三角恒等变换练习题一

三角恒等变换练习题一
三角恒等变换练习题一

三角恒等变换练习题一

一、选择题

1.(2014年太原模拟)已知53

)2sin(=+θπ,则=-)2(cos θπ( )

A.

2512 B .2512- C .25

7

- D. 257 2.若54cos -=α,且α在第二象限内,则)4

2cos(π

α+为( )

A .50231-

B. 50231 C .50217- D. 50

217 3.(2013年高考浙江卷)已知2

10

cos 2sin ,=

+∈αααR ,则=α2tan ( ) A. 34 B. 43 C .34- D .4

3

-

4.已知),0(,2cos sin πααα∈=-,则=α2sin ( ) A .1- B .22-

C. 2

2

D .1 5.(2014年云南模拟)已知53

)4sin(=-πx ,则x 2sin 的值为( )

A .25

7

-

B. 257

C. 259

D. 2516

6.计算??-??13sin 43cos 13cos 43sin 的结果等于( )

A. 2

1

B.33

C.22

D.23

7.函数)sin (cos sin )(x x x x f -=的最小正周期是( ) A.

4π B. 2

π

C .π

D .π2 8.(2014年郑州模拟)函数)24(2cos 3)4(sin 2)(2π

ππ≤≤-+=x x x x f 的最大值为( )

A .2

B . 3

C .32+

D .32-

9.(2010理)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6

y x π

=+的图像( )

A. 向左平移4π个长度单位

B. 向右平移4

π

个长度单位

C. 向左平移

2π个长度单位 D. 向右平移2

π

个长度单位 10.函数x x x y 2cos 32sin )2sin(sin π

π++=的最大值和最小正周期分别为( )

A .π,1

B .π2,2 C. π2,2 D.

π,2

3

1+ 11.函数2

3

cos 32sin 212-+=x x y 的最小正周期等于( )

A .π

B .π2 C.

4

π

D.

2

π 12.若0)2

cos(3)3cos(=+--ππx x ,则)4tan(π

+x 等于( )

A .21-

B .2- C. 2

1

D .2

13.(2013年高考湖北卷)将函数)(sin cos 3R x x x y ∈+=的图象向左平移)0(>m m 个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.

12π B. 6π C. 3π D. 6

5π 14.(2014年山西大学附中模拟)若31)6sin(=-απ,则=+)23

2cos(απ

( )

A .97-

B .31- C. 31 D. 9

7

15.若2

cos 2sin 1

2sin 2tan 2)(2

x x x

x x f --=,则)12(πf 的值为( )

A .33

4

-

B .8

C .34

D .34- 16.(2014年太原模拟)已知51cos sin ),,2(-=+∈ααππα,则)4tan(π

α+等于( )

A .7

B .7- C.

71 D .7

1

- 17.(2014年郑州模拟)若54

2sin ,532cos -==θθ,则角θ的终边所在的直线为( )

A .0247=+y x

B .0247=-y x

C .0724=+y x

D .0724=-y x 18.(2014年南阳一模)已知锐角α的终边上一点)40cos 1,40(sin ?+?P ,则锐角=α( )

A .?80

B .?70

C .?20

D .?10 19.已知10

10sin ,55sin ==

βα,且βα,都是锐角,则=+βα( ) A .?30 B .?45 C .?45或?135 D . ?135

20.已知21)4tan(=+π

α,且02<<-απ

,则

=-+)4

cos(2sin sin 22πααα( ) A .552-

B .1053-

C .10103- D. 5

5

2 21.(2014年合肥模拟)已知534sin )6(cos =+-ααπ,则)67sin(π

α+的值是( )

A .532-

B. 532

C. 54 D .5

4

- 22.已知25

24sin -

=α,则2tan α

等于( )

A .43-

B .34-

C .43-或3

4- D. 43或34

23.已知)0,(,2sin cos πααα-∈=-,则=αtan ( ) A .1- B .22- C. 2

2

D .1 24.(2014年嘉兴一模)

?

?

