高中数学必修二直线与方程及圆与方程测试题
(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分)1. 已知直线经过点A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点 ( 1,3) 且平行于直线 x2 y3 0 的直线方程为()A . x 2y7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线y ax 与 yx a 正确的是()yyyyOxOxOxO xABCD4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则a=()A .2B .2 C .33332D .(25.过 (x , y )和 (x , y )两点的直线的方程是)11 22A. yy 1 x x 1 y 2y 1 x 2 x 1 B.yy 1 x x 1 y 2 y 1x 1 x 2C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0D.( x 2x 1)( x x 1) ( y 2 y 1 )( yy 1 ) 06、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则()A 、 K ﹤ K ﹤ KL 3123LB 、 K ﹤ K ﹤ K2 1 3C 、 K 3﹤ K 2﹤ K 1oxD 、 K 1﹤K 3﹤ K 2L 17、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( )A 、 3x+2y-5=0B 、 2x-3y-5=0C 、 3x+2y+5=0D 、 3x-2y-5=08、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0A.a=2,b=5;B.a=2,b= 5 ;C.a= 2 ,b=5;D.a= 2 ,b= 5 .10、直线 2x-y=7 与直线 3x+2y-7=0 的交点是()A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点 P(4,-1)且与直线 3x-4y+6=0垂直的直线方程是()A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20 分,每题 5 分)12.过点(1,2)且在两坐标轴上的截距相等的直线的方程_ __________;13 两直线 2x+3y- k=0 和 x- ky+12=0 的交点在y 轴上,则k 的值是14、两平行直线x 3y 4 0与 2x 6 y 9 0 的距离是。
高中数学必修二直线和圆的方程复习练习试题及答案(可编辑修改word版)

5一、 选择题(每题 3 分,共 54 分)1、在直角坐标系中,直线 x +3y - 3 = 0 的倾斜角是()5 2 A .B .C .D .6 3632、若圆 C 与圆(x + 2)2+ ( y - 1)2 = 1 关于原点对称,则圆 C 的方程是()A . (x - 2)2+ ( y + 1)2 = 1 B . (x - 2)2+ ( y - 1)2 = 1C . (x - 1)2+ ( y + 2)2 = 1D . (x + 1)2+ ( y - 2)2 = 13、直线 ax + by + c = 0 同时要经过第一、第二、第四象限,则 a 、b 、c 应满足( )A . ab > 0, b c < 0B . ab > 0, b c < 0C . ab > 0, b c > 0D . ab < 0, b c < 04、已知直线l 1 : y = 1 x + 2 ,直线l 2 21 过点 P (-2,1) ,且l 1 3到l 2的夹角为 45 ,则直线l 2的方程是( ) A. y = x - 1 B. y = x + 3 5C . y = -3x + 7D . y = 3x + 75、不等式 2x - y - 6 > 0 表示的平面区域在直线 2x - y - 6 = 0 的( )A .左上方B .右上方C .左下方D .左下方6、直线3x - 4 y - 9 = 0 与圆 x 2+ y 2= 4 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线 ax + by + c = 0(abc ≠ 0) 与圆 x 2+ y 2= 1相切,则三条边长分别为 a 、b 、c 的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点(-1,1)和(3,9) 的直线在 x 轴上的截距是() A.- 32B.- 2 32 C.D .259、点(0,5) 到直线 y = 2x 的距离为()5 3 A .B .C .D .22210、下列命题中,正确的是()A .点(0,0) 在区域 x + y ≥ 0 内B .点(0,0) 在区域 x + y + 1 < 0 内C .点(1,0) 在区域 y > 2x 内D .点(0,1) 在区域 x - y + 1 < 0 内二、填空题(每题 3 分,共 15 分)19、以点 (1,3)和(5,-1) 为端点的线段的中垂线的方程是5⎧b + 3 =a + 3b 4 20、过点 (3,4)且与直线3x - y + 2 = 0 平行的直线的方程是21、直线3x - 2 y + 6 = 0在x 、y 轴上的截距分别为k 22、三点(2,- 3),(4,3)及(5, ) 在同一条直线上,则 k 的值等于223、若方程 x 2+ y 2- 2x + 4 y + 1 + a = 0 表示的曲线是一个圆,则 a 的取值范围是三、解答题(第 24、25 两题每题 7 分,第 26 题 8 分,第 27 题 9 分,共 31 分) 24、若圆经过点 A (2,0), B (4,0), C (0,2) ,求这个圆的方程。
