根据时间序列分析的股票价格短期预测与分析

合集下载

时间序列分析及其在金融领域中的应用

时间序列分析及其在金融领域中的应用

时间序列分析及其在金融领域中的应用时间序列分析是一种将时间顺序上的数据进行统计分析的方法。

在金融领域中,时间序列分析可以帮助我们理解经济周期、预测财务数据和金融市场价格走势等。

下面就来介绍时间序列分析及其在金融领域的应用。

一、时间序列分析的基本概念时间序列分析是一种以时间顺序排列的数据,通过对时间变量的观测来研究该变量的趋势、季节性等规律性变化。

常用的时间序列模型有AR模型、MA模型、ARMA模型和ARIMA模型等。

其中AR模型是自回归模型,MA模型是滑动平均模型,ARMA模型是自回归滑动平均模型,ARIMA模型则是自回归差分滑动平均模型。

二、时间序列分析在金融领域中的应用1、理解经济周期时间序列分析可以用来研究经济周期,特别是短期经济周期的变化。

通过时间序列分析,我们可以对宏观经济数据(如GDP、通货膨胀率等)进行周期性分析,从而对经济变化的趋势有所了解,甚至可以提前预测股市走势等。

2、预测财务数据时间序列分析可以应用于股票价格、货币汇率、收益率的预测等。

例如,基于时间序列分析模型可以预测某公司的未来销售额、净利润等财务数据,从而帮助企业做出合理的决策。

3、金融市场价格走势预测时间序列分析可以用于股价、债券价格、货币汇率以及商品价格的预测。

在股市中,投资者可以利用时间序列分析模型来预测股票价格的走势,从而制定战略。

4、风险管理时间序列分析还可以用于风险管理领域。

如股票价格波动率的预测就是风险管理的重点之一。

我们可以预测未来股票价格的波动率,从而在投资过程中制定合理的风险控制政策。

三、时间序列分析的局限性虽然时间序列分析在金融领域中应用广泛,但其预测的准确性并不完美。

时间序列分析可以用于短期预测和周期性分析,但对于极端事件、突发事件等无法充分预测。

同时,时间序列分析也需要考虑时间跨度、数据采集质量、数据噪声等因素,这些因素都可能对预测结果产生影响。

结语时间序列分析虽然不能100%地预测未来,但它可以提供有价值的指导意见。

基于时间序列分析的股票市场行情预测研究

基于时间序列分析的股票市场行情预测研究

基于时间序列分析的股票市场行情预测研究股票市场一直是一个充满变化和波动的市场。

在这个市场里,每个人都想知道未来的股票价格会是多少。

有很多的因素会影响股票市场,比如公司基本面、股票市场波动等等。

那么,作为股票市场参与者,我们有什么办法可以判断股票市场行情的走势呢?时间序列分析作为一种经济统计学的方法,被广泛应用于预测股票市场的走势。

本文将从什么是时间序列分析开始介绍,详细探讨如何基于时间序列分析方法进行股票市场行情预测研究。

一、什么是时间序列分析时间序列分析(Time Series Analysis)是一种通过对时间序列数据进行建模,揭示数据内在规律和趋势以及预测未来发展趋势的方法。

简单地说,时间序列分析就是利用历史数据中的规律和趋势,来预测未来的走势。

时间序列分析是一项技术含量高、应用广泛的研究领域。

时间序列分析主要采用数学和统计学的方法,包括时间序列的平稳性检验、时间序列的白噪声检验、时间序列模型的识别与估计等方法。

当然,时间序列分析还涉及到一些数据处理技术和模型验证技术等。

二、时间序列分析在股票市场行情预测中的应用时间序列分析在股票市场的应用主要在于建立股票价格和时间的关系,然后根据历史价格数据的规律和趋势,来预测未来股票价格的走势。