-?70sin 20sin 10cos 2的值是( )

A. 2

1

B. 23

C. 3

D. 2

25.(2014年六盘水模拟)已知31)cos(,31cos -=+=βαα,且)2,0(,π

βα∈,则)cos(

βα-的值等于( )

A .21- B. 21 C .3

1- D. 2723

26.函数x x x f sin 2cos 6)(-=取得最大值时x 的可能取值是( ) A .π- B .2π- C .6

π

- D .π2 二、填空题

1.为了得到函数1)cos sin 3(cos 2)(+-=x x x x f 的图象,需将函数x y 2sin 2=的图象向右平

移)0(>??个单位,则?的最小值为 . 2.函数x x x x f 2cos 3cos sin )(-=的值域为 .

3.化简

=?

?-

?80cos 10cos 21

35sin 2 . 4. (2013年高考江西卷)函数x x y 2sin 322sin +=的最小正周期T 为 . 5.(2014年济南模拟)已知0cos 3sin =-αα,则=-α

αα

22sin cos 2sin .

6.(2014年南昌模拟)已知点)43cos ,43(sin ππP 落在角θ的终边上,且)2,0[πθ∈,则)

3

t a n (π

θ+的值为 .

7.(2013年高考四川卷)设),2(,sin 2sin ππ

ααα∈-=,则α2tan 的值是 .

8.(2014年成都模拟)已知3

2

cos sin =

+αα,则α2sin 的值为 . 9.化简

=?

?-

?80cos 10cos 21

35sin 2 . 10.(2014年东营模拟)已知)2

,0(π

α∈,且0cos 3cos sin sin 222=-?-αααα,则

=+++1

2cos 2sin )

4(sin ααπ

α .

11.函数x x x x f 2cos 3cos sin )(-=的值域为 . 12.已知2)12(tan =-πα,则)3

tan(π

α-的值为 . 三、解答题

1.已知函数x x x f 2sin 2)4

2cos(2)(++=π

.

(1)求函数)(x f 的最小正周期;

(2)设2

3)62(,21)42(],2,0[,=-=+∈πβπαπβαf f ,求)2(β

α+f 的值. 2. (2013年高考山东卷)设函数)0(cos sin sin 32

3

)(2>--=

ωωωωx x x x f ,且)(x f y =图象的一个对称中心到最近的对称轴的距离为

4

π.

(1)求ω的值; (2)求)(x f 在区间]2

3,

π上的最大值和最小值. 3.(2013年高考安徽卷)已知函数)0)(4

sin(cos 4)(>+=ωπ

ωωx x x f 的最小正周期为π.

(1)求ω的值;

(2)讨论)(x f 在区间]2

,0[π

上的单调性.

4.已知函数3cos 32cos sin 2)(2-+=x x x x f ωωω(其中0>ω),且函数)(x f 的周期为π.

(1)求ω的值;

(2)将函数)(x f y =的图象向右平移4

π

个单位长度,再将所得图象各点的横坐标缩小到原来的

21倍(纵坐标不变)得到函数)(x g y =的图象,求函数)(x g 在]24

,6[π

π-上的单调区间. 5.已知函数)6

2cos(6sin

)12

cos()12

sin(3

sin 2)(π

π

π

π

π

+-+

+

=x x x x f ,求函数)(x f 的最小正周期

与单调递减区间.

6.(2014年北京东城模拟)已知函数2)cos sin 3(2)(x x x f --=.

(1)求)4(π

f 的值和)(x f 的最小正周期;

(2)求函数)(x f 在区间]3

,6[π

π-

上的最大值和最小值. 7. (2014年北京东城模拟)已知函数a x x x x f ++=2cos cos sin 3)(. (1)求)(x f 的最小正周期及单调递减区间; (2)若)(x f 在区间]3

,6[π

π-

上的最大值与最小值的和为23

,求a 的值.

8.(2013年高考辽宁卷)设向量]2

,0[),sin ,(cos ),sin ,sin 3(π

∈==x x x b x x a .

(1)若||||b a =,求x 的值; (2)设函数b a x f ?=)(,求)(x f 的最大值.

9.(2013年高考陕西卷)已知向量R x x x b x a ∈=-=),2cos ,sin 3(),2

1

,(cos ,设函数

b a x f ?=)(.