必修2---直线与圆

《直线与方程》练习题一、选择题1、若直线1=x 的倾斜角为α,则=α( )A 、ο0B 、ο45C 、ο90D 、不存在2、经过两点)3,2(),12,4(-+B y A 的直线的倾斜角为ο135,则y 的值等于( )A 、1-B 、3-C 、0D 、23、过点(1-,4)作直线l 使点M (1,2)到直线l 距离最大,则直线l 的方程为( )A 、03=-+y xB 、05=++y xC 、01=+-y xD 、05=+-y x4、如果0<ac 且0<bc ,那么直线0=++c by ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限5、经过点A (1,2),且在两坐标轴上的截距相等的直线共有( )A 、1条B 、2条C 、3条D 、4条6、已知直线012)4()4(2=++++--m y m x m m 的倾斜角为ο135,则m 的值是( )A 、2-或4B 、4-或2C 、4或0D 、0或2-7、直线l 与直线0632=-+y x 关于点)1,1(-对称,则直线l 的方程是( )A 、0223=+-y xB 、0732=++y xC 、01223=--y xD 、0832=++y x8、方程2240x y -=表示的图形是( )A 、两条相交而不垂直的直线B 、一个点C 、两条垂直直线D 、两条平行直线9、下列说法正确的是A 、 若直线1l 与2l 的斜率相等,则1l ∥2l ;B 、若直线1l ∥2l ,则1l 与2l 的斜率相等;C 、若一条直线的斜率存在,另一条直线的斜率不存在,则它们一定相交;D 、若直线1l 与2l 的斜率都不存在,则1l ∥2l10、到直线0143=+-y x 的距离为3,且与此直线平行的直线方程为 ( )A 、0443=+-y xB 、02430443=--=+-y x y x 或C 、01643=+-y xD 、0144301643=--=+-y x y x 或11、若直线y x k =+与曲线21y x -=恰有一个公共点,则k 的取值范围是( )A 、;2±=kB 、;22-≤≥k k 或C 、;22<<-kD 、;112≤<--=k k 或12、若直线0ax by c ++=过第一、二、三象限,则a 、b 、c 应满足的条件是A、0,0ab bc >> B 、0,0ab bc <> C 、 0,0ab bc >< D 、0,0ab bc <<二、填空题13、如果直线l 与直线x +y -1=0关于y 轴对称,则直线l 的方程是 。
高中数学必修二直线和圆的方程复习练习试题及答案

1、已知圆2522=+y x ,求:(1)过点A (4,-3)的切线方程(2)过点B (-5,2)的切线方程。
2、求直线01543=-+y x 被圆2522=+y x 所截得的弦长。
3、实数y x ,满足)0(422≥=+y y x ,试求y x m +=3的取值范围。
4、已知实数y x ,满足01422=+-+x y x(1)求xy的最大值和最小值;(2)求x y -的最大值和最小值; (3)求22y x +的最大值和最小值。
1、在直角坐标系中,直线033=-+y x 的倾斜角是()A .6πB .3π C .65π D .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y x D .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab 5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为cb a 、、的三角形()A .是锐角三角形 B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是() A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25 B .5C .23D .2511、由点)3,1(P 引圆922=+y x的切线的长是 ()A .2B .19 C .1 D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是 ()A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-16、由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43πD .23π17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y x D .21)23(22=++y x19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 25、求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程。
高中数学必修2第四章直线与圆方程单元测试

直线与圆的方程单元测试题一、选择题(本大题共12小题,每小题5分,共60分)。
1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )。
