13.1 命题、定理与证明@华师大版@八年级上册数学
华东师大版八年级上册数学课件13.1命题、定理与证明2.定理与证明

13.1.2 定理与证明
探究问题二 证明文字叙述的真命题 例 2 求证:两条平行线被第三条直线所截,内错角的 平分线互相平行. 解:已知:如图 13-1-6 所示,AB∥CD,直线 BC 截 AB,CD 于 B,C 两点,BE 平分∠ABC,CF 平分∠BCD. 求证:BE∥CF.
图 13-1-6
∴∠3=∠__1__(_两_ 直线平行,同位角相等__).
∵∠3=∠__2_(__ 对顶角相等
__),
∴∠1=∠2(__ 等量代换
__).
你能体会到推理是怎么进行的吗?
◆知识链接——[新知梳理]知识点二
灿若寒星
ቤተ መጻሕፍቲ ባይዱ3.1.2 定理与证明
新知梳理
► 知识点一 定理 数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一 步判断其他命题真假的依据,这样的真命题叫做定理. ► 知识点二 证明 根据条件、定义以及基本事实、定理等,经过演绎推理,来 判断一个命题是否正确,这样的推理过程叫做证明.
2.命题“直角都相等”的条件是__两个角都是直_角_,结
论是_ 这两个角相等
___.
3.“互补的两个角一定是一个锐角和一个钝角”是
_假_ 命题,可举出反例:__直角的补角仍是直角__.
灿若寒星
13.1.2 定理与证明
活动2 教材导学 1.认识定理
图 13-1-3 完成下面填空,想想这些依据有什么共同点? 将一副直角三角板如图 13-1-3 放置.若 AE∥BC, 求∠AFD 的度数.在下面解答过程后面的括号里填写上根 据.
灿若寒星
13.1.2 定理与证明
证明:因为 AB∥CD,所以∠ABC=∠BCD. 又因为 BE 平分∠ABC, 所以∠1=12∠ABC.同理,∠2=12∠BCD, 所以∠1=∠2,所以 BE∥CF. [归纳总结] 证明文字叙述的真命题的一般步骤:(1)分清 条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论 写出求证;(4)证明.
华师版八年级数学上册 13.1.2 定理与证明

课程讲授
1 基本事实与定理
基本事实、定理、命题的关系:
命题
真命题 假命题
基本事实(正确性由实践总结) 定理(正确性通过推理证实)
课程讲授
2 命题的证明
证明几何命题的一般步骤: 1.明确命题中的__已__知__和_求__证___; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和 求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径, 写出证明过程.
可以从基本事实或其他真命题出发,用逻辑 推理的方法判断它们是正确的,可以作为进一步 判断其他命题真假的依据的真命题叫三角形
13.1 命题、定理与证明
13.1.2 定理与证明
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.基本事实与定理 2.命题的证明
新知导入
试一试:根据所学知识,完成下列内容.
下列哪些命题是真命题﹖ 1.两点确定一条直线; 2.两点之间,线段最短; 3.过一点有且只有一条直线与已知直线垂直; 4.过直线外一点有且只有一条直线与这条直线平行.
课程讲授
1 基本事实与定理
定义: 数学中,有些命题可以从基本事实或其他真命
题出发,用逻辑推理的方法判断它们是正确的,并且 可以作为进一步判断其他命题真假的依据,这样的真 命题叫做定理.
比如:“内错角相等,两直线平行”这条定理就是在“同 位角相等,两直线平行”这条公理的基础上推理而出的, 它又可以作为判定平行线的依据.
课程讲授
2 命题的证明
例 证明命题:直角三角形的两个锐角互余.
A
已知:如图,在△ABC中,∠C=90°.
求证:∠A+∠B=90°.
证明:∵∠A+∠B+∠C=180°(三角
新华师大版八年级上册初中数学 1-命题 教案