(1)求)(x f 的最小正周期; (2)求)(x f 在]2

,0[π

上的最大值和最小值.

10.(2014年合肥模拟)将函数x y sin =的图象向右平移

3

π

个单位,再将所得的图象上各点的横坐标不变,纵坐标伸长到原来的4倍,这样就得到函数)(x f 的图象,若

3c o s )()(+=x x f x g .

(1)将函数)(x g 化成B x A ++)sin(?ω(其中]3

,2[,0,π

π?ω-∈>A )的形式;

(2)若函数)(x g 在区间],12

[0θπ

-

上的最大值为2,试求0θ的最小值.

11.(2014年济宁模拟)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点

)3,3(-P .

(1)求ααtan 2sin -的值;

(2)若函数ααααsin )sin(cos )cos()(---=x x x f ,求函数)(2)22(32x f x f y --=π

在区

间]2,0[π

上的值域.

12.已知ααcos 21sin +=

,且)2,0(πα∈,求

)4

sin(2cos παα

-的值. 13.已知)2

,4(,53)4sin(),4,0(,553cos sin π

πβπβπααα∈=-∈=

+. (1)求α2sin 和α2tan 的值;(2)求)2cos(βα+的值. 14.(2014年合肥模拟)已知函数x m x m x f cos 12sin )(-+=. (1)若3)(,2==αf m ,求αcos ;

(2)若)(x f 的最小值为2-,求)(x f 在]6,[π

π-上的值域.

15.(能力提升)(2014年深圳调研)已知函数)50)(3

6

sin(2)(≤≤+=x x x f π

π,点B A ,分别是函数)(x f y =图象上的最高点和最低点. (1)求点B A ,的坐标以及OB OA ?的值;

(2)设点B A ,分别在角βα,的终边上,求)2tan(βα-的值.

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

(完整版)三角恒等变换练习题一

三角恒等变换练习题一 一、选择题 1.(2014年太原模拟)已知53 )2sin(=+θπ,则=-)2(cos θπ( ) A. 2512 B .2512- C .25 7 - D. 257 2.若54cos -=α,且α在第二象限内,则)4 2cos(π α+为( ) A .50231- B. 50231 C .50217- D. 50 217 3.(2013年高考浙江卷)已知2 10 cos 2sin ,= +∈αααR ,则=α2tan ( ) A. 34 B. 43 C .34- D .4 3 - 4.已知),0(,2cos sin πααα∈=-,则=α2sin ( ) A .1- B .22- C. 2 2 D .1 5.(2014年云南模拟)已知53 )4sin(=-πx ,则x 2sin 的值为( ) A .25 7 - B. 257 C. 259 D. 2516 6.计算??-??13sin 43cos 13cos 43sin 的结果等于( ) A. 2 1 B.33 C.22 D.23 7.函数)sin (cos sin )(x x x x f -=的最小正周期是( ) A. 4π B. 2 π C .π D .π2 8.(2014年郑州模拟)函数)24(2cos 3)4(sin 2)(2π ππ≤≤-+=x x x x f 的最大值为( ) A .2 B . 3 C .32+ D .32- 9.(2010理)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6 y x π =+的图像( ) A. 向左平移4π个长度单位 B. 向右平移4 π 个长度单位

三角恒等变换(测试题及答案)

三角恒等变换测试题 第I 卷 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. 函数sin cos y x x =+的最小正周期为( ) A. 2 π B. π C. 2π D. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12 π 个单位

(完整版)《三角恒等变换》单元测试题

普通高中课程标准实验教科书·数学·必修④第三章 《三角恒等变换》单元测试题 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的) 1、已知3cos 5α=-,,2παπ??∈ ???,12sin 13β=-,β是第三象限角,则()cos βα-的值是 ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 2、已知α和β都是锐角,且5sin 13α=,()4cos 5αβ+=-,则sin β的值是 ( ) A 、3365 B 、1665 C 、5665 D 、6365 3、已知32,244x k k ππππ? ?∈- + ???()k Z ∈,且3cos 45x π??-=- ???,则cos2x 的值是 ( ) A 、725- B 、2425- C 、2425 D 、725 4、设()()12cos sin sin cos 13 x y x x y x +-+=,且y 是第四象限角,则2 y tan 的值是 ( ) A 、23± B 、32± C 、32- D 、23- 5、函数()sin cos 22f x x x π π =+的最小正周期是 ( ) A 、π B 、2π C 、1 D 、2