时间序列分析方法能够很好地模拟出股票市场的价格走势,因此在股票市场行情预测中有着广泛的应用。

在时间序列分析中,常用的模型包括自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA)。

这些模型都是基于时间序列数据建立的,其形式和特征也不一样。

从AR模型、MA模型到ARMA模型,每个模型都有着不同的应用范围和适用性。

三、时间序列分析在实际操作中的应用基于时间序列分析的股票市场行情预测方法,涉及到很多的计算和操作过程。

首先需要准备相关的股票市场数据集,这些数据包括股票价格、成交量、资金流向、财务指标等数据。

然后需要对这些数据进行预处理和清洗,去除异常值并进行数据归一化处理。

时间序列分析和预测

时间序列分析和预测

时间序列分析和预测时间序列分析和预测是一种统计学方法,用于分析和预测时间序列数据中的模式和趋势。

时间序列数据是按照时间顺序排列的一系列观测值,例如每日销售额、每月失业率、每年的GDP等。

通过对这些数据的分析和预测,我们可以获取有关未来发展的见解,并做出相应的决策。

时间序列分析的目的是寻找数据背后的模式和趋势。

这种方法可以帮助我们理解数据中的周期性、趋势和季节性。

周期性是指数据在一段时间内呈现出重复的模式,如每天的高峰销售时间。

趋势是指数据随着时间的推移呈现出持续增长或持续下降的模式,如GDP的年度增长率。

季节性是指数据在特定的时间段内呈现出规律性的波动,如圣诞节期间的销售额增加。

时间序列分析有多种方法,包括简单移动平均法、指数平滑法和自回归移动平均法(ARIMA)。

这些方法的选择取决于数据的特性和分析的目的。

简单移动平均法适用于平稳序列,即在时间的不同点上具有相似的平均值和方差。

指数平滑法则更适用于非平稳序列,它根据最近的观测值对未来的预测进行加权。

ARIMA模型可以处理既有趋势又有季节性的数据,它结合了自回归(AR)和移动平均(MA)的特性。

时间序列预测是根据历史数据预测未来数据的一种技术。

预测的目的是确定未来趋势或模式,以便做出相应的决策。

预测方法的选择取决于数据的特征和可用的历史数据。

常用的预测方法包括滑动平均法、趋势法和季节性调整法。

滑动平均法根据最近一段时间的数据计算平均值,以预测未来的趋势。

趋势法通过建立趋势方程,将历史数据与时间的函数相匹配,从而预测未来的趋势。

季节性调整法是在观测值中去除季节性成分,然后根据非季节性成分的趋势进行预测。

时间序列分析和预测在许多领域中都有广泛的应用。

在经济学中,它可以用于预测GDP、通货膨胀率和失业率等经济指标。

在金融领域,它可以用于预测股票价格、汇率变动和利率趋势。

在市场研究中,它可以用于预测消费者需求和市场份额。

在环境科学中,它可以用于预测气候变化和自然灾害。

基于时间序列分析的股票价格预测研究

基于时间序列分析的股票价格预测研究

基于时间序列分析的股票价格预测研究股票市场一直以来都是投资者密切关注的焦点,而对股票价格的准确预测能力更是投资者所追求的目标之一。

为了提高股票价格的预测准确性,许多研究学者采用了时间序列分析方法,并取得了一定的研究成果。

时间序列分析是一种研究时间相关性的统计方法,它是根据一系列按时间先后排列的观测值来揭示时间和变量之间的内在关系。

在股票价格预测方面,时间序列分析可以通过对历史股票价格数据的分析,找出相关的时间模式和趋势,进而进行未来股票价格的预测。

在进行时间序列分析之前,首先需要对股票价格数据进行收集和整理。

一般来说,可以通过金融数据提供商、证券交易所的官方网站或者股票交易平台来获取历史股票价格数据。

然后,将这些数据进行整理和清洗,确保数据的准确和完整性。

接下来,可以使用一些常用的时间序列分析方法来进行股票价格的预测。

其中,最常用的方法之一是平滑方法,它通过对历史股票价格数据进行去噪和平滑处理,得到一个平滑后的时间序列,进而进行未来股票价格的预测。

平滑方法中,移动平均法和指数平滑法是最常用的两种方法,它们都能够较好地捕捉到时间序列的趋势和季节性变化。

除了平滑方法,还可以使用自回归移动平均模型(ARMA)和自回归积分滑动平均模型(ARIMA)等方法来进行股票价格的预测。

ARMA模型是一种基于时间序列数据的统计模型,它结合了自回归和移动平均两种模型,能够很好地捕捉到时间序列数据的相关性。

