中考数学专题复习一数与式试题浙教版

合集下载

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。

2020年浙江数学中考复习第一单元数与式之第2课时 代数式与整式(含因式分解)

2020年浙江数学中考复习第一单元数与式之第2课时  代数式与整式(含因式分解)

第2课时 代数式与整式(含因式分解)
返回目录
了解整数指数幂的意义和基本性质; 能推导乘法公式;了解公式的几何背景,并能利用公式进行简单计算; 能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是 正整数)
).
第2课时 代数式与整式(含因式分解)
返回目录
考点精讲
代数式求值
非负数 单项式
非负数常见的非负数有:a2,|b|, c (a、b、c均大于或等于0)
非负数 性质:若几个非负数的和为0,则每个非负数的值均为_0__,如:若 a2+|b|+ c =0,则有a2=0,|b|=0, c =0,则a=b=c=0
第2课时 代数式与整式(含因式分解)
返回目录
整式的相 关概念
返回思维导图
单项式:数与字母或字母与字母相乘组成的代数式.单独 的一个数或一个字母也是单项式.如3,a,3a2都是单项式
去括号法则:a+(b-c)=___a_+__b_-__c___;a-(b-c)=_____a_-__b_+__c_____
第2课时 代数式与整式(含因式分解)
返回目录
同底数幂相乘:底数不变,指数相加,am·an=___a_m_+__n
返回思维导图
幂的运算 同底数幂相除:__底__数__不__变__,__指__数__相__减___,am÷an=__a_m_-__n_(a≠0)
=4x-1. ∵∴x原=式32,=4×32-1 =5.
第2课时 代数式与整式(含因式分解)
返回目录
13. (2014杭州19题8分)设y=kx,是否存在实数k,使得代数式(x2-y2)(4x2-y2)+
3x2(4x2-y2)能化简为x4?若能,请求出所有满足条件的k的值,若不能,请说明

2023年九年级中考数学第一复习试卷:数与式 试卷(含解析)

2023年九年级中考数学第一复习试卷:数与式 试卷(含解析)