6、已知12sin 41342x x πππ????+=<< ? ?????,则式子cos 2cos 4x x π??- ??? 的值为( ) A 、1013- B 、2413 C 、513 D 、1213 - 7 、函数sin 22 x x y =+的图像的一条对称轴方程是 ( ) A 、x =113 π B 、x =53π C 、53x π=- D 、3x π=- 8、已知1cos sin 21cos sin x x x x -+=-++,则sin x 的值为 ( ) A 、45 B 、45 - C 、35- D 、9、已知0,4πα? ? ∈ ???,()0,βπ∈,且()1tan 2αβ-=,1tan 7 β=-,则2αβ-的值是 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 10、已知不等式( )2cos 0444x x x f x m =+≤对于任意的566 x ππ-≤≤恒成立,则实数m 的取值范围是 ( ) A 、m ≥ 、m ≤ C 、m ≤ 、m ≤ 二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 11 、函数sin 234y x x π??=+++ ??? 的最小值是 12、关于函数( )cos2cos f x x x x =-,下列命题:

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换考点典型例题

江苏省成化高级中学09届一轮复习三角专题(二) 三角恒等变换 一、考点、要点、疑点: 考点:1、掌握两角和与差的正弦、余弦、正切; 2、理解二倍角的正弦、余弦、正切; 3、了解几个三角恒等式; 要点: 1、 两角和与差的正弦、余弦、正切公式及其变形 2、 二倍角的正弦、余弦、正切公式及其变形 3、 )sin(cos sin 22?ωωω++= ?+=x B A y x B x A y 4、 几个三角恒等式的推导、证明思路与方法 疑点: 1、在三角的恒等变形中,注意公式的灵活运用,要特别注意角的各种变换. (如,)(αβαβ-+=,)(αβαβ+-= ?? ? ??--??? ??-=+βαβαβα222 等) 2、三角化简的通性通法:从函数名、角、运算三方面进行差异分析,常用的技巧有: 切割化弦、用三角公式转化出现特殊角、 异角化同角、异名化同名、高次化低次 3、辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符 号确定,θ角的值由a b =θtan 确定)在求最值、化简时起着重要作用。 二、激活思维: 1、下列等式中恒成立的有 ① βαβαβαsin cos cos sin )sin(?-?=- ② βαβαβαsin sin cos cos )cos(?-?=- ③ )]sin()[sin(21 cos sin βαβαβα-++=? ④ )]cos()[cos(2 1 sin sin βαβαβα--+=? 2、化简: ① 0 53sin 122sin 37sin 58cos += ② )sin()sin()cos()cos(βαβαβαβα+-++?-= 3、已知),2 ( ,5 3cos ππ θθ∈-=,则)3 cos( θπ -= ,)23 cos( θπ -= 4、若αtan 、βtan 是方程0652 =-+x x 的两根,则)tan( βα+=

