全等三角形题型总结

合集下载

全等三角形题型归纳(经典完整)

全等三角形题型归纳(经典完整)

1/3一,证明边或角相等(一)方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。

求证:HB=HC 。

2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .二.证明线段和差问题(形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。

①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。

②AEDC B654321E D CBAFGE DCBAFMNE 12342/3EDCBA 补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。

证明两条线段差等于另一条线段,只需把差化成和来解决即可。

1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2,MN BN =12)1. 利用含30角的直角三角形的性质证明 例1.已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE、BD 交于点N ,过B 作BM AE⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法 例5.P E D CBAFE DCB A3/3已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:ADAB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BD CBA。

全等三角形重点题型(供参考)

全等三角形重点题型(供参考)

全等三角形知识点总结知识点总结一、全等图形、全等三角形:1.全等图形:能够完全的两个图形确实是全等图形。

2.全等图形的性质:全等多边形的、别离相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角别离相等。

一样,若是两个三角形的边、角别离对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

那个地址要注意:(1)周长相等的两个三角形,不必然全等;(2)面积相等的两个三角形,也不必然全等。

二、全等三角形的判定:1.一样三角形全等的判定(1)三边对应相等的两个三角形全等(“边边边”或“”)。

(2)两边和它们的夹角对应相等的两个三角形全等(“边角边”或“”)。

(3)两个角和它们的夹边别离对应相等的两个三角形全等(“角边角”或“”)。

(4)有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“”)。

2.直角三角形全等的判定利用一样三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不必然全等。

3.性质一、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形相等。

(以上可以简称:全等三角形的对应元素相等)三、角平分线的性质及判定:性质定理:角平分线上的点到该角两边的距离相等。

判定定理:到角的两边距离相等的点在该角的角平分线上。

四、证明两三角形全等或利用它证明线段或角相等的大体方式步骤:1.确信已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回忆三角形判定公理,弄清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

初二数学第十二章全等三角形详细知识点及题型总结

初二数学第十二章全等三角形详细知识点及题型总结

第十二章全等三角形第一讲全等三角形性质图形全等:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即...................................平移、翻折、旋转前后的图形全等。

“全等”用.....................≅表示,读作“全等于”..........全等三角形的定义:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如∆和全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作DEF ABC∆DEF∆。

