发电机中性点接地方式及作用 综合2
电力系统的中性点接地方式

电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。
中性点接地方式有直接接地、不接地和经消弧线圈接地。
中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。
中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。
1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。
实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。
系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。
一般单相短路电流不大于同一地点三相短路电流。
此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。
当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。
接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。
单相接地电流较大,对邻近通信线路电磁干扰较强。
我国380/220V三相四线系统,中性点直接接地。
2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。
因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。
同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。
规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。
单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。
发电机中心点接地变压器的作用

为什么要装设发电机中性点接地变压器1.高电阻接地,可以限制接地电流,还可以适当减少接地过电压,但是没有必要弄一个很大的高电阻直接接到发电机中性点与大地之间.而是弄一个小电阻,再弄一台接地变压器,接地变压器的原边接中性点与地之间,副边接上一个小电阻即可,根据公式,一次侧呈现的阻抗等于二次侧电阻乘以变压器变比的平方,所以有接地变压器,可以用一个小电阻来发挥一个高电阻的作用.2.发电机接地的时候,中性点对地有电压,这个电压等于就加在了接地变压器的原边,那么副边自然能感应出一个电压,这个电压可以做为发电机接地保护的判据,即可以用接地变压器抽取零序电压.我本来的意思时,高阻接地方式,比中性点不接地的过电压要小,但相比中性点直接接地的话,短路电流小了,所以是一个折中的方法.这里短路电流小是相对与直接接地方式来说的.楼上师傅批评的是,如果相对与自然电容电流来讲,中性点经高电阻构成了回路,电阻再高也有了回路,所以肯定比中性点不接地时接地电流要大了,但是为了限制过电压,也只能这样.总之,过电压和过电流总是相互矛盾的.但也许限制过电压和限制过电流都是相对与中性点不接地的时候来说的,也就是相对与自然电容电流,小弟受教了,谢谢师傅!~经sutsosth师傅的批评,反省一下自己不大严谨的毛病, 阅读了相关专著,作个总结:对于各种接地方式的接地短路电流和弧光接地过电压的大小,一目了然,和大家分享.,.自己也学习了,..常用中性点接地方式: 不接地直接接地经高电阻接地经消弧线圈接地接地时短路电流: 较小最大较大最小(同脱谐度有关)接地弧光过电压: 最大最小较小较大(但过电压概率不高)关于PT开口三角电压对于中性点接地的110kv和220kv的大电流接地系统,发生单相金属性接地时开口三角的电压是100v,虽然电压都仍为相电压但开口三角的pt变比是110kv/1.732(根3,根号不好打)/100/3;所以发生单相接地是100v;对于10kv和6kv中性点不接地系统他的开口三角pt变比是10kv/1.732/100/1.732,所以发生单相接地时的电压也是100v。
10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与之间电气连接的方式,称为电网中性点接地方式。
中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。
中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。
在选择电网中性点接地方式时必须进行具体分析、全面考虑。
我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。
这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。
配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。
近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。
在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在、试用、推广,并很快推广到其他城市(如、、、、、天津、、、工业园区、、讪头、、、等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。
发电机中性点接地方式及作用

发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。
发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。
本文将介绍几种常见的发电机中性点接地方式及其作用。
1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。