三角恒等变换专题复习

三角恒等变换专题复习 一、 两角和与差的三角函数公式:⑴ sin()_____________________αβ±= ⑵ cos()____________________αβ±=⑶ tan()_____________αβ±= 练习:1、sin15______o =;1tan15______1tan15 o o +=- 1tan 751tan 75+- = 2、sin163°sin223°+sin253°sin313°等于 ( ) A.-21 B.21 C.- 2 3 D. 2 3 (一)特殊技巧 (1)平方相加 ①ABC ?中,3sin 4cos 6,4sin 3cos 1A B B A +=+=,则C ∠=_______. ②已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-_______. (2)表示分子 ①求值0000 tan35tan 25tan 25+? ②求(1tan 22)(1tan 23)_______o o ++=。 ③求 (1tan1)(1tan 2)(1tan3)(1tan 44)_______o o o o ++++= (二)知值求值,知值求角 ①设1sin()9αβ-=-,cos 2α=13 ,且0<α<2 π,0<β<2 π,求cos (α+β) ②已知 α∈(4π,43π ),β∈(0,4π),cos (α-4 π)=5 3,sin(4 π +β)=13 5,求sin(α+β)的值. ③已知?? ? ??∈π,π4 3 βα、,5 3)sin(-=+βα,13 124πsin =??? ? ?-β,则?? ? ? ?+4πcos α的值 ④若sinA= 5 5 ,sinB= 10 10,且A ,B 均为钝角,求A+B 的值。 ⑤已知tan α ,tan β 是方程6x 2-5x +1=0的两个根,且0<α <2π ,π2 3π<<β,求α +β 的值 二、二倍角公式; ⑴ sin 2__________θ=__________= ①已知3sin(),4 5 x π -=则sin 2x 的值为( ) ②若 ,且,则=( ) ③已知),2,23( ππα∈化简ααsin 1sin 1-++2cos 2 α -__________= ④已知cos 23 θ= 44sin cos θθ+的值为()A .1813 B .1811 C .97 D .1- ⑵ cos 2__________α= __________= __________= __________= 降次公式: 2cos _______α=, 2sin _________α= ①求证:cos4θ-4cos2θ+3=8sin 4θ. ②已知sin 2 α=35,cos 2α= -45 ,则角α终边所在的象限是 ③证明, 1sin 2cos 2tan 1sin 2cos 2θθ θθθ+-=++ ④已知 1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ⑤函数2 21tan 21tan 2x y x -=+的最小正周期是__________= (3)tan 2____________θ= ①在△ABC 中,cos A =35 ,tan B =2,求tan(2A +2B )的值。 ②若1tan 2008,1tan αα+=-则1 tan 2cos 2αα += 。

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

三角恒等变换经典练习题

专题五《三角恒等变换》综合检测 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. sin105cos105的值为 ( ) A. 14 B.- 14 2. 函数2 1()cos 2 f x x =- 的周期为 ( ) A. 4π B.2 π C.2π D.π 3. 已知2tan()5αβ+= ,1 tan()44 πβ-=,则tan()4πα+等于 ( ) A. 16 B.1322 C.322 D.13 18 4. 化简1cos 2tan cot 22 α α α +-,其结果是 ( ) A.1 sin 2 α- B.1sin 22 α C.2sin α- D.2sin 2α 5. ( ) A.2sin 44cos 4 B.2sin 44cos 4 C.2sin 4 D.4cos 42sin 4----- 6. sin 12 12 π π 的值为 ( ) .0 ..2A B C 7. 已知α为第三象限角,24 sin 25α=- ,则tan 2 α= ( ) 4A. 3 4B.3 - 3C.4 3D.4 - 8. 若()()11 sin ,sin 23αβαβ+= -=,则 tan tan αβ 为 ( ) A.5 B.1- C.6 1 D.6 9. 已知锐角αβ、满足sin αβ== αβ+等于 ( ) 3A.4 π 3B.44ππ或 C.4π ()3D.24 k k ππ+∈Z 10. 下列函数f (x )与g (x )中,不能表示同一函数的是 ( ) A.()sin 2f x x = ()2s i n c g x x x = B.()cos 2f x x = 22()cos sin g x x x =- C.2()2cos 1f x x =- 2()12s i n g x x =- D.()tan 2f x x = 22tan ()1tan x g x x =-

测试题高中数学必修三角恒等变换测试题

三角恒等变换测试题 一.选择题(共12小题,每小题5分,共60分) 1.已知)2,2 3(,1312cos ππαα∈= ,则=+)4(cos π α() A. 1325 B.1327 C.26 217 D.262 7 2.若均βα,为锐角,==+= ββααcos ,5 3 )(sin ,552sin 则() A. 552 B.2552 C.25 52552或 D.552- 3.=+-)12sin 12(cos )12sin 12(cos π πππ() A.23- B.21- C.2 1D.23 4.=-+0000tan50tan703tan50tan70() A.3B. 33C.3 3 - D.3- 5. =?+α αααcos2cos cos212sin22() A.αtan B.αtan2 C.1D.2 1 6.已知x 为第三象限角,化简=-x 2cos 1() A.x sin 2 B.x sin 2- C.x cos 2 D.x cos 2- 7.已知等腰三角形顶角的余弦值等于5 4,则这个三角形底角的正弦值为() A . 1010B .1010-C .10103D .10 103- 8.若).(),sin(32cos 3sin 3ππ??-∈-=-x x x ,则=?()