ABC∆≅把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

........................例1.已知:如图,AB=AD,AC=AE,BC=DE,∠EAC=300,则∠DAB的大小为例2.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.例3.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:4课堂练习:∆的是( )1.根据下列条件,能画出唯一ABCA. AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=300C. ∠C=600,∠B=450,AB=4D.∠C=900,AB=62.如图∠1=∠2=200,AD=AB,∠D=∠B,E在线段BC上,则∠AEC=()A.200B.700C.500D.8003.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF4.如图,△BCD≌△CBE,BC=6,CE=5,BE=4,则CD的长是()A.4 B.5 C.6 D.无法确定5.已知图中的两个三角形全等,则∠ 度数是()A.72°B.60°C.58°D.50°6.如图,将Rt△ABC(其中∠B=340,∠C=900)绕A点按顺时针方向旋转到△AB1 C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()A.560B.680C.1240D.18007.如图,△ABE≌△ACD,∠B=50°,∠AEB=60°,则∠DAC的度数等于()A.120° B.70° C.60° D.50°8.若两个三角形的面积相等 , 则这两个三角形________全等.9.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_______.10.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:______,对应角:_________.11.如图,△ABO≌△CDO,OA=2,AB=4,BO=3,则DC= ,OC= ,OD= .12.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=320,∠A=680,AB=13cm,则∠F=______度,DE=______cm.13.已知△ABC≌△DEF,∠A=52°,∠B=67°BC=15cm则∠F=_____,FE=_____cm.14.如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P/AC,则∠PAP/的度数为________.15.将一张正方形纸片按如图的方式折叠,BC,BD为折痕,则∠CBD的大小为_________16.如图所示,,BC 的延长线交DA 于F ,交DE 于G ,,,,则的度数为17.观察图中每一个大三角形中白色三角形的排列规律,则第n 个大三角形中白色三角形有 个 .18.如图,把△ABC 绕点C 顺时针旋转350,得到△A /B /C, A /B /交AC 乎点D ,已知∠A /DC=90°,求∠A 的度数.19.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?ABC ADE △≌△105ACB AED ∠=∠=15CAD ∠=30B D ∠=∠=1∠课后练习:1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )A .①②③④B .①③④C .①②④D .②③④2.下列说法错误的有( )①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个3.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°4.如果D 是中BC 边上一点,并且,则是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个6.如图,△OAB 绕点O 逆时针旋转800到△OCD 的位置,已知∠AOB=450,则∠AOD ( )A.550B.450C.400D.3507.如图,△ABE ≌△ACD,AB=AC,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC 的度数等于( )A.120°B.70°C.60°D.50°8.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°9.如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( ) A. △ADC B. △BDC ´ C. △ADC ´ D. 不存在6.如图,已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE=ABC △ADB ADC △≌△ABC△7.如图,△ABD≌△ACE,则AB的对应边是_______,∠BAD的对应角是______.8.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=______.9.如图:△ABC≌△DCB,AB和DC是对应边,∠A和∠D是对应角,则其它对应边是______________,对应角是____________________.10.已知:如图,△ABC≌△DEF,BC∥EF,∠A=∠D,BC=EF,则另外两组对应边是____,另外两组对应角是____.11.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.12.如图所示,△ABD≌△ACE,点B和点C是对应顶点,AB=8,BD=7,AD=6,则BE的长是___13.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=______度.14.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为15.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=480,则∠APD等于16.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=____17.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.能力提高:1.长为L 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值范围为( ) A.64l l x ≤< B.84l l x ≤< C.64l l x << D.84l l x << 2.已知△ABC ≌△A ′B ′C ′,△ABC 的三边为3、m 、n ,△A ′B ′C ′的三边为5、p 、q ,若△ABC 的各边都是整数,则m+n+p+q 的最大值为__________3.如图,△ABC ≌△ADE ,∠DAC=60°,∠BAE=100°,BC 、DE 相交于点F ,则∠DFB 的度数是4.下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.AB C D E F5.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a 的度数为6.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN= cm, NM= cm, ∠NAB= .7.如图所示,△ABC 绕顶点A 顺时针旋转,若∠B =40°,∠C =30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A 在同一直线上?(原△ABC 是指开始位置)(2)再继续旋转多少度时,点C 、A 、C'在同一直线上?8.如图, 在ABCD中, 将△ABE沿BE翻折, 点A落在CD边上, 成为点F, 如果△DEF和△BCF的周长分别是8cm和22cm, 求FC的长度。

全等三角形的常见题型

全等三角形的常见题型

全等三角形的常见题型一、全等三角形的性质:1、如图,△ABC ≌△ADE ,则,AB= .若∠BAE=120°,∠BAD=40°,则∠BAC= °.2、如图,△ECD ≌△BCA ,AC ⊥BD 于C ,AB=5 cm ,∠B=60°,则DE= 。