这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。
该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。
2.直接接地方式直接接地方式是指发电机中性点直接接地。
这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。
直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。
3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。
这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。
高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。
4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。
这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。
低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。
除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。
每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。
发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。
总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。
各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。
大型水轮发电机组中性点接地方式

大型水轮发电机组中性点接地方式安振山 (攀枝花,二滩水力发电厂 617000)摘要 巨型水轮发电机组的出现,使直接接于发电机定子线圈接地故障保护问题越来越引起人们的关注。
流经接地点的电容电流不断增大,将破坏线圈绝缘和定子铁芯。
而流经接地点的电容电流与发电机中性点的接地方式有关。
以往,中国水轮发电机组中性点系经消弧线圈接地,中国近几年引进的一批外国机组,其接地方式是经过接地变压器接地。
文章结合水轮发电机组运行经验,对两种接地方式进行了比较,探讨了适合中国电网运行的接地方式。
关键词 二滩水电站 水轮发电机组 中性点接地 消弧线圈接地 接地变压器Mode of Neutral Point Grounding of Large Hydroelectric SetA n Zhenshan(Er tan Hydroelectric Power Station617000)Key Words er tan hydro electric pow er station hydroelectric sets neutral g rounding arc suppr ession coil g rounding g rounded transformer1 引言进入80年代以来,中国的水电事业得到了迅速的发展,投产百万千瓦以上的大型水电厂已很多,单机容量也从100MW发展到550M W,在建的三峡电站的单机容量将达700~750M W,巨型水轮发电机的出现,使直接接于发电机定子线圈接地故障的保护问题越来越引起人们的严重关注,因为流经接地点的电容电流不断增大,将破坏线圈绝缘和定子铁芯。
而流经接地点的电容电流与发电机中性点的接地方式有关,以往,中国水轮发电机中性点系统消弧线圈接地,在改革开放的情况下,中国又引进了一批国外机组,中性点接地方式又出现了经接地变压器接地的方式。
本文结合水轮发电机组的运行经验,比较了两种接地方式的优劣,探讨了适合中国电网运行的接地方式。
发电机的中性点接地方式

发电机的中性点接地方式
发电机的中性点主要采用不接地、经消弧线圈接地、经电阻或直接接地三种方式。
1、发电机中性点不接地方式:当发电机单相接地时,接地点仅流过系统另两相与发电机有电气联系的电容电流,当这个电流较小时,故障点的电弧常能自动熄灭,故可大大提高供电的可靠性。
当采用中性点不接地方式而电容电流小于5安时,单相接地保护只需利用三相五柱电压互感器开口侧的另序电压给出信号便可以。
中性点不接地方式的主要缺点是内部过电压对相电压倍数较高。
2、发电机中性点经消弧线圈接地:当发电机电容电流较大时,一般采用中性点经消弧线圈接地,这主要考虑接地电流大到一定程度时接地点电弧不能自动熄灭。
而且接地电流若烧坏定子铁芯时难以修复。
中性点接了消弧线圈后,单相接地时可产生电感性电流,补偿接地点的电容电流而使接地点电弧自动熄灭。
3、发电机中性点经电阻或直接接地:这种方式虽然单相接地较为简单和内部过电压对相电压的倍数较低,但是单相接地短路电流很大,甚至超过三相短路电流,可能使发电机定子绕组和铁芯损坏,而且在发生故障时会引起短路电流波形畸变,使继电保护复杂化。
中性点接地
中性点接地中性点接地作为一个重要的概念,在电气工程领域中扮演着至关重要的角色。
它是指电路中的第三个接线点,也称为零线,用于将电路的中性与大地连接起来。
中性点接地在保证电路正常运行和安全使用方面发挥着重要的作用。
首先,中性点接地可以提供电气系统的保护。
当电路中出现故障或过载时,中性点接地可以有效地将电流地回路的电位调整到零,从而防止电压过高而损坏设备。
此外,当电路发生故障时,中性点接地还可以在电路上形成短路,通过自动跳闸或熔断器断电,确保人身安全和防止火灾的发生。
其次,中性点接地还可以减少电气干扰。
在电气系统中,由于电气设备的运行和互连引起的电磁干扰是很常见的。
使用中性点接地可以将这些干扰的电压分成两部分,一部分被引入到大地上,从而减少对电气设备的干扰,保证设备正常运行。
此外,中性点接地还有助于提高系统的可靠性。
在三相电源系统中,中性点接地可以平衡三相电流的负载,减少对电源和设备的不平衡和过载。
这样可以提高系统的稳定性和可靠性,从而减少电路的故障率,延长设备的使用寿命。