第十三章全等三角形13.1 命题、定理与证明1.命题【知识与技能】1.了解命题的概念,理解命题的结构.2.会识别命题的真假,会说明一个命题是假命题.【过程与方法】通过小组交流讨论,培养学生合作意识与沟通能力通过与小学的因数分解进行类比,培养学生类比学习法【情感态度与价值观】培养学生求知欲,增强学生学习的成就感命题的结构,真命题与假命题识别.识别命题的真假.多媒体课件.我们已经学习了哪些图形的特性?看哪个小组回答得最多?根据学生的回答,选取一个导入新课.如“对顶角相等”这个句子,表示判断一件事情的语句就是今天学习的内容.板书课题:命题.1.命题的定义与结构【教师讲解】以上所举例子都是判断某一件事情的语句.表示判断的语句叫做命题.辨一辨下面的语句是命题的是:①你很美.②你的奶奶身体好吗?③直角都互补;④平行于同一直线的两直线平行.【教学说明】命题的形式是陈述句,且作了判断.将你所列举的命题改写成“如果……那么……”的形式,并指出条件与结论.【教学说明】“如果……”的部分是条件,“那么……”部分是结论,寻找命题的条件与结论即将命题写成“如果……那么”的形式,注意改写后语句应通顺.2.真命题与假命题.【教学说明】条件成立、结论也成立的命题叫做真命题,条件成立,不能保证结论是正确的命题叫做假命题,让学生一对一给出命题,并辨别真假.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师巡视并及时评价.四、典例精析,拓展能力例指出下列命题的条件和结论,并判断命题的真假,如果是假命题请举一个反例.(1)经过一点有且只有一条直线与已知直线垂直;(2)两个无理数之和仍是无理数.【答案】(1)真命题,条件是经过一点画已知直线的垂线,结论:有且是只有一条.(2)假命题,条件是:两个数都是无理数,结论是:它们的和是无理数.如2与-2都是无理数,但和为0,是有理数.【教学说明】找命题条件与结论时,关键将命题改写成“如果……那么……”的形式,说明假命题举出一个反例即可,辨别命题的真假应思维全面.五、运用新知,深化理解命题“一个角的补角一定大于这个角”的条件是,结论是,它是一个,反例为 .【教学说明】使学生掌握寻找命题条件与结论的方法,说明一个命题为假命题,应举出一个反例.1.一般地,能明确指出概念含义或特征的句子,称为定义,定义必须严密;2.可以判断出正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题;3.许多命题可以写成“如果……,那么……”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.【正式作业】教材课本练习1、2,习题13.1的1、2题。
【初中数学++】定理与证明+课件+华东师大版八年级数学上册

13.1 命题、定理与证明
2.定理与证明
华师大版-数学-八年级上册
教学目标
1.理解和掌握定理的概念,了解证明(演绎推理)的概 念.【重点】 2.掌握证明的基本步骤和书写格式,能运用已学过的 几何知识证明一些简单的几何问题.【难点】 3.感受证明的必要性,培养说理有据,有条理地表达的 良好意识.
( √) ( √) (√)
探索新知
基本事实:数学中这些命题的正确性是人们在长期实践中 总结出来的,并把它们作为判断其他命题真假的原始依据, 即出发点.这样的真命题视为基本事实.
探索新知
例如下列的真命题作为基本事实: 1.两点确定一条直线; 2.两条之间,线段最短; 3.过一点有且只有一条直线与已知直线垂直; 4.过直线外一点有且只有一条直线与这条直线平行; 5.两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行.
试一试:画一个钝角三角形试试看.
探索新知
思考:(3)我们曾经通过计算四边形、五边形、六边 形、七边形等的内角和,得到一个结论:n 边形的内角 和等于(n - 2)×180°. 这个结论正确吗?是否有一个多 边形的内角和不满足这一规律?
实际上,这是一个正确的结论.
掌握新知
上面的几个例子说明了什么问题? 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通 过这种方式得到的结论,还需进一步加以证实.
情境导入
试判断下列句子是否正确: (1)如果两个角பைடு நூலகம்对顶角,那么这两个角相等. (2)两直线平行,同位角相等. (3)同旁内角相等,两直线平行. (4)平行四边形的对角线相等. (5)直角都相等. (6)三角形的内角和等于180°. (7)等腰三角形的两个底角相等 .
华师大八年级数学上册《定理与证明》课件(共15张PPT)

这个结论正确吗?是否有一个多边形 的内角Fra bibliotek不满足这 一规律?
正确
通过上面几个例子说明: 通过特殊的事例得到的结论可能正确,也可 能不正确。
因此: 通过这种方式得到的结论,还需进一步加以 证实。
证明的定义
根据条件、定义及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过 程叫做证明。
•3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
谢谢观赏
You made my day!
倍
速
课
时
学
练
我们,还在路上……
公理、定理、命题的关系
真命题
命题
假命题
公理(正确性由实践总结) 定理(正确性通过推理证实)
练习
1.把下列定理改写成“如果……,那么……”的形式,指出 它的条件和结论,并用逻辑推理的方法证明题(1):
(1)同旁内角互补,两直线平行;
如果两直线被第三条直线所截,同旁内角互补, 那么这两直线平行。
(2)三角形的外角和等于360°.
13.1 命题、定理与证明
复习回顾
1、什么叫命题? 表示判断的语句叫做命题。
2、命题的结构 命题由条件和结论两部分构成,常可写成“如 果……那么……”的形式
3、命题的分类 正确的命题称为真命题,错误的命题称为假命题。
4、真、假命题的判断
判断一个命题是真命题,可以用逻辑推理的方 法证明
判断一个命题是假命题,只要举出一个例子,说 明该命题不成立就可以了,这种方法称为举反例;
如果三个角分别是三角形的三个外角,那么这三 个角的和等于360°。
八年级数学上册 13.1 命题、定理与证明 理清证明思路素材 (新版)华东师大版