3、已知,如图ΔABE ≌ΔACD ,AB=AC ,BE=CD ,∠B=50°,∠AEC=120°,则∠DAC 的度数为( )A. 120°B. 70°C. 60°D.50°4、如图,ΔABC ≌ΔADE ,AB=AD , AC=AE ,∠B=28º,∠E=95º,∠EAB=20º, 则∠BAD 为( )A.75ºB. 57ºC. 55ºD. 77º5、如图,ΔABC ≌ΔBAD ,A 和B ,C 和D 是对应顶点,如果AB=6cm ,BD=5cm ,AD=4cm ,那么BC 等于( )A .6cm B.5cm C.4cm D.5cm 或4cm6、如图, ΔABC ≌ΔADE,AB 和AD,AC 和AE 是对应边,那么∠DAC 等于 A.∠ACB B.∠CAE C.∠BAE D.∠BAC7、已知图2中的两个三角形全等,则∠ 度数是( )A.72°B.60°C.58°D.50° 8、如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( ) (A)40°. (B)30°. (C)20°. (D)10°.9、如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为A .80°B .100°C .60°D .45°.A 'B DAC ABCDEADEBCABCDCBAED10、如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF.⑴在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置;⑵线段BE与DF有什么关系?证明你的结论.二、全等三角形判定SSSC DB CDD如图,已知点E C,在线段BF上,BE=CF,AB=DE,AC=DF.求证:ABC DEF△≌△.如图,A C=B D,CB=A D.求证:∠BAD=∠ABC.已知:如图,AD=BC,AC=BD.求证:OD=OCCEB FDAOD CAADBFECA BCFECA BDE三、全等三角形判定SAS已知AD AE AB AC ==,.试说明:B C =∠∠;(江津区)如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证: △ABC ≌△AED ;如图,△ABC 中,∠C=90度,AC=BC ,D 为AB 中点,AE=CF , 求证:DE=DF ,四边形CEDF 面积为定值在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.O C EBD A FE D CB AA BC D E①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.(2009年重庆)如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论: ①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4;④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8. 其中正确的结论是( ) A .①②③ B .①④⑤ C .①③④ D .③④⑤A EEA C C DB B 图1 图2 A A 备用图 BC B C备用图 AE CF BD图1图3ADFECBADBCE 图2F如图,扇形ODE 的圆心角为120,正三角形ABC 的中心恰好为扇形ODE 的圆心,且点B 在扇形ODE 内.(1)请连接OA OB 、,并证明AOF BOG △≌△;(2)求证:ABC △与扇形ODE 重叠部分的面积等于ABC △面积的13.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。

全等三角形经典题型整理

全等三角形经典题型整理

1. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE= 2. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。

3. 如图,AD=BD ,A D ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?4. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:B E ⊥AC5. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD (2)CM=CN(3)△CMN 为等边三角形 (4)MN ∥BC6. 已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN于点F(1) 求证:AN=BM(2) 求证:△CEF 为等边三角形(3) 将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)。

7. 如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD ;②BF=BG ;③BH 平分∠AHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有( ) A .3个 B. 4个 C. 5个 D. 6个 8. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CEB B A B C图1A 图2MA G ⊥AF9. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 求证:(1)AD=AG(2) AD 与AG 的位置关系如何10. 如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF11. 已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD求证:(1)△BDE ≌△CDF(2) 点D 在∠A 的平分线上12. 在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E (1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN 绕点C 旋转到图③的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系。

全等三角形题型归类及解析汇报

全等三角形题型归类及解析汇报

全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。

另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。

1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。

(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。

.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。

8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。

全等三角形经典题型汇集(培优专练)

全等三角形经典题型汇集(培优专练)


(2)如图 2,当点 E,F 分别在 CB,DC 的延长线上,CF=2 时,求△CEF 的周长;
拓展提升:
如图 3,在 Rt△ABC 中,∠ACB=90°,CA=CB,过点 B 作 BD⊥BC,连接 AD,在 BC 的延长线上取一 点 E,使∠EDA=30°,连接 AE,当 BD=2,∠EAD=45°时,请直接写出线段 CE 的长度.
7.阅读下面材料:
小炎遇到这样一个问题:如图 1,点 E、F 分别在正方形 ABCD 的边 BC,CD 上,∠EAF=45°,连结 EF,则 EF=BE+DF, 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将 这些分散的线段相对集中.她先后尝试了翻折、旋转、平 移的方法,最后发现线段 AB,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着 点 A 逆时针旋转 90°得到△ADG,再利用全等的知识解决了这个问题(如图 2).
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
3.如图,分别以 ABC 的边向外作正方形 ABFG 和 ACDE,连接 EG,若 O 为 EG 的中点,
求证:(1) AO 1 BC ;(2) AO BC . 2
4.如图所示,已知 ⶠࢼ 中, 平分 ⶠ ࢼ, 、 分别在 ⶠ 、 上.
ࢼ,
ࢼ.求证: ∥ ⶠ.
5.如图所示, ⶠ ࢼ