2023年中考数学第一复习试卷:数与式一、选择题1. (2020秋•镇原县期末)下列说法中,正确的是( ) A.x 2﹣3x 的项是x 2,3x B.3ba +是单项式C.,πa,a 2+1都是整式D.3a 2bc ﹣2 是二次二项式2. (2021·贵州铜仁)2的相反数是( ) A.2B.-2C.12D.12-3. (2020秋•福田区校级)在代数式x 2+5,-a,x 2-3x+2,π,x5,x 21x 1++中,整式有( ) A.3个 B.4个 C.5个 D.6个 4. (2020秋•涪城区校级期末)若a+2b =3,则多项式2a+4b-1的值为( ) A.3 B.4 C.5 D.65. (2020秋•抚顺县期末)若x 2﹣3x ﹣2=0,则2x 2﹣6x+2020的值为( ) A.2021 B.2022 C.2023 D.20246. (2020秋•荔湾区校级月考)若关于x,y 的多项式kxy 2-kxy-3xy 2+xy+x+y-k 是二次多项式,则k 的值是( ) A.3 B.-3 C.1 D.-1 7. (2020秋•汝阳县期末)无论x 取任何实数,下列一定是二次根式的是( )A.2x --B.xC.2x 2+D.2x 2-8. (2020秋•绥中县期末)已知xy =3,x ﹣y =﹣2,则代数式x 2y ﹣xy 2的值是( ) A.6 B.﹣1 C.﹣5 D.﹣69. (2020秋•会宁县期末)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是( ) A.2 B.4 C.6 D.8 10. (2020秋•福田区期末)观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;根据此规律,第10个等式的右边应该是a 2,则a 的值是( ) A.45 B.54 C.55 D.65 二、填空题11. (2022·贵州黔东南)若()225240x y x y +-+++=,则x-y 的值是________.12. (2020•浙江自主招生)分解因式:2x 2+7xy-15y 2-3x+11y-2= .13. (2020•成都模拟)已知实数a,b 互为相反数,且|a+2b|=1,b <0,则b = .14. (2020•吉安模拟)如图,有一个正三角形图片高为2厘米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,将图片沿数轴负方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是 .15. (2020秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.16. (2020秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2021次输出的结果是.三、解答题17. (2020秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.18. (2020秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b-c 0,a+b 0,c-a 0.(2)化简:|a+b|-|a+c|+|b-c|-|a|.19. (2020•河北模拟)对于题目:实数a,b,c的大小如图中数轴所示,化简:|a-c|-|a-b|+|c-b|+2c.张皓程的解法如图所示:(1)张皓程从第步开始出错.(2)请你写出正确的解答过程.20. (2020春•江阴市期中)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9).请你分析一下a、b的值,并写出正确的因式分解过程.21. (2020秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?答案一、选择题1. 【答案】故选:C.2. 【答案】B 2的相反数是-2.故选:B.3. 【答案】解:整式有x2+5,-a,x2-3x+2,π,共4个;故选:B.4. 【答案】解:∵a+2b=3,∴2a+4b-1=2(a+2b)-1=2×3-1=6-1=5.故选:C.5. 【答案】解:∵x2﹣3x﹣2=0,∴x2﹣3x=2,∴2x2﹣6x+2020=2(x2﹣3x)+2020=2×2+2020=2024,故选:D.6. 【答案】解:kxy2-kxy-3xy2+xy+x+y-k=(k-3)kxy2+(1-k)xy+x+y-k,∵关于x,y的多项式kxy2-kxy-3xy2+xy+x+y-k是二次多项式,∴k-3=0,∴k=3.故选:A.7. 【答案】故选:C.8. 【答案】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.9. 【答案】解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.10. 【答案】解:观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;…∴第十个等式为:13+23+…+93+103=(1+2+3+4+…+9+10)2=552;故选:C.二、填空题11. 【答案】912. 【答案】解:∵2x2+7xy-15y2=(x+5y)(2x-3y),∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数,∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1,∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).13. 【答案】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.14. 【答案】故答案为:-4315. 【答案】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.16. 【答案】故答案为:10.三、解答题17. 【答案】解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.18. 【答案】解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b-c<0,a+b<0,c-a>0, 故答案为:<,<,>;(2)∵b-c<0,a+b<0,a+c>0,∴|a+b|-|a+c|+|b-c|-|a|=-a-b-(a+c)+(-b+c)-(-a)=-a-b-a-c-b+c+a=-a-2b.19. 【答案】解:(1)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,所以|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c所以是第①步出错,原因是去绝对值符号时,负数没有变号;故答案为:①;(2)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c=a-c+a-b-c+b+2c=2a.20. 【答案】解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴x2+6x+9=(x+3)2.21. 【答案】解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22020-1,又∵21=2,22=4,23=8,24=16,25=32,……∴22020的个位数字为6,∴22020-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10,∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.。

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

中考数学复习基本过关训练综合训练1。数与式

中考数学复习基本过关训练综合训练1。数与式

卷1:数与式班级: 姓名: 分数:一、选择题:(1-8题,8×3分=24分)1、与数轴上的点是一一对应的是---------------------------------------( )(A )有理数 (B )实数 (C )无理数 (D )整数2、下列各数中,无理数是---------------------------------------------( )(A )02 (B )122 (C )124 (D )1383、在下列计算中,正确的是-------------------------------------------( )(A )633a a a =+ (B )a a a -=-÷-45)()( (C )54a a a =⋅- (D )632)(a a =-4、化简2)3(-的结果是---------------------------------------------( )(A )-3 (B )3或-3 (C )3 (D )95--------------------------( )(A )(B )(C )(D )6、把23xy x -分解因式,正确的结果是---------------------------------( )(A )))((xy x xy x -+ (B))(22y x x -(C) 2)(y x x - (D)))((y x y x x +-7、若()2120m n -++=,则m n +的值为-----------------------------( ) (A )-1 (B )-3 (C )3 (D )不能确定8、如果a 与-2互为相反数,那么a 等于--------------------------------( )(A )2 (B )12 (C )12- (D )-2 二、填空题:(9-24题,16×4分=64分)9、-5的倒数是 .10= .11、计算=-+)2)(2(b a b a .12、用科学记数法表示-3820000= . 13、当x= 时,分式25-x x没有意义. 14、x 25-有意义,则x . 15、计算=---111x x x . 16、计算52-= .17、计算=÷553. 18、16的平方根是 . 19、化简=-231 .20、因式分解:=-a a 163.21、数轴上一点到原点的距离为5,则该点表示的数为 . 22、若132+-x a与b a x 321+是同类项,则x= . 23、若22x x c ++在实数范围内不能分解因式,则c 的取值范围为______________. 24、一种商品成本价为x 元,按成本价增加25%定出价格销售,则销售价格为 _元. 三、解答题(25-31题,4×8分+3×10分=62分) 25、计算:2161831502-+ 26、211)3(2)31(02-+---+--27、计算:)1)(3()3)(3()12--+-++-x x x x x (28、计算:⎪⎭⎫⎝⎛-÷+-+4)223(2a a a a a a29、化简并求值yx y x +⨯+2)11(,其中x=2,3=y30、化简并求值yx y yx x +--,其中33x y ==31、在实数范围内因式分解:236x x a -+卷1答案:一、选择题1、B2、B3、B4、C5、D6、D7、A8、A 二、填空题9、51- 10、3 11、224b a - 12、61082.3⨯- 13、x =2 14、x ≤5215、-1 16、25- 17、5318、2± 19、23-- 20、)4)(4(-+a a a 21、5± 22、x =1 23、c >1 24、x 45 三、解答题25、29 26、7 27、5632--x x 28、42-a 29、化简得:xy 2=3330、化简得:=-+y x y x 3- 31、当a >3时,236x x a -+在实数范围内不能分解;当a =3时,236x x a -+=()231x -;当a >3时,236x x a -+=⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-+-3393333933a x a x。