理清证明思路要说明一个命题是真命题,除了公理外,其他的则需要推理,推理的过程就是证明,初学证明要注意以下两点:一、掌握基本的定义、公理、定理正确地理解几何定义、公理、定理是学好证明的前提,是推理的依据.如:“两点之间线段最短”是证明三角形两边之和大于第三边的依据等.当一个命题被证明了是真命题时,它又可以作为证明其他命题是真命题的依据.如:三角形内角和定理是证明四边形内角和等于360°的依据等.二、掌握证明的书写过程几何证明是从条件出发,经过一步步推理,最后推出结论的过程,证明的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,也可以是定义、公理、已学过的定理.在初学证明时要把根据写在每一步推理后面的括号里,像“已知”、“根据定义(如角平分线定义)”以及“等量代换”等.证明一个几何命题一般分为以下几步:1.根据题意,画出符合题意的图形.2.根据条件、结论,结合图形,写出已知求证.3.经过分析,找出由已知条件推出所要求的结论的途径,写出证明过程.有些题目中,已经画好了图形,写好了已知、求证,这时只要写出“证明”一项就可以了.证明的关键是思路的打开,分析问题的思路一般有两个类型.1.由果导因:从已知条件出发,逐步推理得到结论.2.执果索因:由结论向条件追溯.下面我们就一道例题来体会一下证明的思路.【例题】已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,求证∠FDE=∠DEB.【思考与分析】(1)由条件DE∥BC,可利用平行线的性质定理得同位角、内错角相等,同旁内角互补.(2)要证明∠FDE=∠DEB,只要证明DF∥BE即可.证明:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等).∵DF、BE分别平分∠ADE、∠ABC(已知),∴∠ADF=∠ABE(角平分线定义).∴DF∥BE(同位角相等,两直线平行).∴∠FDE=∠DEB(两直线平行,内错角相等).【小结】本题运用了平行线的性质和角平分线的定义,采用了由已知条件挖掘新条件,由结论进行逆推,从而找寻思路的方法,在以后的学习中我们要慢慢体会这种方法。
华东师大版数学八年级上册-13.1 命题、定理与证明 课件 优秀课件PPT

你能举出一些命题吗? 举出一些不是命题的语句.
练一练
下列句子哪些是命题?是命题的,指出
ቤተ መጻሕፍቲ ባይዱ
是真命题还是假命题?
1、猴子是动物的一种; 是 真命题
2、负数都小于零;
是 真命题
3、画一条直线;
不是
4、四边形都是正方形;
是 假命题
5、今天会下雨吗?
不是
(√)
(4)如果a2=b2,那么a=b
(×)
(5)一个锐角与一个钝角的和等于一个平角。 (×)
判断一件事情是正确或错误的语句,叫做命题。
命题: 判断一件事情正确或者错误的句子叫做命题。
命题的分类:
正确的命题称为真命题,错误的命题称为假命题。
反之,如果一个句子没有对某一件事情作出 任何判断,那么它就不是命题。
6、内错角相等,两直线平行;是 真命题
7、对顶角相等;
是 真命题
8、所有的等边三角形都全等;是 假命题
9、美丽的天空。
不是
观察下列命题,你能发现这些命题有什么共同的结构特征?
(1)如果两个角是对顶角,那么 这两个角相等;
(2)如果一个图形是三角形,那么它的外角和等于360°
(3)如果两直线平行,那么同位角相等;
(2)互为余角的两个角的和等于90°; 如果两个角互为余角,那么它们的和等于90°
(3)全等三角形的对应角相等; 如果两个三角形全等,那么它们的对应角相等。
(4)同角(或等角)的余角相等; 如果两个角是同角(或等角)的余角, 那么它们相等。
例1:将命题“三个角都相等的三角形是等边三角形”
改写成“如果……那么……”的形式,
华师版八年级数学上册第13章1 命题、定理与证明

知1-练
解:(1)如果两个角是对顶角,那么这两个角相等. (2)如果两条直线平行于同一条直线,那么这两条直线平行. (3)如果两个角是同一个角的余角或两个相等的角的余角, 那么这两个角相等.
知1-练
1-1. 把命题“小数一定是有理数”改写成“如果……,那 么……”的形式为_如__果__一__个__数__是__小__数__,__那__么__这__个__数__一___ _定__是__有__理__数__.
知2-讲
(1)两点确定一条直线; (2)两点之间,线段最短; (3)过一点有且只有一条直线与已知直线垂直; (4)过直线外一点有且只有一条直线与这条直线平行; (5)两条直线被第三条直线所截,如果同位角相等,那么这
两条直线平行 .
知2-讲
2. 定理 有些命题可以从基本事实或其他真命题出发,用 逻辑推理的方法判断它们是正确的,并且可以作为进一 步判断其他命题真假的依据,这样的真命题叫做定理.
否定的判断,故命题不能是祈使句或疑问句 .
2知. 命识题点的结构
知1-讲
命题由条件(题设)和结论两部分组成. 条件
(题设)是已知事项,结论是由已知事项推出的事项.
特别提醒 1. 命题常可以写成“如果……,那么……”的形式,其中“如
果”后接的部分是条件,“那么”后接的部分是结论. 2. 有些命题的条件和结论不明显,可将它经过适当变形,改写
条件:_①__A_D__∥_B_E__;__②__∠_1_=__∠__2_. ____________________.
结论:_③__∠_A__=__∠_E_._______________________________.
(2)证明你所构建的是真命题. 证明:∵AD∥BE,∴∠A=∠EBC. ∵∠1=∠2,∴DE∥BC. ∴∠E=∠EBC.∴∠A=∠E(等量代换).