而ARIMA模型则是在ARMA模型的基础上加入了积分过程,用于处理非平稳时间序列数据。

除了上述的方法,还可以使用更高级的模型如神经网络、支持向量机和隐马尔可夫模型等来进行股票价格的预测。

这些模型能够更好地处理大量非线性和非平稳的股票价格数据,从而提高预测的准确性。

然而,股票价格的预测并不是一个简单的任务。

由于股票市场的复杂性和不确定性,预测准确性往往受到各种因素的影响。

在进行股票价格预测时,需要注意以下几个方面:首先,需要考虑到市场的风险和不确定性。

《应用时间序列分析》——楚天高速股价的分析与预测

《应用时间序列分析》——楚天高速股价的分析与预测

6 5.83 5.53 6.02 6.36 6.31 6.59 6.5 6.42 6.63 6.42 6.31 6.57 63-1 2 2010-3-1 5 2010-3-1 6 2010-3-1 7 2010-3-1 8 2010-3-1 9 2010-3-2 2 2010-3-2 3 2010-3-2 4 2010-3-2 5 2010-3-2 6 2010-3-2 9 2010-3-3 0 2010-3-3 1
收盘 价 (元)
5.44 5.43 5.39 5.3 5.35 5.36 5.49 5.5 5.59 5.71 5.88 5.92 5.83 5.94
6.63 6.55 6.8 6.78 6.9 6.9 7.02 7.06 7.15 6.91 7.09 7.1 6.97 6.91
2010-4-1 2010-4-2 2010-4-6 2010-4-7 2010-4-8 2010-4-9 2010-4-1 2 2010-4-1 3 2010-4-1 4 2010-4-1 5 2010-4-1 6 2010-4-1 9 2010-4-2 0 2010-4-2 1
楚天高速股价的分析与预测
第一部分 简介
从 1608 年荷兰建立了世界上最早的证券交易所——阿姆斯特丹证券交易所,到如今证 券交易所几乎遍布全球的每一个国家,已经有 400 余年的历史。经过这 400 年的发展,证券 交易所的交易规则和交易制度不断完善, 证券交易行为不断规范, 证券交易的风险也在一定 程度上得到了控制,越来越多的人加入了证券投资者的行列,据统计,在我国,仅仅参加股 票交易的人数就超过了 5000 万,因此,证券市场的每一个波动都被广大投资者高度关注。 尽管有基本分析和技术分析的存在, 风险性仍然是证券交易过程中必然存在的。 尽管交 易所出台诸多的风险控制措施, 仍然无法改变证券市场的不可预期性。 以中国的股票市场为 例,2005 年 6 月,上证指数在创下 998.23 点的低点之后步入增长的黄金期,一路高歌猛进, 到 2007 年 10 月创下了 6124.04 点的历史最高。尽管如此,中国股民仍然无视大部分股票价 格已经被过度高估的现实,继续追高,沉醉在赚钱的梦想中。自 2007 年 11 月起,受到金融 危机影响,国内 A 股市场股价迅速下跌,上证指数一路暴挫至 2008 年 10 月的 1664.93 点。 一年时间内股市大起大落,众多股民在这个过程中损失惨重,有的甚至血本无归。 以上的实际例子说明,采用可靠的方法合理地评估证券价格未来的走势是非常重要的。 因此本报告以股票为对象,对股票价格的变动行为进行研究。 股票价格频繁剧烈的波动是股票市场最明显的特征之一。 股票价格的时间序列经常表现 出一个时期的波动明显地大于另一时期的特征。尽管有大量证据表明,短期的金融资产价格 及收益率是不可预测的。但目前人们普遍认为,使用特定的时间序列技术可成功地预测金融 资产收益率的方差。国外学者的研究结果表明 ,Bollerslev 提出的广义自回归条件异方差 (GARCH)模型和 Engle 的自回归条件异方差(ARCH)模型,在预测金融资产收益率方差方面是 最为成功的。GARCH 模型能够有效地排除资产收益中的过度峰值对建模的影响。此外, GARCH 模型还能够解决股票收益率的非对称性,即正收益与负收益不相等的问题。 本报告以楚天高速1(代码 600035)为例,选取了从 2010 年 1 月 1 日至 6 月 30 日的每 日收盘价作为时间序列, 通过建立适当的 GARCH 模型, 来分析楚天高速股价变动的特点进 而分析其收益率的变动特点,并试图对未来的股价走向作出预测。

