257. 又2
x 是第一或第三象限角, 从而cos
2x =±225712cos 1-±=+x =±53. 15.解:∵0<α<
2π,∴cos α=135sin 12=-α. 又∵0<α<2π,0<β<2
π, ∴0<α+β<π.若0<α+β<
2π, ∵sin (α+β)<sin α,∴α+β<α不可能. 故2
π<α+β<π.∴cos (α+β)=-53. ∴cos β=cos [(α+β)-α] =cos (α+β)cos α+sin (α+β)sin α=-
53·54135+·65331312=, ∵0<β<
2π, ∴0<2β<4
π. 故cos
656572cos 1=+=2ββ
.。

相关文档
最新文档