A.6π - B.6 πC. 65πD.65π- 9.已知1 sin cos 3 αα+=,则sin 2α=() A .89 -B .21-C .21 D .89 10. 已知cos 23 θ=,则44cos sin θθ-的值为() A .3- B .3C .4 9 D .1 11.求=11 5cos 114cos 113cos 112cos 11cos πππππ () A.521 B.42 1C.1D.0 12. 函数sin 22x x y =+的图像的一条对称轴方程是() A .x =113π B .x =53π C .53x π=- D .3 x π =- 二.填空题(共4小题,每小题4分,共16分) 13.已知βα,为锐角,的值为则βαβα+= = ,5 1cos ,10 1cos . 14.在ABC ?中,已知tanA,tanB 是方程23720x x -+=的两个实根,则tan C =. 15.若5 4 2cos ,532sin -==αα ,则角α的终边在象限. 16.代数式sin15cos75cos15sin105o o o o += . 三.解答题(共6个小题,共74分) 17.(12分)△ABC 中,已知的值求sinC ,13 5 B c ,53cosA ==os . 18.(12分)已知αβαβαπαβπsin2,5 3 )(sin ,1312)(cos ,432求-=+=-<<<. 19.(12分)已知α为第二象限角,且sinα=,415求1 2cos 2sin ) 4sin(+++ ααπ α的值. 20.(12分)已知71 tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且, 求)2tan(βα-的值及角βα-2. 21.(12 分)已知函数2()cos cos 1f x x x x =+,x R ∈.

人教版必修高一数学《三角恒等变换》测试题A卷及答案

高中数学必修4??第三章《?三角恒等变换》测试题A卷 考试时间:100分钟,满分:150分 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.计算1-2sin222.5°的结果等于() A. B.C. D. 2.cos39°cos(-9°)-sin39°sin(-9°)等于() A.B.C.-D.- 3.已知cos=,则sin2α的值为() A.B.-C. D.- 4.若tanα=3,tanβ=,则tan(α-β)等于() A.-3B.-C.3 D. 5.cos275°+cos215°+cos75°·cos15°的值是() A.B.C. D.1+ 6.y=cos2x-sin2x+2sin x cos x的最小值是() A.B.-C.2 D.-2 7.已知sin=,则cos的值为() A.B.-C. D.- 8.等于() A.B.C.2 D. 9.把[sin2θ+cos(-2θ)]-sincos(+2θ)化简,可得() A.sin2θB.-sin2θC.cos2θD.-cos2θ 10.已知3cos(2α+β)+5cosβ=0,则tan(α+β)·tanα的值为() A.±4B.4C.-4 D.1 二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________. 12.化简的结果为________. 13.若α、β为锐角,且cosα=,sinβ=,则α+β=______. 14.函数f(x)=sin-2sin2x的最小正周期是________. 三、解答题(共76分). 15.(本题满分12分)已知cosα-sinα=,且π<α<π,求的值.

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

三角恒等变换练习题

1三角恒等变换练习题 一、选择题 1.已知(,0)2x π ∈-,4 cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724 - 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A.5π B.2π C.π D.2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.设00sin14cos14a =+,00sin16cos16b =+,c =,则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b << 5.函数)cos[2()]y x x ππ=-+是( ) A.周期为4π 的奇函数 B.周期为4π 的偶函数 C.周期为2π的奇函数 D.周期为2π 的偶函数 6.已知cos 2θ=44 sin cos θθ+的值为( ) A .1813 B .1811 C .97 D .1- 7.设212tan13cos66,,221tan 13a b c =-==+o o o o 则有( ) A.a b c >> B.a b c << C.a c b << D.b c a << 8.函数221tan 21tan 2x y x -=+的最小正周期是( ) A .4π B .2π C .π D .2π 9.sin163sin 223sin 253sin313+=o o o o ( ) A .12- B .1 2 C .2- D .2 10.已知3 sin(),45x π -=则sin 2x 的值为( ) A.1925 B.16 25 C.14 25 D.7 25