浙江省杭州市中考数学微专题一:数与式

浙江省杭州市中考数学微专题一:数与式

微专题一:数与式一.选择题1.(有理数的加减)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃2.(科学计数法)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×10103.(分式加减)照相机成像应用了一个重要原理,用公式=+(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片于(像)到镜头的距离.已知f,v,则u=()A.B.C.D.4.(有理数的计算)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣95.(实数的计算)×=()A.B.C.D.36.(整式的运算)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y27.(有理数的认识)﹣(﹣2021)=()A.﹣2021B.2021C.﹣D.8.(科学计数法)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜记录.数据10909用科学记数法可表示为()A.0.10909×105B.1.0909×104C.10.909×103D.109.09×1029.(因式分解)因式分解:1﹣4y2=()A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)10.(二次根式)下列计算正确的是()A.=2B.=﹣2C.=±2D.=±2 11.(列代数式)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元二.填空题1.(实数)计算:=;(﹣2)2=.2.(因式分解)因式分解:1﹣x2=.3.(分式的性质)若分式的值等于1,则x=.4.(特殊角的三角函数值)计算:sin30°=.5.(整式运算)计算:2a+3a=.6.(整式的乘除)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.三.解答题1.(有理数的计算)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.2.(分式的化简)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.。

中考数学专题复习数与式

中考数学专题复习数与式

中考数学专题复习专题一 数与式[基础训练]1.如果a 与2-的和为O ,那么a 是( )B.12 C.12- D.2- 2.234()m m g 等于( ) A.9mB .10mC .12mD .14m3. 若4x =,则5x -的值是( )A .1B .-1C .9D .-94、5-的相反数是 ,9的算术平方根是 ,-3倒数是 . 4.已知(a-b)2=4,ab=21,则(a+b)2= 5.在函数1-=x y 中,自变量x6.若分式12--x x 的值为零,则=x . 7.因式分解:=+-2232xy y x x 9.根据如图所示的程序计算,若输入x 的值为1则输出y 的值为 10.计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+11.已知12+=x ,求代数式xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值.(第9题图)[精选例题]例题1(1)1:2的倒数是( ) A21 B-21 C ±21D2 (2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________. (3)若()的值为则n m n m 2,0)3(32+=++- A -4 B -1 C 0 D4 说明:本题考查对数与式基本概念的理解(1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性 例题2(1)如图,在数轴上表示15的点可能是(A 点PB 点QC 点MD 点N (2)当x=_____时,分式33--x x 无意义.(3)已知aaa a -=-112,则a 的取值范围是( ) A a 0≤ B a<0 C 0<a ≤1 Da>0 说明:本题考查对数与式有关性质的掌握(1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义 (3)平方根的意义和性质例题3(1)下列运算正确的是( )A 22a a a =⋅ B 2a a a =+ C 236a a a =÷ D ()623a a =(2)化简a+b+(a-b)的最后结果正确的是( ) A 2a+2b B 2b C 2a D0 (3)下列计算错误的是( )A -(-2)=2B 228=C 222532x x x =+ D ()532a a =(4)先化简41)231(2-+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.说明:本题考查对数与式运算法则的掌握,第(4)题注意解题的规范。

