什么是叶栅稠密度---长沙水泵厂
流体动力学及叶栅理论课程作业—河海大学

流体动力学及叶栅理论(下篇)一、课程内容小结1.机翼及翼型特性机翼的几何特性:翼型几何参数(翼弦、翼型厚度、翼型弯度、前、后缘圆角半径和后缘角),机翼几何参数(机翼翼展、机翼面积、平均翼弦、展弦比)。
机翼的气动力特性:机翼与绕流流体相互作用的力学特性,叫做机翼的气动力特性。
机翼绕流:正问题和反问题。
机翼分类:无限翼展机翼和有限翼展机翼。
翼型绕流的实验结果:介绍翼型气动方性能,随冲角及翼型几何形状变化的实验结果。
冲角对翼型气动力性能的影响翼型的升力和助力:升、阻力系数曲线,升、阻力极曲线。
压力沿翼型表面的分布:工程上不仅很重视翼型上的总作用力,而且对压力沿翼型表面如何分布也很关心,特别是在水利机械中,压力沿叶片的分布情况,关系到叶轮汽蚀性能的好坏。
翼型几何形状对动力性能的影响:弯度的影响,厚度的影响,前缘抬高度的影响,表面粗糙度的影响,雷诺数的影响。
常见翼型:NACA四位数字翼型,NACA五位数字翼族,以及其他翼型。
2.茹可夫斯基翼型对于翼型绕流的理论分析,分别介绍翼型绕流的保角变换与点奇点分布两种解法。
茹可夫斯基变换变换图解。
变换图形:圆心在原点的圆,圆心在坐标轴上的圆,圆心在第二象限的圆。
圆柱绕流。
圆柱绕流的来流速度。
圆柱绕流的来流环量。
绕流翼型流动的复势绕翼型流动的速度场。
翼型气动力特性。
翼型上的作用力:在理想流体的条件下,翼型将不受阻力,翼型上只作用者升力。
升力的大小,可以类似于圆柱绕流那样求出,结果也和圆柱绕流时一样。
升力系数。
3.薄翼绕流及有限翼展机翼理论当流体绕流翼型时,由于翼型的存在产生对来流的扰动,改变了来流的性态。
它一方面使流动顺翼型表面偏折,并形成一条流线;另一方面使流速值在翼型两侧产生跃变,出现了速度差和压力差,并进而产生了升力。
由于翼型对来流的扰动的作用,可以用沿翼型适当分布的涡、源(奇点)来代替,把这种计算绕翼型流场的方法,称为奇点分布法。
薄翼绕流。
薄翼绕流的特点:翼型厚度很薄,翼型中弧线微弯,在小冲角之下被绕流。
混流式水轮机结构

Q11 ,同时也改变出力限制
线的位置。图 2-6 说明了上述分析。 表 2-1 混流式转轮的叶片数与比转速的关系
图 2-6
叶片数不同时的
n f (Q11 ) 曲线
叶片数对汽蚀性能的影响没有一定规律。在叶片长度 L 不变的情况下,增加
Z 1 意味增
L 加转轮叶栅稠密度 ,即增加叶片的总面积,从而降低单位面积叶片负荷,降低叶片正背 L Z 面压差,这将改善汽蚀性能。但因混流式转轮叶栅的 本来就较大,所以因 1 增加使汽蚀
Q
N 曲线
图 2-8
不同下环锥角转轮的
Q11 曲线
f (Q11 )和 f ( N11 ) 均右移, 角越大,曲线右移 (1)下环锥角 加大则曲线
越多。此时最高效率移向较大流量区域,而在小于最优工况的低负荷区效率下降。因而转轮 需长期在部分负荷下工作,则锥角 不宜太长,以免平均的运行效率下降。 (2)下环锥角 由 3°增加到 6°时,在实际上不改变水轮机最高效率情况下可使转
式水轮机轴面投影,一般来说水轮机适应水头愈高,它的比数愈小,不同比转速的转轮其形 状是不同的。
图 2-3 不同比转速的混流式水轮机轴面投影 不管什么形状的混流式水轮机,其转轮基本上由上冠、下环、叶片、上下止漏装置,泄 水锥和减压装置组成,图 2-4 是混流式转轮结构示意图。
图 2-4 混流式转轮示意图 1— 压装置;2、6—止漏环;3—上冠;4—叶片;5—泄水锥;7—下环 1.转轮上冠 转轮上冠的作用除了支承叶片外,还与下环构成过流通道。上冠形似圆锥体,其上部中 间为上冠法兰,此法兰的上面与主轴相连,其下面固定泄水锥,在上冠上固定有均匀分布的 叶片。在上冠法兰的外围开有几个减压孔,在其外侧面装有减压装置。上冠流线可以做成直 线形和曲线形两种,如图 2-5 所示。直线型上冠具有较好的工艺性,但其效率特别是在负 荷超过最优工况时低于曲线型上冠。 此外采用曲线型上冠可增加转轮流道在出口附近的过水
水轮机叶栅理论