A 30° B 45° C 60° D 90°2.方程x 2+y 2+2a x-by+c=0表示圆心为C (2,2),半径为2的圆,则a ,c b ,的值 依次为( )。
A .2、4、4;B 。
-2、4、4;C 。
2、-4、4;D 。
2、-4、-43. 如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x(C) )2(222±≠=+x y x (D) )2(422±≠=+x y x5. 点M(4,m )关于点N(n,-3)的对称点为P(6,-9),则( )A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =56.自点1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ) (A) 5 (B) 3 (C) 10 (D) 57. 设c b a ,,分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +a y +c =0 与直线bx -y sin B +sin C =0的位置关系( )(A )平行; (B )重合; (C )垂直; (D )相交但不垂直8.M (x 0,y 0)为圆x 2+y 2=a 2(a >0)内异于圆心的一点,则直线x 0x+y 0y=a 2与该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交9.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )。
高中数学必修二直线和圆的方程复习练习试题及答案

一、选择题(每题3分,共54分)1、在直角坐标系中,直线033yx 的倾斜角是()A .6B .3C .65D .322、若圆C 与圆1)1()2(22y x 关于原点对称,则圆C 的方程是()A .1)1()2(22y x B .1)1()2(22y x C .1)2()1(22yx D .1)2()1(22yx 3、直线0cbyax 同时要经过第一、第二、第四象限,则c b a 、、应满足()A .0,0bc abB .0,0bcab C .0,0bcabD .,0bc ab 4、已知直线221:1xy l ,直线2l 过点)1,2(P ,且1l 到2l 的夹角为45,则直线2l 的方程是()A .1x y B .5331xyC .73x y D .73xy 5、不等式062yx表示的平面区域在直线062yx 的()A .左上方B .右上方C .左下方D .左下方6、直线0943y x 与圆422yx的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0abc c by ax 与圆122yx 相切,则三条边长分别为c b a 、、的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和的直线在x 轴上的截距是()A .23B .32C .52D .29、点)5,0(到直线x y 2的距离为()A .25B .5C .23D .2510、下列命题中,正确的是( )A .点)0,0(在区域0y x 内B .点)0,0(在区域01y x内C .点)0,1(在区域x y2内D .点)1,0(在区域01yx 内二、填空题(每题3分,共15分)19、以点)1,5()3,1(和为端点的线段的中垂线的方程是20、过点023)4,3(y x 且与直线平行的直线的方程是21、直线y x yx、在0623轴上的截距分别为22、三点)2,5()3,4(32k及),,(在同一条直线上,则k 的值等于23、若方程014222a y x yx表示的曲线是一个圆,则a 的取值范围是三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分)24、若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程。
(完整版)必修2第四章圆与方程测试题

A. x y 2 0
B. x y 1 0
C. x y 1 0
D. x y 2 0
6.关于空间直角坐标系 O xyz中的一点 P(1,2,3) 有下列说法:
①点 P 到坐标原点的距离为
13 ;② OP 的中点坐标为 ( 1 ,1, 3 ) ; 22
③与点 P 关于 x 轴对称的点的坐标为 ( 1, 2, 3) ;
4
21. (12 分) 已知圆 C : x 2 y 2 4x 14 y 45 0 及点 Q( 2,3) ,
(1) 若点 P( m, m 1) 在圆 C 上,求 PQ 的斜率; (2) 若点 M 是圆 C 上任意一点,求 | MQ | 的最大值、最小值;
(3) 若 N ( a, b) 满足关系: a2
④与点 P 关于坐标原点对称的点的坐标为 (1,2, 3) ;
⑤与点 P 关于坐标平面 xOy 对称的点的坐标为 (1,2, 3) ,其中正确的个数是 ( )
1
A.2 C. 4
B.3 D.5
7.已知点 M (a,b) 在圆 O : x2 y 2 1 外,则直线 ax by 1与圆 O 的位置关系是 ( )
12
2
13 C. ( , ]
34
53 D. ( , ]
12 4
二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 ) 13.圆 x2 y 2 1 上的点到直线 3x 4 y 25 0 的距离最小值为 ____________.
14.圆心为 (1,1) 且与直线 x y 4 相切的圆的方程是 ________.