利用时间序列分析预测股票价格

利用时间序列分析预测股票价格

利用时间序列分析预测股票价格预测股票价格是股市参与者一直以来的关注焦点之一。

通过利用时间序列分析,我们可以借助过去的股票数据,揭示股票价格的趋势和模式,并进一步预测未来股票价格的走势。

本文将介绍时间序列分析在股票价格预测中的应用,并提供几种常用的时间序列模型以及实际应用案例来支持我们的讨论。

时间序列分析是一种通过观察值随时间变化的模式来分析数据的方法。

对于股票价格预测,我们需要的数据是按时间顺序记录的股票价格。

这些价格可能显示出趋势(如上涨或下跌)、季节性变化或其他周期性模式。

我们将使用这些数据来构建模型,然后使用该模型来预测未来股票价格。

在时间序列分析中,我们将首先检查数据是否呈现趋势或季节性变化。

如果数据具有明显的趋势,我们可以使用移动平均方法或指数平滑方法来去除趋势。

移动平均方法通过计算在一段时间内的平均值来估计趋势。

指数平滑方法则更加关注最近的数据,并使用指数加权平均值来估计趋势。

这些方法都可以有效地消除趋势并揭示数据中的其他模式。

在处理季节性数据时,我们可以使用季节性分解。

这种方法将数据分解成趋势、季节性和残差三个部分。

趋势部分代表长期变化趋势,季节性部分代表短期循环变化,而残差部分则是未被趋势和季节性解释的部分。

通过分析这三个部分,我们可以更好地理解数据中的季节性模式,并使用它们来进行预测。

除了趋势和季节性模式,时间序列数据还可能包含随机波动和自相关结构。

为了捕捉这些特征,我们可以使用自回归移动平均模型(ARMA)或自回归积分移动平均模型(ARIMA)。

这些模型考虑了过去时点的观察值与当前时点观察值之间的关系,并使用这些关系来预测未来的观察值。

除了上述基本模型之外,时间序列分析还包括更复杂的模型,如季节性自回归整合移动平均模型(SARIMA),以及自回归条件异方差模型(ARCH)和广义自回归条件异方差模型(GARCH)。

这些模型考虑了数据中的非线性、异方差性和不同尺度的波动,并更准确地预测股票价格的变动。

基于时间序列模型的股票价格预测方法

基于时间序列模型的股票价格预测方法

基于时间序列模型的股票价格预测方法第一部分:引言在目前股票交易市场上,预测股票价格是投资人最关心的事情之一。

因此,对股票价格进行可靠的预测是非常重要的。

时间序列模型是预测股票价格最常用的方法之一。

时间序列模型可以通过对历史数据的分析来预测未来价格走势。

本文将重点介绍时间序列模型并探讨其在股票价格预测中的应用。

第二部分:时间序列模型的基本概念时间序列是一组随时间变化而变化的数据。

时间序列模型基于时间序列数据对未来趋势进行预测。

时间序列模型将数据分解成趋势、季节和残差三个成分,每个成分都有特定的模型。

时间序列模型的基本假设是历史价格数据可以预测未来价格走势。

时间序列模型需要考虑时间序列数据的平稳性和自相关性。

平稳数据表示数据在时间上没有任何趋势,自相关数据表示数据中存在依赖关系。

时间序列模型应用于股票价格预测中时需要对股票价格时间序列数据进行分析。

第三部分:时间序列模型的应用时间序列模型可以应用于股票价格的预测。

时间序列模型需要将股票价格时间序列数据分解成趋势、季节和残差三个成分。

趋势模型可以通过对历史数据的趋势分析来预测未来的趋势。

季节模型可以通过对历史数据的季节性分析来预测未来季节性的变化。

残差模型可以通过对历史数据的残差分析来预测未来的偏差。

AR模型和MA模型是常用的时间序列模型。

AR模型是自回归模型,该模型假设当前值与前一时刻的值相关。

AR模型的方程为:Y(t) = μ + ϕ1 * Y(t-1) + ϕ2 * Y(t-2) + ... + ϕp * Y(t-p) + ε(t)其中,Y(t)表示t时刻的价格,μ表示均值,ϕ1到ϕp表示自回归系数,ε(t)表示误差项。

