D值法例题详解

合集下载

D值法例题详解

D值法例题详解

例题:4、已知:框架计算简图,用D值法计算内力并绘制弯矩图解:1 )求各柱的剪力值2 )求出各柱的反弯点高度yh3)求各柱的柱端弯矩第三层M CD =12.800.41 3.3kN·m=17.32 kN·mM DC =12.800.59 3.3 kN·m =24.92 kN·mM GH =13.900.45 3.3 kN·m =20.64 kN·mM HG =13.900.55 3.3 kN·m =25.23 kN·mM LM =10.290.35 3.3 kN·m =11.88 kN·mM ML =10.290.65 3.3 kN·m =22.07 kN·m第二层M BC =34.720.50 3.3 kN·m =57.29 kN·mM FG =47.800.50 3.3 kN·m =78.87 kN·mM CB=57.29 kN·mM GH=78.87 kN·mM JL =28.480.45 3.3 kN·m =42.29 kN·mM ML =28.480.55 3.3 kN·m =51.69 kN·m第一层M AB =56.680.55 3.9 kN·m =121.6 kN·mM EF =77.510.55 3.9 kN·m =166.3 kN·mM BA =56.680.45 3.9 kN·m =99.47 kN·mM FE =77.510.45 3.9 kN·m =136.0 kN·mM IJ =57.560.575 3.9 kN·m =129.1 kN·mM JI =57.560.425 3.9 kN·m =95.41 kN·m4)求各横梁梁端的弯矩第三层M DH= M DC=24.92 kN·mM DH =25.23 kN·m =16.45 kN·mM HM =25.23 kN·m =8.776 kN·mM MH= M ML=22.07 kN·m第二层M CG= M CD+ M CB =17.32 kN·m +57.29 kN·m =24.92 kN·m M GC =(20.64+78.87)kN·m =62.65 kN·mM GC =(20.64+78.87)kN·m =36.86 kN·mM LG= M LM+ M LJ =11.88 kN·m +51.69 kN·m =63.57 kN·m 第一层M BF= M BC+ M BA =57.29 kN·m +99.47 kN·m =156.8 kN·mM FB =(136.0+78.87)kN·m =143.2 kN·mM FJ =(136.0+78.87)kN·m =71.62 kN·mM JF= M JL+ M JI =42.29 kN·m +95.41 kN·m =137.7 kN·m 5)绘各横梁与柱的弯矩图(单位:kN·m)如下图所示。

D值法例题 PPT

D值法例题 PPT
可以互相讨论下,但要小声点
图12.23 例12.3
表12.7
图12.24 M图(单位: kN·m)
D值法例题
【例12.3】用D值法求图12.23所示框架的弯矩图,图中括
【解】(1)求各柱所分配的剪力值V(kN)。计算过程及 结果如表12.7所示
(2) 求各柱反弯点高度 (m) 。计算过程及结果如表 12.8
(3) 柱上端弯矩 M上=V(h-y) 柱下端弯矩 M下=V·y
(4) (5) 绘弯矩图如图12.24所示
12.4 y0
表 规 时则 标框 准架 反承 弯受 点均 高布 度水 比平 荷 载 作 用
表12.5 上下层横梁线刚度比对y0的修正值y1
图12.21 横梁刚度变化对反弯点位置的影响
图12.22 层高变化对反弯点位置的ቤተ መጻሕፍቲ ባይዱ响
表12.6 上下层高变化对y0的修正值y2和y3
大家有疑问的,可以询问和交流

框架结构在水平荷载下的计算反弯点法和D值法

框架结构在水平荷载下的计算反弯点法和D值法
由此可见,反弯点法的关键是反弯点的位置 确定和柱子抗推刚度的确定。
4
1.反弯点法的假定及适用范围 ①假定框架横梁抗弯刚度为无穷大。 如果框架横梁刚度为无穷大,在水平力的作用
下,框架节点将只有侧移而没有转角。实际上,框 架横梁刚度不会是无穷大,在水平力下,节点既有 侧移又有转角。但是,当梁、柱的线刚度之比大于 3时,柱子端部的转角就很小,此时忽略节点转角 的存在,对框架内力计算影响不大。
6(ic

ic
)
u hj
j
0
B:
4(i1 i2 ic
ic )
2(i1 i2 ic
ic )