下面求绕翼型的环量(设法将式( 7)表示成 R wm 的形式)
ABCDA wS ds AB wS ds BC wS ds CD wS ds DA wS ds
其中,AB、CD 相互抵消 用 表示 Rx , R y 为: Rx wmy
( w2 y w1 y ) t R y wmx
, 为绕流给定叶栅的二个定常、有势流 v1 v1 上述实验事实可表述为:若
场,则v1 a1 bv1 也必定是绕流该叶栅的一个定常、有势流动(势流中存 在流动线性相加关系) 。 一、不动叶栅的特征方程 设有二个互相不相似的绕某一平面直列叶栅的流动,已测得它们栅前、栅 后的速度为:
1) 2)
v1(v1 x , v1 y ) v1(v1 x , v1 y )
y) v2 ( v2 x , v2 v2 ( v2 x , v2 y )
x v2 x ,v1 x v2 x , 其中, v1 (前后流量相等)
b t 之比 叫做叶栅的稠密度,把它的倒数称为相对叶栅,对环列 弦长 b 与栅距 t
叶栅不引用这一参数。 二、叶栅分类 根据水力机械常用分类方法,介绍如下: 1.平面叶栅 流经叶栅流道的流动是平面流动,如:水轮机导叶叶栅、低比转数水泵、 水轮机转轮叶栅。 对轴流式水泵、水轮机、风机等转轮叶栅可展成平面,即将圆柱面展成平 面,则也可称为平面叶栅。
b ,再代入第三个方程中得: a 、 由前二个方程解出
v2 y K v1 y m v x
其中:
v x vx y v2 y v2 K v x vx y v1 y v1
y v2 y v2 y v1 y v1 m v x vx y v1 y v1
混流与轴流水轮机转轮流道几何参数