然而,中性点接地也存在一些潜在的问题。
例如,在系统中存在电流不平衡时,中性点接地可能无法完全实现电流的分流,并可能导致电路不平衡和设备的过载。
因此,在设计和安装中性点接地系统时,需要充分考虑电路的特性和负载的平衡,以确保系统的可靠运行。
总之,中性点接地在电气工程领域中扮演着非常重要的角色。
它不仅能够保护电路和设备的安全,减少电磁干扰,提高系统的可靠性,还能够确保电气系统的正常运行。
在实际应用中,需要根据具体的电路和设备要求来设计和实施中性点接地系统,以最大限度地发挥其作用。
发电机中性点接地方式及作用综合2汇编
发电机中性点接地方式及作用发电机中性点接地一般有以下几类:1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。
发电机中性点不接地方式,一般适用于小容量的发电机。
(中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。
这种接地方式能实现无死区的定子接地保护)2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。
3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。
这种方式也可以实现高灵敏度既无死区的定子接地保护。
4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。
大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。
注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。
发电机中性点经单相变压器高阻接地接地装置设计及选型1.发电机中性点接地电阻的计算原则1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线电压1.5U N=2.6U X)2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求;3)10kv 10MW发电机最大容性电流<4A C<2.1 uF2.电容及电容电流计算:=0.7242uF(发电机厂家提供);1)发电机定子绕组三相对地电容Cof2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排)=0.06829uF0.05×2.6=0.13A即三相对地电容 Col=0.2uF(经验值);3)发电机出口至升压主变低压绕组间单相对地等值电容为C024)主变低压侧三相对地电容20470PF即0.02047 uF5)阻容参数:单相电容0.1 uF,三相为0.3 uF发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF发电机系统电容电流为:I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A2. 接地电阻值的选择:接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。
电力系统中性点的运行方式分析
电力系统中性点的运行方式分析摘 要:本文简要介绍了电力系统中性点接地的各种运行方式及分析,中性点接地方式与电压等级、单相接地短路电流、过电压水平的相关关系,以及在实际工作中的优缺点和应用情况,并对不同电压等级和系统结构采取何种中性点接地方给出了建议。
关键词:电力系统 中性点 分析1. 前言电力系统的中性点实际上是指电力系统中发电机、 变压器的中性点,其接地或不接地是一个综合性的问题。
中性点接地方式与电压等级、单相接地短路电流、过电压水平、保护配置等有关,对于电力系统的运行,特别是对发生故障后的系统运行有多方面的影响,直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的运行安全以及对通信线路的干扰等。
所以在选择中性点接地方式时,必须考虑许多因素。
电力系统中性点接地方式有两大类:一类是中性点直接接地或经过低阻抗接地,称为大接地电流系统;另一类是中性点不接地、经过消弧线圈或高阻抗接地,称为小接地电流系统。
其中采用最广泛的是中性点不接地、中性点经过消弧线圈接地和中性点直接接地等三种方式。
对于6~10kV系统,由于设备绝缘水平按线电压考虑对于设备造价影响不大,为了提高供电可靠性,一般均采用中性点不接地或经消弧线圈接地的方式。
对于110kV及以上的系统,主要考虑降低设备绝缘水平,简化继电保护装置,一般均采用中性点直接接地的方式,并采用送电线路全线架设避雷线和装设自动重合闸装置等措施,以提高供电可靠性。
20~60kV的系统,是一种中间情况,一般一相接地时的电容电流不很大,网络不很复杂,设备绝缘水平的提高或降低对于造价影响不很显著,所以一般均采用中性点经消弧线圈接地方式。
1kV以下的电网的中性点采用不接地方式运行,但电压为380/220V的系统,采用三相五线制,零线是为了取得相电压,地线是为了安全。
2、中性点不接地系统2.1中性点不接地系统运行中性点不接地系统,即中性点对地绝缘。
这种接地方式结构简单,运行方便,不需任何附加设备,投资经济。
发电机和变压器的中性点课件
02 变压器中性点
变压器中性点的定义
变压器中性点:指变 压器三相绕组星形连 接的公共点。
中性点的接地与否以 及接地方式对变压器 的正常运行和保护至 关重要。
在中性点上,三相电 压相位相同,但幅值 相等。
变压器中性点的接地方式
01
02
03
直接接地
中性点直接与大地相连, 适用于110kV及以上电压 等级的变压器。
不接地
中性点不与大地相连,适 用于35kV及以下电压等级 的变压器。
经消弧线圈接地
中性点通过消弧线圈与大 地相连,适用于较大接地 电流的变压器。
变压器中性点的接地作用
维持三相电压平衡
01
中性点接地可以减小三相电压的偏移,维持三相电压平衡。
防止单相接地故障时过电压
02
中性点接地可以限制单相接地故障时的过电压,保护变压器绝
05 发电机和变压器 的中性点接地故 障处理