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系

(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos( )cos cos sin sin cos cos sin sin cos( ) (3) tan( tan tan 去分母得 tan tan i tan( )(1 tan tan ) 1 tan tan tan tan tan( )(1 tan tan 、倍角公式的推导及其变形: (1) sin 2 sin( ) sin cos cos sin 2 sin cos sin 1 . cos — sin 2 2 2 1 sin 2 (sin cos (2) cos 2 cos( ) cos cos sin sin cos 2 sin 2 cos 2 cos 2 sin 2 (cos sin )(cos sin ) cos 2 2 ? 2 cos 厶 sin 2 2 COS (1 cos ) 把1移项得 1 cos2 2 cos 2 或 -4- GQS -2- c 2 cos 2 1 2 【因为 是-的两倍,所以公式也可以写成 2 cos 2 cos 2 一 1 或 1 cos 2 cos 2 或 - 1 cos — cos 2 2 2 2 2 因为4 是2的两倍,所以公式也可以写成 cos 4 2 cos 2 2 1 或 1 2 Once 厶 或 nee? O 1 2 cos 2 2 2 cos sin (1 sin 2 ) sin 2 把1移项得1 cos 2 2s in 2 或 -4- 1 2sin 2 2 【因为 是—的两倍,所以公式也可以写成 2 cos 1 2 sin 2— 或 1 cos 2 sin 2 或 4 ---- eos- sin 2 2 2 2 2 因为4 是2 的两倍,所以公式也可以写成 2 1、和差公式及其变形: 2 ) ) 2 sin 2

简单的三角恒等变换练习题

3.2 简单的三角恒等变换 一、填空题 1.若 25π<α<411π,sin2α=-54,求tan 2α________________ 2.已知sin θ=- 53,3π<θ<2π7,则tan 2θ的值为___________. 4.已知α为钝角、β为锐角且sin α= 54,sin β=1312,则cos 2-βα的值为____________. 5. 设5π<θ<6π,cos 2θ=a ,则sin 4θ的值等于________________ 二、解答题 6.化简 θθθθ2cos 2sin 12cos 2sin 1++-+. 7.求证:2sin ( 4π-x )·sin (4π+x )=cos2x . 8.求证: α ααααtan 1tan 1sin cos cos sin 2122+-=-?-a .

9.在△ABC 中,已知cos A =B b a b B a cos cos ?--?,求证:b a b a B A -+=2tan 2tan 2 2 . 10. 求sin15°,cos15°,tan15°的值. 11. 设-3π<α<- 2 π5,化简2)πcos(1--α. 12. 求证:1+2cos 2θ-cos2θ=2. 13. 求证:4sin θ·cos 2 2θ=2sin θ+sin2θ. 14. 设25sin 2x +sin x -24=0,x 是第二象限角,求cos 2x 的值. 15. 已知sin α= 1312,sin (α+β)=54,α与β均为锐角,求cos 2 β.

参考答案 一、填空题 1. 2 15+. 2.-3 4. 65657 5.-21a - 二、解答题 6.解:原式=θ θθθ2cos 2sin 12cos 2sin 1++-+ =1) -(+?+)-(-?+θθθθθθ22cos 2cos sin 21sin 21cos sin 21 =θ θθθθθ22cos 2cos sin 2sin cos sin 2+?2+? =) cos (sin cos 2sin cos sin 2θθθθθθ+?)+(? =tan θ. 7.证明:左边=2sin ( 4π-x )·sin (4π+x ) =2sin ( 4π-x )·cos (4π-x ) =sin (2 π-2x ) =cos2x =右边,原题得证. 8.证明:左边=α ααα22sin cos cos sin 21-?- =) sin (cos )sin (cos cos sin 2sin cos 22αααααααα+?-?-+ =) sin )(cos sin (cos )sin (cos 2 αααααα+-- = ααααsin cos sin cos +- =α αtan 1tan 1+- =右边,原题得证.

相关文档
最新文档