初中数学全等三角形题型汇总

初中数学全等三角形题型汇总

初中数学全等三角形题型汇总全等三角形测试题班级姓名总分一、填空题:(每题3分,共30分)1.判定一般三角形全等的方法有等四种,判定直角三角形全等的方法还有.2.如图1,已知△OCA≌△OBD,C和B、D和A是对应顶点,这两个三角形中相等的角是,相等的边是 .图1 图23.如图2,已知△ABC≌△ADE,∠B与∠D是对应角,那么AC与是对应边,∠BAC与是对应角.图3 图44.△ABC 的角平分线AM 、BN 交于I 点,那么I 点到 边的距离相等,连结CI ,那么CI 一定平分 .5.如图3,已知D 在BC 边上,DE ⊥AB 于E ,DF ⊥AC 于F ,DE=DF ,∠B=50°,∠C=70°,那么∠DAF= ,∠ADE= .6.如图4,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .图5 图67.到一个角两边距离相等的点,在 .8.如图5,已知△ABC ≌△DEF ,对应边AB=DE , ,对应角∠B=∠DEF , .9.如图6,已知△ABC ≌△DEC ,其中AB=DE ,∠ ECB=30°,那么∠ACD= .A B C DE 1 2 图710.如图7,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是。

(只需填一个)二、选择题(每题3分,共18分)11.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC ∥DF (D)AC=DF12.已知,如图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO(B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO13.在△ABC内部取一点P使得点P到△ABC 的三边距离相等,则点P应是△ABC的哪三条线交点()(A)高(B)角平分线(C)中线(D)垂直平分线14.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.15.下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F, AC=DF (B)AB=DE, BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F (D)AB=DE,△ABC的周长等于△DEF的周长16.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.(A)1个(B)2个(C)3个(D)4个三、解答题:(每题7分,共42分)1.如图,AB=DF,AC=DE,BE=FC,问:ΔABC 与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.(答案)证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD ≌△BDC (SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°. (答案)证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型四、全等三角形的判定4——“角角边”例题、已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D 点旋转,它的两边分别交AC、CB于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证12DEF CEF ABCS S S+=△△△;当∠EDF绕D点旋转到DE和AC不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立;证明图2:过点D作DM AC DN BC⊥⊥,则90DME DNF MDN∠=∠=∠=°在△AMD和△DNB中,AMD=DNB=90A BAD BD∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD≌△DNB(AAS)∴DM=DN ∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠ MDE=∠NDF在△DME与△DNF中,90EMD FDNDM DNMDE NDF∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME≌△DNF(ASA)∴DME DNFS S=△△∴DEF CEFDMCN DECFS=S=S S.+△△四边形四边形可知ABCDMCN1S=S2△四边形,∴12DEF CEF ABCS S S+=△△△类型五、直角三角形全等的判定——“HL”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()(答案)(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AH为第三边上的高,如下图:1、已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.(答案与解析)证明:∵DE⊥AC,BF⊥AC,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF ,DE =BF ∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF ∴AB ∥DC.(点评)从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D.(1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.(答案与解析)(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12.∴BD =6cm .(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形部一点,此点叫做三角形的心且这一点到三角形三边的距离相等.三角形的一角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.角的平分线的性质及判定1、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC于点F ,且DB =DC.求证:BE =CF.(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DC DE DF=⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .(答案与解析)证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △ ∴ 12AC PM 12BD PN = 又∵AC =BD ∴PM =PN又∵PM ⊥OA ,PN ⊥OB ∴OP 平分∠AOB(点评)观察已知条件中提到的三角形△PAC 与△PBD ,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC ∥AB ,∠BAD 和∠ADC 的平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点. 