浙江省中考数学复习 第一部分 考点研究 第一单元 数与式 第2课时 代数式与整式(含因式分解)试题-

浙江省中考数学复习 第一部分 考点研究 第一单元 数与式 第2课时 代数式与整式(含因式分解)试题-

第一单元数与式第2课时代数式与整式(含因式分解)(建议答题时间:40分钟)命题点1 列代数式及求值类型一列代数式1.(2017某某模拟)一项工程,甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工程所需的时间为( )A. aba+b 小时 B.a+bab小时C. a+b小时D. 1a+b小时2.(2017某某)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%.已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m元/千克,则( )A. m=24(1-a%-b%)B. m=24(1-a%)b%C. m=24-a%-b%D. m=24(1-a%)(1-b%)类型二 代数式求值3.(2017某某B 卷)若 x =-3,y =1,则代数式2x -3y +1的值为( )A. -10B. -8C. 4D. 104.(2017某某)若a -b =2,b -c =-3,则a -c 等于( )A. 1B. -1C. 5D. -55.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( ) A. -3 B. 0 C. 3 D. 66.(2017眉山)已知14m 2+14n 2=n -m -2,则1m -1n的值等于( ) A. 1 B. 0 C. -1 D. -147.(2017某某)已知a +b =10,a -b =8,则a 2-b 2=________. 8.(2017某某)已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为________. 命题点2 整式的相关概念9.(2017某某)单项式9x m y 3与单项式4x 2y n是同类项,则m +n 的值是( ) A. 2 B. 3 C. 4 D. 510.在下列式子12ab ,a +b 2,ab 2+b +1,3x +2y,x 2+x 3-6中,多项式有( ) A. 2个 B. 3个 C. 4个 D. 5个命题点3 整式的运算11.计算(-2a 2)2·a ,正确的是( )A. 2a 5B. -4a 5C. 4a 5D. 4a 612.(2017某某)计算(x +1)(x +2)的结果为()A. x 2+2B.x 2+3x +2C. x 2+3x +3D. x 2+2x +213.(2017某某)下列计算正确的是( )A. b 3·b 3=2b 3B. (a +2)(a -2)=a 2-4C. (ab 2)3=ab 6D. (8a -7b )-(4a -5b )=4a -12b14.(2017某某)下列计算正确的是( )A. 33=9B. (a -b )2=a 2-b 2C. (a 3)4=a 12D. a 2·a 3=a 615.(2017某某)下列运算正确的是( )A. 3a +b 6=a +b 2B. 2×a +b 3=2a +b 3 C. a 2=a D. |a |=a (a ≥0)16.(2017某某)计算(a 2)3+a 2·a 3-a 2÷a -3,结果是() A. 2a 3-a B. 2a 3-1a C . a 2D. a 617.下列各式中,计算正确的是( )A. 2x +3y =5xyB. (-x -y )(-x +y )=x 2-y 2C. (2x )3=6x 3D .(3xy )2÷xy =3xy18.下列运算正确的是( )A. 2a 6÷a 3=2a 2B. 2a 3+3a 3=5a 6C. (-a 3)2=a 6D. 2a -a =2命题点4 整式的化简及求值19.(2017某某)化简:a(3-2a)+2(a+1)(a-1).20.(2017某某A卷)计算:x(x-2y)-(x+y)2.21.(2017某某)先化简,再求值:(2x+1)2-2(x-1)(x+3)-2,其中x= 2.22.(2017某某)先化简,再求值:(a+b)(a-b)+(a-b)2-(2a2-ab),其中a,b是一元二次方程x2+x-2=0的两个实数根.23. 若代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为y 4,且x ≠0,求y x的值. 命题点5 因式分解24.(2017某某)下列各式由左到右的变形中,属于分解因式的是( )A. a (m +n )=am +anB. a 2-b 2-c 2=(a -b )(a +b )-c 2C. 10x 2-5x =5x (2x -1) D. x 2-16+6x =(x +4)(x -4)+6x 25.(2017某某)分解因式:2a 2+4a +2=________. 26.(2017某某)分解因式:ma 2+2mab +mb 2=______. 27.(2017潍坊)因式分解:x 2-2x +(x -2)=________. 28.(2017某某模拟)分解因式:a 3b -2a 2b +ab =________. 命题点6 数式规律探索题29. (2017某某)在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( )A. 1B. 3C. 7D. 930. (2017某某)按照一定规律排列的n 个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n 为( )A. 9B. 10C. 11D. 1231. (2017某某)观察下列各等式:11×2=1-12=1211×2+12×3=1-12+12-13=2311×2+12×3+13×4=1-12+12-13+13-14=34…请按上述规律,写出第n 个式子的计算结果(n 为正整数)________.