中性点接地故障的判断方法
电流检测
通过检测中性点接地线上的电流 ,判断接地故障是否存在。
绝缘电阻检测
定期检测发电机和变压器的中性点 绝缘电阻,若电阻值低于规定值, 则可能存在接地故障。
相位和电压检测
通过检测中性点的相位和电压,判 断是否存在接地故障。
中性点接地故障的处理方法
安装保护装置
在发电机和变压器的中性点上安装保护装置,以防止接地故障的发 生。
培训操作人员
对操作人员进行培训,使其了解发电机和变压器的基本原理和操作 方法,以及如何预防和处理中性点接地故障。
THANKS
感谢观看
发电机和变压器的中性点课 件
目录
• 发电机中性点 • 变压器中性点 • 发电机和变压器的中性点接地方式比较 • 发电机和变压器的中性点接地保护 • 发电机和变压器的中性点接地故障处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机中性点接地方式及作用
发电机中性点接地一般有以下几类:
1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。
发电机中性点不接地方式,一般适用于小容量的发电机。
(中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。
这种接地方式能实现无死区的定子接地保护)
2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。
3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。
这种方式也可以实现高灵敏度既无死区的定子接地保护。
4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。
大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。
注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。
发电机中性点经单相变压器高阻接地接地装置设计及选型
1.发电机中性点接地电阻的计算原则
1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线
电压1.5U N=2.6U X)
2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求;
3)10kv 10MW发电机最大容性电流<4A C<2.1 uF
2.电容及电容电流计算:
=0.7242uF(发电机厂家提供);
1)发电机定子绕组三相对地电容C
of
2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排)
=0.06829uF
0.05×2.6=0.13A即三相对地电容 C
ol
=0.2uF(经验值);
3)发电机出口至升压主变低压绕组间单相对地等值电容为C
02
4)主变低压侧三相对地电容20470PF即0.02047 uF
5)阻容参数:单相电容0.1 uF,三相为0.3 uF
发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF
发电机系统电容电流为:
I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A
2. 接地电阻值的选择:
接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。
按运行机组的耐压值为1.5倍发电机额定电压,则健全相暂时过电压不宜超过2.6倍相电压。
此时中性点接地电阻值为:
Ω==≤-⨯⨯⨯⨯14.1859610713.15014.32121 fC R π
原边电压:kV U 5.101=
副边电压:V 1.02k U =
变比: 0095.0/5.101
.012===N N K 变压器容量:KVA kVA S K I U C 3045.244.126.35.101
1⇒===⨯⨯ (K 1——过负荷系数,查曲线。
按t=1h 选取,1.9≤K 1≤1.4) 变压器低压侧接入电阻值:22
222S PU
RK R -=(P ——变压器总损耗,W ) 忽略变压器损耗,得接地变二次侧电阻Ω==168.022RK
R 电阻器短时通流(60s ): A R U I 345168
.0310022=⨯== 为确保接地总电流最大I max <15A
R> U 线/√3I MAX =10.5KV/1.732*15=404 欧
I 2
总=I 2R +I 2C <I 2MAX (15A )2
3. 配套选型设备型号及数量:
a. 电阻片型号规格:NGR0.1kV-345A-1h ,数量2台。
b. 单相干式接地变压器DKDC-30kVA/10.5kV/0.1kV :系统最高电压12kV ,额定电压10.5kV ,额
定容量30kVA ,变比和精确等级10.5±2x2.5%/0.1kV ,AN ,数量2台。
c. 电流互感器:LMZJ1-0.5/53*15 200/5,0.5 20VA 布置在接地变二次侧,数量2台。
d. 单相隔离开关 GN19-12/630:系统最高电压12kV,额定电压10.5kV,电流630A配手动操作
机构,数量2台。
e. 冷板外壳,户内,1450X1200X1800mm (参考) ,数量2台。
备注:低压过电压保护设备,用于保护变压器及二次回路,不属于中性点接地装置;从接地变压器至发电机中性点的连接电缆我方不予提供。
4. 执行标准:
DL/T 780-2001 配电系统中性点接地电阻器
GB 50150—1991 电气装置安装工程电气设备交接试验标准GB 311.1—1997 高压输变电设备的绝缘配合
GB763-90 交流高压电器在长期工作时的发热
GB 311.2-6 高电压试验技术
GB6450 干式电力变压器
GB 4208(93)外壳防护等级
GB1028—1997 电流互感器
IEC289—1998 相关部分
IEEE32—1972标准(1991年重新颁布)相关部分。