6(ic

ic
)
u hj
j
0

2
u j 2 u j
2

1 2ic
(i1

i2

i3

i4 )
hj
2 K hj
K ib 2ic
38
V 6ia 6ib 12i a b V 12i 12i
l
l
l2
l
l2


2 2K
l
代入上式, 可得 V

K 2K
12i l2

A B 则
D jk
V

12ic hj2
K 2K
,


K 2K
,
K
ib 2ic
A
a

a
b
D jk
12ic hj2
l

框架梁的线刚度无穷大时 同理可推导底层柱 D 值


1,

D值法例题详解

D值法例题详解

例题:4、已知:框架计算简图,用D值法计算内力并绘制弯矩图解:1 )求各柱的剪力值2 )求出各柱的反弯点高度 yh3)求各柱的柱端弯矩第三层M CD=12.800.41 3.3kN·m=17.32 kN·mM DC=12.800.59 3.3 kN·m =24.92 kN·mM GH=13.900.45 3.3 kN·m =20.64 kN·mM HG=13.900.55 3.3 kN·m =25.23 kN·mM LM=10.290.35 3.3 kN·m =11.88 kN·mM ML=10.290.65 3.3 kN·m =22.07 kN·m第二层M BC=34.720.50 3.3 kN·m =57.29 kN·mM FG=47.800.50 3.3 kN·m =78.87 kN·mM CB=57.29 kN·mM GH=78.87 kN·mM JL=28.480.45 3.3 kN·m =42.29 kN·mM ML=28.480.55 3.3 kN·m =51.69 kN·m 第一层M AB=56.680.55 3.9 kN·m =121.6 kN·mM EF=77.510.55 3.9 kN·m =166.3 kN·mM BA=56.680.45 3.9 kN·m =99.47 kN·mM FE=77.510.45 3.9 kN·m =136.0 kN·mM IJ=57.560.575 3.9 kN·m =129.1 kN·mM JI=57.560.425 3.9 kN·m =95.41 kN·m4)求各横梁梁端的弯矩第三层M DH= M DC=24.92 kN·mM DH=25.23 kN·m =16.45 kN·mM HM=25.23 kN·m =8.776 kN·mM MH= M ML=22.07 kN·m第二层M CG= M CD+ M CB=17.32 kN·m +57.29 kN·m =24.92 kN·mM GC=(20.64+78.87)kN·m =62.65 kN·mM GC=(20.64+78.87)kN·m =36.86 kN·mM LG= M LM+ M LJ=11.88 kN·m +51.69 kN·m =63.57 kN·m第一层M BF= M BC+ M BA=57.29 kN·m +99.47 kN·m =156.8 kN·mM FB=(136.0+78.87)kN·m =143.2 kN·mM FJ=(136.0+78.87)kN·m =71.62 kN·mM JF= M JL+ M JI=42.29 kN·m +95.41 kN·m =137.7 kN·m 5)绘各横梁与柱的弯矩图(单位:kN·m)如下图所示(注:文档可能无法思考全面,请浏览后下载,供参考。

框架结构在水平荷载下的计算反弯点法和D值法

框架结构在水平荷载下的计算反弯点法和D值法

a
A B 则 D jk V 1 h ji2 c2 2 K K ,
K,K ib 2 K 2 ic
B
b l
a
b
D jk

12 ic hj2
l

框架梁的线刚度无穷大时


1,
D

12ic hj 2
同理可推导底层柱 D 值
0.5K,Kib
2K
ic
42
(二)柱的抗侧刚度D值
2.带有夹层的柱,其抗推刚度按下式计算:
D'
1 1
1
D1D2 D1 D2
D1 D2
D D
1 2