(写出最简计算结果即可)32.(2017某某)观察下列各个等式的规律:第一个等式:22-12-12=1, 第二个等式:32-22-12=2, 第三个等式:42-32-12=3, …请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.答案1.A 【解析】由题意可得,甲、乙两人的工作效率分别为1a 、1b,则甲、乙两人一起完成这项工程所需时间为:11a +1b =ab a +b (小时). 2.D 【解析】∵1月份鸡的价格为24元/千克,2月份鸡的价格比1月份下降a %,∴2月份鸡的价格是24(1-a %)元/千克,∵3月份比2月份下降b %,∴3月份鸡的价格是m =24(1-a %)(1-b %)元/千克,故选D.3.BB.4.B 【解析】a -b =2,b -c =-3,两式相加得a -c =2-3=-1.5.C 【解析】a 2+2a =3,原式=2(a 2+2a )-3=6-3=3. 6.C 【解析】14m 2+14n 2=n -m -2,整理得14m 2+m +1+14n 2-n +1=0,∴(12m +1)2+(12n -1)2=0,∴12m +1=0,12n -1=0,解得m =-2,n =2,∴1m -1n =n -m mn =2-(-2)(-2)×2=-1.7.80 【解析】∵a +b =10,a -b =8,∴a 2-b 2=(a +b )(a -b )=10×8=80. 8.8 【解析】∵m (n -4)-n (m -6)=mn -4m -m n +6n =6n -4m =-2(2m -3n ),把2m -3n =-4代入,原式=-2×(-4)=8.9.D 【解析】由同类项的定义可知,相同字母的次数也相同,所以m =2,n =3,m +n =5.10.B 【解析】a +b 2,ab 2+b +1,x 2+x 3-6是多项式. 11.C 【解析】(-2a 2)2·a =4a 4·a =4a 5. 12.B 【解析】原式=x 2+2x +x +2=x 2+3x +2. 13.B 【解析】A 、原式=b 6,不符合题意;B 、原式=a 2-4,符合题意;C 、原式=a 3b 6,不符合题意;D 、原式=8a -7b -4a +5b =4a -2b ,不符合题意.14.C 【解析】∵33=27,故A 项错误;(a -b )2=a 2-2ab +b 2,B 项错误;(a 3)4=a 3×4=a 12,C 项正确;a 2·a 3=a 2+3=a 5,D 项错误.故选C. 15.D 【解析】16.D 【解析】原式=a2×3+a2+3-a2-(-3)=a6+a5-a5=a6,故选D. 17.B 【解析】逐项分析如下:18.C 【解析】19.解:原式=3a-2a2+2a2-2=3a-2.20.解:原式=x2-2xy-(x2+2xy+y2)=x2-2xy-x2-2xy-y2=-4xy-y2.21.解:原式=4x2+4x+1-2(x2+2x-3)-2=4x2+4x+1-2x2-4x+6-2=2x2+5.当x=2时,原式=2×(2)2+5=9.22.解:原式=a2-b2+a2-2ab+b2-2a2+ab=(a2+a2-2a2)+(-b2+b2)+(-2ab+ab)=-ab,∵a,b是一元二次方程x2+x-2=0的两个实数根,∴ab=-2,∴原式=-(-2)=2.23. 解:原式=(4x2-y2)(x2-y2+3x2) =(4x2-y2)(4x2-y2)=(4x2-y2)2,,∵原式=y4,∴(4x2-y2)2=y4,∵x≠0,∴4x2-y2=y2,∴4x2=2y2,∴2x=±2y,∴yx=± 2.24.C 【解析】A、该变形为去括号,故A不是因式分解;B、该等式右边没有化为几个整式的乘积形式,故B不是因式分解;C是因式分解;D、该等式右边没有化为几个整式的乘积形式,故D不是因式分解.25.2(a+1)2【解析】原式=2(a2+2a+1)=2(a+1)2.26.m(a+b)2【解析】先提取公因式,再利用公式法进行因式分解.原式=m(a2+2ab+b2)=m(a+b)2.27.(x-2)(x+1) 【解析】先将第一、二项分解为x(x-2),再提公因式(x-2),则原式=x(x-2)+(x-2)=(x-2)(x+1).28.ab(a-1)2【解析】a3b-2a2b+ab=a3b-a2b-a2b+ab=a2b(a-1)-ab(a-1)=(a-1)(a2b-ab)=ab(a-1)229.B 【解析】由题意知,数列a1,a2,a3,…,a n对应的数为3,7,1,7,7,9,3,7,1,7,7,9,…,可以看出数列中的数每6个循环一次,∵2017÷6=336×6+1,∴这一列数中的第2017个数是3.30.B 【解析】观察这组数据,可发现一个负数一个正数交替出现,且后一个数的绝对值是前一个数绝对值的2倍,第一个数是-2,所以第n个数为(-2)n,根据最后三个数的和为768得,(-2)n-2+(-2)n-1+(-2)n=768,即(-2)n-2(1-2+4)=768,所以(-2)n -2=256,所以n=10.31.nn+1【解析】观察各等式可得,第n个等式为11×2+12×3+…+1(n-1)n+1n (n +1)=1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1=n n +1. 32.解:(1)第四个等式:52-42-12=4; (2)第n 个等式:(n +1)2-n 2-12=n , 证明:∵(n +1)2-n 2-12=(n +1+n )(n +1-n )-12=n , ∴(n +1)2-n 2-12=n.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数与式
一 教学目标: (1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。