MA模型是滑动平均模型,该模型假设当前值与随机误差相关。

MA模型的方程为:Y(t) = μ + ε(t) + θ1 * ε(t-1) + θ2 * ε(t-2) + ... + θq * ε(t-q)其中,Y(t)表示t时刻的价格,μ表示均值,θ1到θq表示滑动平均系数,ε(t)表示误差项。

基于时间序列模型的股票价格预测研究

基于时间序列模型的股票价格预测研究

基于时间序列模型的股票价格预测研究股票市场是波动较为明显的金融市场之一,而股票价格预测是投资者最为关心的问题之一。

在传统的股票价格预测中,常用的方法包括基本面分析、技术分析以及财务分析等,但这些方法多为主观判断和经验分析,并不能够从数据角度出发分析市场。

因此,利用时间序列模型来预测股票价格是一个有前景的研究方向。

一、时间序列模型时间序列模型是指以时间为序列的一组随机变量,由此可以推断时间之后的值,具有一定的预测能力。

时间序列模型可以被看作是信息处理的一种方式,以往的时间序列模型主要是基于ARMA模型,即自回归移动平均模型,但使用ARMA模型时因为随机性较强且受到许多外界因素的影响,导致其预测效果较为有限。

而在近年来,随着神经网络技术以及机器学习等技术的发展,新的时间序列预测模型逐渐应用,比如基于LSTM模型的预测模型等。

二、股票价格预测股票的价格变动受众多因素的影响,如市场情绪、政治事件、公司财报等等。

因此,为了更加准确地分析股票价格的走势,需要将各种因素进行有效的预测和分析。

利用时间序列的方法,可以从数据的角度出发对市场进行分析,并且可以在一定程度上消除其他外界因素对于价格变动的影响,从而可以更加精确地进行股票价格的预测。

三、时间序列模型在股票价格预测中的应用1. ARIMA模型ARIMA模型是自回归集成移动平均模型的一种扩展形式,它能够更好地处理非平稳时间序列数据。

在利用ARIMA模型对于股票价格进行预测时,数据必须满足平稳性,即时间序列的均值和方差不随时间而改变。

通过分析历史数据,ARIMA模型可以对未来股票价格进行预测。

但是,ARIMA模型对于突发性事件的响应能力不够强,因此需要结合其他模型进行分析。

2. LSTM模型长短期记忆模型(LSTM)是一种递归神经网络,能够更好地处理序列数据。

在利用LSTM模型对于股票价格进行预测时,需要输入历史数据,利用LSTM模型对于未来数据进行预测,并且LSTM模型能够更好地处理动态变化的数据,对于突发事件的响应能力相对较强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于时间序列分析的股票价格短期预测与分析姓名:王红芳数学与应用数学一班指导老师:魏友华摘要时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。