12 i c 1
c1
h
2 1
12 i c 2
c2
h
2 2

43
计算各柱所分配的剪力:
44
(三)确定柱反弯点高度比y
上、下端约束对梁反弯点的影响
由此可见,反弯点法的关键是反弯点的位置 确定和柱子抗推刚度的确定。
4
1.反弯点法的假定及适用范围 ①假定框架横梁抗弯刚度为无穷大。 如果框架横梁刚度为无穷大,在水平力的作用
下,框架节点将只有侧移而没有转角。实际上,框 架横梁刚度不会是无穷大,在水平力下,节点既有 侧移又有转角。但是,当梁、柱的线刚度之比大于 3时,柱子端部的转角就很小,此时忽略节点转角 的存在,对框架内力计算影响不大。
77
48
0.7)5
2.1
4k N80.7kN
A
E
(3)求各柱柱端弯矩:
MDC

MCD
VDC
3.3 2
19.42k

D值法例题详解

D值法例题详解

D值法例题详解内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)例题:4、已知:框架计算简图,用D值法计算内力并绘制弯矩图解: 1 )2 )3)求各柱的柱端弯矩第三层MCD=kN·mMDC=kN·m = kN·mMGH=kN·m = kN·mMHG=kN·m = kN·mMLM=kN·m = kN·mMML=kN·m = kN·m 第二层MBC=kN·m = kN·mMFG=kN·m = kN·mMCB= kN·mMGH= kN·mMJL=kN·m = kN·mMML=kN·m = kN·m 第一层MAB=kN·m = kN·mMEF=kN·m = kN·mMBA=kN·m = kN·mMFE=kN·m = kN·mMIJ=kN·m = kN·mMJI=kN·m = kN·m 4)求各横梁梁端的弯矩第三层MDH = MDC= kN·mMDH=kN·m = kN·mMHM=kN·m = kN·mMMH = MML= kN·m第二层MCG = MCD+ MCB= kN·m + kN·m = kN·mMGC=(+)kN·m = kN·mMGC=(+)kN·m = kN·mMLG = MLM+ MLJ= kN·m + kN·m = kN·m第一层MBF = MBC+ MBA= kN·m + kN·m = kN·mMFB=(+)kN·m = kN·mMFJ=(+)kN·m = kN·mMJF = MJL+ MJI= kN·m + kN·m = kN·m5)绘各横梁与柱的弯矩图(单位:kN·m)。

框架结构在水平荷载下的计算反弯点法和D值法

框架结构在水平荷载下的计算反弯点法和D值法
M DH M DC 1.4 9k2N
MDH19 .42kN
MDC19.42kN
MGH16.67kN
DH (1.5)
G
MGC ? MGC52.04kN
MGK ?
C
G (1.7)
MGK30.56kN B
F
MGF65.93KN
(2.4)
A
E
M G K(M G H M G)F 1 .7 1 .0 1 .03.5 0k6N
18
解:作三个截面通过各柱的反弯点(一般层反反弯 点高度为1/2柱高,首层为2/3柱高),如图所示:
19
由于框架同层各柱高h相等,可直接用杆件线刚度 的相对值计算各柱的分配系数。
(1)柱的剪力 三层:
20
二层
21
首层
22
(2)柱端弯矩 三 层
23
(2)柱端弯矩 二 层
24
(2)柱端弯矩 首 层 其余计算从略。
下,框架节点将只有侧移而没有转角。实际上,框 架横梁刚度不会是无穷大,在水平力下,节点既有 侧移又有转角。但是,当梁、柱的线刚度之比大于 3时,柱子端部的转角就很小,此时忽略节点转角 的存在,对框架内力计算影响不大。
由此也可以看出,反弯点法是有一定的适用范 围的,即框架梁、柱的线刚度之比应不小于3。
5
水平荷载作用下框 架的变形情况:
当梁刚度无限 大时,水平荷载作 用下框架的变形情 况:节点转角为0, 各节点水平位移相 同。
6
②假定底层柱子的反弯点位于柱子高度的2/3 处,其余各层柱的反弯点位于柱中。
当柱子端部转角为零时,反弯点的位置应该 位于柱子高度的中间。而实际结构中,尽管梁、 柱的线刚度之比大于3,在水平力的作用下,节点 仍然存在转角,那么反弯点的位置就不在柱子中 间。尤其是底层柱子,由于柱子下端为嵌固,无 转角,当上端有转角时,反弯点必然向上移,故 底层柱子的反弯点取在2/3处。上部各层,当节点 转角接近时,柱子反弯点基本在柱子中间。