(2)理解:能描述对象特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。

(3)掌握:能在理解的基础上,把对象运用到新的情境中。

(4)灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

二 知识要点
1.实数的有关概念
(1)实数分类
------(有限小数和无限循环小数)
实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。

解题中需考虑数的取值范围时,常常用到这种分类方法。

特别要注意0是自然数。

(2)数轴
数轴的三要素:原点、正方向和单位长度。

实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。

在数轴上表示的两个数,右边的数总比左边的数大。

(3)绝对值
绝对值的代数意义:
绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。

(4)相反数、倒数
相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。

“任意一对相反数的和是零”和“互为倒数的两个数的积是1”的特性常作为计算与变形的技巧。

(5)三种非负数
形式的数都表示非负数。

“几个非负数的和(积)仍是非负数”与“几个非负数的
和等于零,则必定每个非负数都同时为零”的结论常用于化简求值。

(6)平方根、算术平方根、立方根的概念
2.实数的运算
(1)实数的加、减、乘、除、乘方、开方运算,整数指数幂的运算。

(2)有理数的运算法则在实数范围仍然适用;实数的运算律、运算顺序。

(3)加法及乘法的运算律可用于实数运算的巧算。

(4)近似数的精确度、有效数字、科学记数法的形式为n 为整数)。

教学准备
(5)实数大小的比较:两个实数比较大小,正数大于零和一切负数;两个正数,绝对值大的数较大;两个负数,绝对值大的数较小。

常用方法:①数轴图示法。

②作差法。

③平方法等。

例1.已知x 、y 是实数,且满足
,求x+2y 的值。

解:
说明:这是一个条件求值问题,利用非负数的性质可求出x 、y 的值,从而问题可解。

例2.2005年10月12日9时15分许,我国“神舟”六号载人飞船发射成功,飞船在太空共绕地球77圈,飞行路程约为330万千米,用科学记数法表示,结果保留三位有效数字,则“神舟”六号飞船绕地球平均每圈约飞行() A. B. C. D.
简析:330万千米=3300000千米,3300000÷77≈42857保留三位有效数字用科学记数法表示为。

解:选B 。

说明:运用近似数和有效数字表示生活中的数据问题,是新课标的主要内容之一。

本题综合运用了近似数、有效数字、科学记数法等知识。

例3.计算:
解:
说明:进行计算时,首先要注意观察题目中有哪几种运算,思考有无简便方法,然后确定运算顺序。

注意遇到同一级运算时,应按自左向右的顺序进行计算,并要随时检查运算结果的符号。

例4.比较下列实数大小:
解:(1)解1(作差法):
解2(作商法): 例题精讲。

相关文档
最新文档