A . ( x 3) 2 y 2 4
B. ( x 3) 2 y 2 1
C. ( 2x 3) 2 4 y 2 1
高中数学必修二直线和圆练习含答案

高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )A.2条B.3条C.4条D.以上均错6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )A.1、-1B.2、-2C.1D.-18.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22-C.12-D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3.与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x2+y2-4x+6y-12=0的内部有一点A(4,-2),则以A为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A-并且和两个坐标轴围成的三角形的面积是1的直线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一选择题(共55分,每题5分)1. 已知直线经过点A (0,4)和点B(1,2),则直线AB 的斜率为( )A.3 B.-2 C . 2 D . 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.072=+-y x B.012=-+y x C.250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( ) A .32-B .32 C.23- D .235.过(x 1,y 1)和(x2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L2、L 3的斜率分别为A 、K 1﹤K2﹤K 3B、K2﹤K1﹤K 3C 、K 3﹤K 2﹤K1D 、K 1﹤K 3﹤K 27、直线2x +3y -5=0关于直线y=x A、3x+2y-5=0 B、2x-3y -5=0 C 、3x+2y +5=0 D、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0 B.2x+3y+7=0 C. 3x -2y -12=0 D. 2x+3y+8=09、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )xA.a=2,b=5; B.a=2,b=5-; C .a=2-,b=5; D .a =2-,b =5-.10、直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1)11、过点P(4,-1)且与直线3x -4y +6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y -8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ __________;13两直线2x +3y -k=0和x -ky+12=0的交点在y轴上,则k的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。
15空间两点M1(-1,0,3),M 2(0,4,-1)间的距离是三计算题(共71分)16、(15分)已知三角形ABC 的顶点坐标为A(-1,5)、B (-2,-1)、C(4,3),M是B C边上的中点。
(1)求AB 边所在的直线方程;(2)求中线AM的长(3)求AB 边的高所在直线方程。
17、(12分)求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程。
18.(12分) 直线062=++y m x 与直线023)2(=++-m my x m 没有公共点,求实数m 的值。
19.(16分)求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且分别与直线012=--y x (1)平行,(2)垂直的直线方程。
20、(16分)过点(2,3)的直线L 被两平行直线L1:2x-5y+9=0与 L 2:2x -5y -7=0所截线段AB的中点恰在直线x-4y-1=0上,求直线L 的方程高中数学必修二 第三章直线方程测试题答案1-5 BACAC 6-10 AADBA 11 A 12.y=2x 或x+y-3=0 13.±614、201016、解:(1)由两点式写方程得121515+-+=---x y ,……………………3分 即 6x -y+11=0……………………………………………………4分或 直线AB 的斜率为 616)1(251=--=-----=k ……………………………1直线AB的方程为 )1(65+=-x y ………………………………………3分即 6x -y+11=0…………………………………………………………………4分 (2)设M 的坐标为(00,y x ),则由中点坐标公式得1231,124200=+-==+-=y x 故M(1,1)………………………6分 52)51()11(22=-++=AM …………………………………………8分(3)因为直线AB 的斜率为k A B=51632+=--+········(3分)设AB 边的高所在直线的斜率为k则有1(6)16AB k k k k ⨯=⨯-=-∴=··········(6分) 所以AB 边高所在直线方程为13(4)61406y x x y -=--+=即········(10分) 17.解:设直线方程为1x y a b +=则有题意知有1342ab ab =∴=又有①314(a b b b -===-则有或舍去)此时4a =直线方程为x+4y-4=0 ②341440b a b a x y -===+-=则有或-1(舍去)此时直线方程为 18.方法(1)解:由题意知260(2)320x m y m x my m m ⎧++=⎨-++=⎩⇒∴23232即有(2m -m +3m)y=4m-12因为两直线没有交点,所以方程没有实根,所以2m -m +3m =0(2m-m +3)=0m=0或m=-1或m=3当m=3时两直线重合,不合题意,所以m=0或m=-1方法(2)由已知,题设中两直线平行,当2222322303116132316m m m m mm m m m mm m m m m --≠≠==-≠≠±=-时,=由=得或由得所以当m=0时两直线方程分别为x+6=0,-2x=0,即x=-6,x=0,两直线也没有公共点, 综合以上知,当m=-1或m=0时两直线没有公共点。