D值法

D值法

2、计算各柱分配的剪力
3、计算柱的反弯点高度 4、确定柱端弯矩,然后按结点平衡和梁的转动 刚度确定梁端弯矩。
Dik Vik Vi Dik
五、D值法与反弯点法的区别
反弯点法的基本假定是横梁刚度要比柱大得 多,因而结点只有侧移而无转角;D值法却要考 虑转角的影响。另外,反弯点法假定二层以上的 反弯点在柱高的中点,D值法要考虑结点转动引 起反弯点位置的变化。
V AB
12 K c 6ic 12 K c 2 ( ) ( ) h h h
(e )
把(d)代入(e),得
12 K c k 12 K c k VAB 2 h 2k h 2k 12 K c D VAB 2 h k 表3-1 2k
; 2、柱AB及相邻上下柱的线刚度均为KC,且它们 的弦转角均为ψ。
由结点A的平衡条件,
M
A
0 ,得,
M AB M AG M AC M AE 0(a ) M AB 2 K c (2 3 ) 6 K c ( ) M AG 2 K b 4 (2 ) 6 K b 4 M AC 2 K c (2 3 ) 6 K c ( ) M AE 2 K b 3 (2 ) 6 K b 3 6(2 K c K b 3 K b 4 ) 12 K c (2 K c K b 3 K b 4 ) 2 K c (b)
当框架横梁的线刚度为无穷大,即,则 α=1 。由此 可知, α 是考虑框架结点转动对柱侧翼刚度的影响 系数。 2、底层柱的侧移刚度
12 K c D VAB 2 h 0.5 k 2k
三、确定柱反弯点高度比
影响柱反弯点高度的主要因素是柱上下端的约 束条件。反弯点移向转角较大的一端,也就是约束 刚度较小的一端。 影响柱两端约束刚度的主要因素是∶ A、结构总层数及该层所在位置; B、梁柱线刚度比; C、荷载形式∶ D、上层以下层梁刚1 y 2 y3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D值法例题详解
WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】
例题:
4、已知:框架计算简图,用D值法计算内力并绘制弯矩图
解:1)
2 )
3)求各柱的柱端弯矩
?? 第三层
?? M CD= kN·m
?? M DC= kN·m = kN·m
?? M GH= kN·m = kN·m
?? M HG= kN·m = kN·m
?? M LM= kN·m = kN·m
?? M ML= kN·m = kN·m
?? 第二层
?? M BC= kN·m = kN·m
?? M FG= kN·m = kN·m
?? M CB= kN·m
?? M GH= kN·m
?? M JL= kN·m = kN·m
?? M ML= kN·m = kN·m
第一层
M AB= kN·m = kN·m
M EF= kN·m = kN·m
M BA= kN·m = kN·m
M FE= kN·m = kN·m
M IJ= kN·m = kN·m
M JI= kN·m = kN·m
4)求各横梁梁端的弯矩
第三层
?M DH= M DC= kN·m
?M DH= kN·m = kN·m
?M HM= kN·m = kN·m
?M MH= M ML= kN·m
?第二层
?M CG= M CD+ M CB = kN·m + kN·m = kN·m ?M GC=(+) kN·m = kN·m
M GC=(+)kN·m = kN·m
M LG= M LM+ M LJ = kN·m + kN·m = kN·m 第一层
M BF= M BC+ M BA = kN·m + kN·m = kN·m
M FB=(+)kN·m = kN·m
M FJ=(+)kN·m = kN·m
M JF= M JL+ M JI = kN·m + kN·m = kN·m 5)绘各横梁与柱的弯矩图(单位:kN·m)。

相关文档
最新文档