求证:AD =AB +DC.(答案) 证明:在线段AD 上取AF =AB ,连接EF ,∵AE 是∠BAD 的角平分线,∴∠1=∠2,∵AF =AB AE =AE ,∴△ABE ≌△AFE ,∴∠B =∠AFE由CD ∥AB 又可得∠C +∠B =180°,∴∠AFE +∠C =180°,又∵∠DFE +∠AFE =180°,∴∠C =∠DFE ,∵DE 是∠ADC 的平分线,∴∠3=∠4,又∵DE =DE ,∴△CDE ≌△FDE ,∴DF =DC ,∵AD =DF +AF ,∴AD =AB +DC .类型一、全等三角形的性质和判定如图,已知:AE ⊥AB ,AD ⊥AC ,AB =AC ,∠B =∠C ,求证:BD =CE.(答案)证明:∵AE ⊥AB ,AD ⊥AC , ∴∠EAB =∠DAC =90°∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (SAS ) ∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC 中,AB =AC.求证:∠B =∠C(答案)证明:过点A 作AD ⊥BC 在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL ) ∴∠B =∠C.(2).倍长中线法:1、已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC .求证:CD =2CE .(答案)证明: 延长CE 至F 使EF =CE ,连接BF .∵ EC 为中线,∴ AE =BE .在△AEC 与△BEF 中,,,,AE BE AEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩∴ △AEC ≌△BEF (SAS ).∴ AC =BF ,∠A =∠FBE .(全等三角形对应边、角相等)又∵ ∠ACB =∠ABC ,∠DBC =∠ACB +∠A ,∠FBC =∠ABC +∠A .∴ AC =AB ,∠DBC =∠FBC .∴ AB =BF .又∵ BC 为△ADC 的中线,∴ AB =BD .即BF =BD .在△FCB 与△DCB 中,,,,BF BD FBC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩∴ △FCB ≌△DCB (SAS ).∴ CF =CD .即CD =2CE .2、若三角形的两边长分别为5和7, 则第三边的中线长x 的取值围是( )A.1 <x < 6B.5 <x < 7C.2 <x < 12D.无法确定(答案)A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD.(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD.∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B.∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补.(2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA.∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM.∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD.(3).利用截长(或补短)法作构造全等三角形:1、如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC(答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CADM G H D C BA ED C B A在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=ADAD CAD BAD ACAE∴△AED ≌△ADC (SAS )∴DE =DC在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DC2、如图所示,已知△ABC 中AB >AC ,AD 是∠BAC 的平分线,M 是AD 上任意一点,求证:MB -MC <AB -AC .(答案与解析)证明:∵AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .(点评)因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE =∠FAE .求证:AF =AD +CF .(答案与解析)证明: 作ME ⊥AF 于M ,连接EF .∵ 四边形ABCD 为正方形,∴ ∠C =∠D =∠EMA =90°.又∵ ∠DAE =∠FAE ,∴ AE 为∠FAD 的平分线,∴ ME =DE .在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =⎧⎨=⎩公用边,已证,∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等).又∵ E 为CD 中点,∴ DE =EC .∴ ME =EC .在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =⎧⎨=⎩已证,公用边),∴ Rt △EMF ≌Rt △ECF(HL).∴ MF =FC(全等三角形对应边相等).由图可知:AF =AM +MF ,∴ AF =AD +FC(等量代换).(点评)与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD,求证:BD是∠ABC的平分线.(答案与解析)证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.(答案)证明:(1)∵正方形ADEF ∴AD=AF,∠DAF=90°∴∠DAF-∠DAC=∠BAC-∠DAC,即∠BAD=∠CAF在△ABD和△ACF中,AB ACBAD CAFAD AF=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACF(SAS)∴BD=CF(2)当点D运动到线段BC的延长线上时,仍有BD=CF此时∠DAF+∠DAC=∠BAC+∠DAC,即∠BAD=∠CAF在△ABD和△ACF中,AB ACBAD CAFAD AF=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACF(SAS)∴BD=CF2、如图(1),△ABC中,BC=AC,△CDE中,CE=CD,现把两个三角形的C点重合,且使∠BCA =∠ECD,连接BE,AD.求证:BE=AD.若将△DEC绕点C旋转至图(2),(3)所示的情况时,其余条件不变,BE与AD还相等吗?为什么?(答案)证明:∵∠BCA=∠ECD,∴∠BCA-∠ECA=∠ECD-∠ECA,即∠BCE=∠ACD 在△ADC与△BEC中ACD=BCEAC BCCD CE=⎧⎪∠∠⎨⎪=⎩∴△ADC≌△BEC(SAS) ∴BE=AD.若将△DEC绕点C旋转至图(2),(3)所示的情况时,其余条件不变,BE与AD还相等,因为还是可以通过SAS证明△ADC≌△BEC.。

相关文档
最新文档