19解:由⎩⎨⎧=+-=-+0204y x y x ,得⎩⎨⎧==31y x ; (2)∴1l 与2l 的交点为(1,3)。
…………………………………………………….3′ (1) 设与直线012=--y x 平行的直线为02=+-c y x ………………4′ 则032=+-c ,∴c=1。
…………………………………………………..6′ ∴所求直线方程为012=+-y x 。
…………………………………………7′ 方法2:∵所求直线的斜率2=k ,且经过点(1,3),…………………..5′ ∴求直线的方程为)1(23-=-x y ,……………………….. …………..…6′ 即012=+-y x 。
………………………………………….….. ……………7′ (2) 设与直线012=--y x 垂直的直线为02=++c y x ………………8′ 则0321=+⨯+c ,∴c=-7。
…………………………………………….9′ ∴所求直线方程为072=-+y x 。
……………………………………..…10′ 方法2:∵所求直线的斜率21-=k ,且经过点(1,3),………………..8′ ∴求直线的方程为)1(213--=-x y ,……………………….. ………….9′ 即072=-+y x 。
………………………………………….….. ……….10′20、解:设线段AB的中点P 的坐标(a,b ),由P到L1,、L 2的距离相等,得⎣⎦=++-2252952b a ⎣⎦2252752+--b a经整理得,0152=+-b a ,又点P 在直线x -4y-1=0上,所以014=--b a解方程组⎩⎨⎧=--=+-0140152b a b a 得⎩⎨⎧-=-=13b a 即点P的坐标(-3,-1),又直线L 过点(2,3)所以直线L的方程为)3(2)3()1(3)1(----=----x y ,即0754=+-y x一、选择题1. 圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A. 22(2)5x y -+= ﻩﻩﻩ B.22(2)5x y +-= C.22(2)(2)5x y +++=ﻩﻩD.22(2)5x y ++= 2. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B . 032=-+y x C. 01=-+y x ﻩD. 052=--y x3. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A. 2 B. 21+ C.221+D. 221+4. 将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( )A. 37-或ﻩ B . 2-或8ﻩ C. 0或10 ﻩ D. 1或115. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )A. 1条 B. 2条 C. 3条 D. 4条6. 圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A. 023=-+y x B. 043=-+y xC.043=+-y x D. 023=+-y x二、填空题1. 若经过点(1,0)P -的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 . .2. 由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方为 .3. 圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程 为 .4. 已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ⋅的值为________________.5. 已知P 是直线0843=++y x 上的动点,,PA PB 是圆012222=+--+y x y x 的切线,,A B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________________. 三、解答题 1. 点(),P a b 在直线01=++y x 上,求22222+--+b a b a 的最小值.2. 求以(1,2),(5,6)A B --为直径两端点的圆的方程.3. 求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程.4. 已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为72,求圆C 的方程.高中数学必修二 圆与方程练习题答案一、选择题1. A (,)x y 关于原点(0,0)P 得(,)x y --,则得22(2)()5x y -++-= 2. A 设圆心为(1,0)C ,则,1,1,12CP AB AB CP k k y x ⊥=-=+=-3. B 圆心为max (1,1),1,21C r d ==4. A 直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=圆22240x y x y ++-=的圆心为2(1,2),5,5,3,75C r d λλλ-+-====-=或5. B 两圆相交,外公切线有两条6. D2224x y -+=()的在点)3,1(P 处的切线方程为(12)(2)34x y --+= 二、填空题1. 1 点(1,0)P -在圆032422=+-++y x y x 上,即切线为10x y -+= 2.224x y += 2OP = 3.22(2)(3)5x y -++= 圆心既在线段AB 的垂直平分线即3y =-,又在 270x y --=上,即圆心为(2,3)-,5r =4. 5 设切线为OT ,则25OP OQ OT ⋅==5. 22 当CP 垂直于已知直线时,四边形PACB 的面积最小 三、解答题1. 22(1)(1)a b -+-(1,1)到直线01=++y x 的距离而3222d ==,22min 32222)a b a b +--+=.2. 解:(1)(5)(2)(6)0x x y y +-+-+=得2244170x y x y +-+-= 3. 解:圆心显然在线段AB 的垂直平分线6y =上,设圆心为(,6)a ,半径为r ,则222()(6)x a y r -+-=,得222(1)(106)a r -+-=,而r =22(13)(1)16,3,5a a a r --+===22(3)(6)20x y ∴-+-=.4. 解:设圆心为(3,),t t 半径为3r t=,令d ==而22222,927,1r d t t t =--==± 22(3)(1)9x y ∴-+-=,或22(3)(1)9x y +++=。