在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理方提供决策依据。

本文通过各种预测方法的对比,突出时间序列分析的优势,从时间序列的概念出发介绍了时间序列分析预测法的基础以及其简单的应用模型。

文中使用中石化股票的历史收盘价数据,运用时间序列预测法预测出中石化股票的后五个交易日的收盘价,通过对预测价格和实际价格做出对比,表明时间序列预测法的效果比较好。

关键词:时间序列;股票价格;预测The short-term stock price prediction based on time series analysisAbstract: The analysis of time series is one of the important tools for researching in the field of economy, it describes the law of historic data with the time passing by and it is also used to predict the value of economic variables. In the stock market, the forecasting method of time series is commonly used to forecast the trend of stock price, and provide evidence of decision making for investors and managements. In the thesis, through the comparison of various forecasting methods to highlight the advantages of the analysis of time series, beginning with the concept of time series, I introduce the basic of forecasting method of the analysis of time series as well as its simple application model. in the paper, I use the historic closing price data of Sinopec shares and the forecasting method of time series to predict the Sinopec shares' closing price of the last five days, and by comparison between predicting price and actual price to show the good effect of the forecasting method of time series.Keywords: Time series; Stock price; Forecast目录第1章前言 (1)1.1研究背景 (1)1.2预测基础知识 (3)1.3股票基础知识 (5)1.4股票预测方法 (6)第2章时间序列预测法 (8)2.1时间序列预测 (8)2.1.1 时间序列的概念 (8)2.1.2 时间序列分析特点 (9)2.1.3 时间序列预测法的分类 (10)2.1.4 时间序列预测法的步骤 (10)2.2时间序列预测算法 (11)2.2.1 平均数预测法 (11)2.2.2 指数平滑法 (13)2.3时间序列模型 (17)2.3.1 时间序列模型 (17)2.3.2 模型选择 (18)2.3.3 模型参数的估计 (19)第3章中石化股票价格短期预测 (21)3.1输入数据 (21)3.2数据预处理 (22)3.3选择模型 (23)3.4参数计算 (24)3.5预测 (25)结论 (26)致谢 (28)参考文献 (30)附录1 (32)附录2 (36)附录3 (37)第1章前言1.1 研究背景股票市场是经济的“晴雨表”和“报警器”,其作用不仅被政府所重视,更受到广大投资者的关注。

对股票投资者来说,未来股价变化趋势预测越准确,对利润的获取及风险的躲避就越有把握;对国家的经济发展和金融建设而言,股票预测研究同样具有重要作用。

因此对股票内在性质及预测的研究具有重大的理论意义和应用前景。

我国于1985年发行第一支股票,现已有沪、深两大交易所,上几百家证券公司,3000多个证券营业部,7000多万证券投资者。

90年代以来,计算机技术和网络技术在股票市场中得到充分应用,使得股票市场更加蓬勃发展起来,显示出强大的生命力。

然而进入21世纪后的中国股市,几乎一直在危机的状态运行。

随着时间的推移,危机正在呈现出逐步扩散的态势和日益加深的走势。

从总体上来说,中国股市现阶段的生存危机是一种复合危机,是由多种因素组合并且具有多重影响的深层制度危机。

正可谓“冰冻三尺非一日之寒”,中国股市的基本制度缺陷在长期中被忽视、被容忍、被放纵,使得市场中的消极因素日益累积、相互交织,以至于最终演化为危及股市根基的生存危机。

股票是市场经济的产物,股票的发行与交易促进了市场经济的发展。

由于股市行情受经济、政治、社会文化等因素(如发行公司的经营状况和财务状况、新股上市、利率水平、汇率变动、国际收支、物价因素、经济周期、经济政策等)的作用,其内部规律非常复杂,变化周期无序,同时我国资本市场投资者结构具有特殊性,投资者个人心理状态不同,对股票交易的行为可产生直接影响,从而导致股价波动,使股价走势变化莫测,难以把握。

相对于机构投资者而言,个人投资者风险承受能力差,专业水平低,人数众多,这对投资咨询服务的频度、强度、个性化和专业化提出了更高的要求。

股民尤其是非专业股民由于受时间、空间的限制,往往无法长期关注股市动态和发展。

所有这些都给股票预测提出了新课题。

股市预测是指以准确的调查统计资料和股市信息为依据,从股市的历史、现状和规律出发,运用科学方法,对股市未来发展前景的预测。

作为市场经济重要特征的股票市场,从诞生的那天起就牵动着数以千万投资者的心。

高风险高回报是股票市场的特征,因此股票投资者们时刻在关心股市、分析股市、试图预测股市的发展趋势。

一百年来,一些方法随着股市的产生和发展逐步完善起来,如道琼斯分析法、K线图分析法、柱状图分析法、移动平均法,还有趋势分析法、四度空间法等,随着计算机技术在证券分析领域的普及与应用,不断推出新的指标分析法。

不管是处于发展阶段还是萎靡阶段,不可否认,股票市场的发展为中国的经济体制改革注入了巨大的活力,并且成为中国经济高速成长的重要动力源泉;它的迅速发展摧毁了传统经济体制的根基,为新经济体制的建立与成长赢得了时间、开辟了空间。

股市在现代市场经济中具有不可忽视、不能轻视和无法代替的地位和作用,特别是我们这样一个处于体制转轨时期的国家与经济来说,更为如此。

没有好的股市就不可能有好的银行,没有好的银行就不可能有好的金融,没有好的金融就不可能有好的经济。

总之,股票市场作为社会主义经济的重要组成部分,为我国的经济发展发挥着重要的作用。

研究股票的预测能够指导投资者进行有益的投资,不仅可以为个人提供利润,更可以为国家经济发展做出贡献。

1.2 预测基础知识(1)预测的概念预测是根据事物发展过程的历史和现实,综合各方面的信息,运用定性和定量的科学分析方法,揭示出事物发展过程中的客观规律,并对各类事物现象之间的联系以及作用机制做出科学的分析,指出各类事物现象和过程未来发展的可能途径以及结果。

预测的过程是从过去和现在已知的情况出发,利用一定的方法或技术去探测或模拟不可知的、未出现的、复杂的中间过程,推断出结果。

预测研究的是事物的未来,而未来之所以会使人们感兴趣,是因为与人们目前的行动有密切的联系。

(2)预测的可能性由于是对未来未知事物发展的推测,要进行准确预测是很不容易的。

股票价格预测尤为如此且不说我国股市自身发展的特殊性,单从股市本身的变幻莫测来说,面对瀚如烟海的数据、众说纷纭的信息,就让人们茫然失措。

那么,这是否意味着我国股市的不可预测?答案是否定的。

正如恩格斯所指出的:在表面上是偶然性在起作用的地方,这种偶然性始终是受内部的隐蔽的规律支配的,而问题只在于发现这些规律。

预测研究的任务,就在于透过事物的现象探讨其内在规律,并利用这些规律来为人们服务。

(3)预测方法和种类预测科学应用于不同领域,则分别形成各具特色的预则技术。

在经济领域的应用,形成经济预测技术;在人口领域的应用,形成人口预测与控制技术等等。

预测技术的丰富和发展促进着预测方法体系的完善。

目前各种领域的预测方法已近三百种,但大部分方法专业限制严格,有些方法还处于试验研究阶段,真正在实际中广泛应用的大约只有一二十种如回归分析法、时间序列方法、投入产出法、马尔科夫法、德尔菲法等。

根据预测目标和特征的不同,以及预测用户的需求的不同,可以把预测划分为不同的种类。

根据预测的目标的不同,可以分为事件结果预测、事件发生时间预测;根据预测的基本特征的不同,一般可以分为定性预测和定量预测;根据预测用户的需求不同,可分为点预测、区间预测和密度预测。

(4)预测的步骤预测要遵循一定的科学程序或者步骤,预测的基本步骤归纳起来有如下几步:○1确定预测目标和预测期限。

不论是宏观预测,还是微观预测,确定预测目标和预测期限是进行预测工作的前提。

○2确定预测因子。

根据确定的预测目标,选择可能与预测目标相关或者有一定影响的预测因素。

○3进行市场调查,收集各因素的历史和现状的信息、数据、资料,并加以整理、综合和分析。

○4选择合适的预测方法。

有的预测目标,可同时使用多种预测方法独立的进行预测,也可以把几种独立的方法综合起来进行组合预测。

然后对各预测值分别进行评估和判断,选择合适的预测值。

○5对预测的结果进行分析和评估。

如预测误差是正偏还是负偏,相对误差与绝对误差的大小、范围等等。

○6指出根据最新的经济动态和新来到的经济信息或者数据,看能否重新调整原来的预测值,以期提高预测的精度。

1.3 股票基础知识(1)股票价格指数股票价格指数既是人们常说的指数。

是由证券交易所或金融服务机构编制的表明股票行市变动的一种供参考的指示数字。

由于股票价格起伏无常,投资者必然面临市场价格风险。

相关文档
最新文档