转轮体通常用ZG30或ZG20MnSi 材料轴流式水轮机转轮流道几何参数一、设计工况和最优工况的关系:n n f 1111)4.12.1(~=Q Q f 1111)6.135.1(~= 式中-n f 11、Qf 11为设计工况的单位转速、单位流量; n 11、Q 11为最优工况的单位转速、单位流量; (适当选取较大的单位转速、单位流量作设计工况参数) 二、叶栅稠密度tL (如下图所示)—比转速查算术平均值栅距t :Z Rt 12π=→R-圆柱层面半径 z 1-转轮叶片数翼型弦长L :翼形后端点和翼形中线与前端交点的连线的长度 叶栅稠密度tL →是翼型弦长与栅距的比值: a.轮毂处的叶栅稠密度:)()()2.11.1(t L tL av B ~= (此时计算栅距t中的R 为轮毂半径) b.轮缘处的叶栅稠密度:)()()95.085.0(A t L t L av~= (此时计算栅距t中的R 为转轮半径)_式中)(t L av为叶栅稠密度的算术平均值(在下图取值)三、转轮叶片数-算术平均值算叶片数确定Z 1的原则是:不使叶片太长,且平面包角θ不太于90°;所谓平面包角-指叶片位于水平位置时,叶片进出水边所对应的中心角当叶片栅稠密度确定后,Z 1按下式计算取整:)()(1360tL Z av θ= 当θ=70°~90°时,Z 1与)()(L av 关系见下表: 四、转轮体转轮体有环形与圆柱形两种外观形式:球形转轮体(用于ZZ 式水机)时:转轮叶片内表面与转轮体之间的间隙较小,不同转角时间隙可保持不变。
圆柱形转轮体时:一般按最大转角确定转轮叶片与转轮体之间的间隙附:相同直径下,采用球形转轮体的水机效率高于圆柱形转轮体水机五、泄水锥泄水锥长度系数指:转轮叶片转动轴线到泄水锥底部的高度。
其高度采用主:D L 1165.0=同时,采用高度为0.4D 1与0.6D 1泄水锥的大型高水头ZZ 水机其水机效率一样六、导叶相对高度-b 0、轮毂比-d h 及转轮叶片数Z 1与最大水头的关系 轮毂比计算式建议采用以下公式:-d h =-0.0005n s +0.75一+0.065 或,-d h =0.25+n S 64.94 式中-n s 为水轮机比转速(m ·hp )七、转轮室ZL 式水轮机转轮室有圆柱形、球形和半球形三种现多采用半球形转轮室:转轮叶片转动轴线以上采用圆柱形,在其以下采用球形ZL 水机宜采用喉部(指转轮室直径最小的部位)直径为(0.955~0.985)D 1的半球形转轮室较为适宜混流式水轮机转轮流道几何参数(40m ~450m 水头选混流式最为有利)一、 设计工况和最优工况的关系:120 m 水头段: n n f 1111)08.193.0(~= QQf 1111)91.069.0(~= 200m 水头段,有些转轮:n n f 111107.1=Q Q f 111104.1= 式中-n f 11、Qf 11为设计工况的单位转速、单位流量; n 11、Q 11为最优工况的单位转速、单位流量; 二、 导叶相对高度-b 0三、上冠上冠流线形状有直线形与曲线形两种;现多采用曲线形上冠,它可以增大单位流量与水力效率,但曲率不能太大-会加大出口附近上冠表面的局部所蚀四、下环下环形状有直线形与曲线形两种(a)为低比转速水轮机(H >230m)下环,一般为曲线形;最优直径比为76.06.012~D D =(b)为中高比转速水轮机(H <115m)下环,一般为直线形,用下环锥角α表示扩散程度,一般α<13°,(c)(115m <H<230m )范围的转轮,下环可做成圆锥形或圆柱形,0.112=D D ;但(115m <H<170m )推荐采用10.19.012~D D =五、叶片数Z 1与最大水头H m ax 、比转速n s 及叶片包角θ的关系六、叶片进出水边位置转轮轴面投影如图:1与3连线成进水边,2与4连线成出水边D 1为标称直径;D 113005.1或D D j =Dj 1的大小与叶片进水角β1和单位转速n '1有关;有β1>90°、β1=90°和β1<90°三种情况(如下图):一般按β1=90°计算: n D D g h j '60111πη=轮廓线绘制:叶片进水边-由1点向下引垂线,然后用弧线将垂线与3点相连 叶片出水边-参照相近比速的转轮确定(所有尺寸均为转轮直径的倍数)。
水轮机_河海大学中国大学mooc课后章节答案期末考试题库2023年

水轮机_河海大学中国大学mooc课后章节答案期末考试题库2023年1.转桨式水轮机模型综合特性曲线中常绘出的等值线有答案:等叶片转角线_导叶等开度线_等效率线2.轴流转桨式水轮机与混流式水轮机比较,其特点是答案:高效率区宽_结构稍复杂3.混凝土蜗壳的断面形状一般均采用T形或Γ形。
答案:正确4.贯流式水轮机总体上可以分为全贯流式和半贯流式,半贯流式又可以分为轴伸式、竖井式和灯泡式。
答案:正确5.一定直径的水轮机,比转速越高流量就越大,导叶应该做得高一些,否则就要增加开度?答案:正确6.各种比转速水轮机在导水机构开度很小或很大时,其水力损失都较大?答案:正确7..轴流式水轮机适用于高水头,小流量工况答案:错误8.一元理论多用于设计低比转速的转轮,二元理论多用于设计中高比转速的转轮答案:正确9.水轮机尾水管的作用是()。
答案:使转轮的水流排入河床,减少水头损失10.对尾水管内的水力损失的叙述,说法正确的是:()。
答案:尾水管出口水流动能愈小,则尾水管的回能系数愈大11.升力法很大程度上依赖机翼的试验资料,是一种半经验半理论的方法答案:正确12.增加混流式水轮机转轮叶片数对空化性能的影响为答案:空化性能可能变好也可能变差13.为了保证水轮机运行效率导叶相对开度应保持在40%~90%答案:错误14.混流式水轮机转轮的设计理论包括答案:二元理论_三元理论_一元理论15.斜流式水轮机的应用水头介于轴流式与混流式水轮机之间。
答案:正确16.50~200m的水电站既可使用混流式水轮机,也可使用斜流式水轮机。
答案:正确17.轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性。
答案:正确18.低比转速水轮机强度和刚度有充分保证,空化系数小,有良好空化性能和效率答案:正确19.轴流式水轮机叶片包角越大则叶片越长答案:正确20.动力相似是指两水轮机形成的液流中各相应点所受的力答案:方向一致_名称相同_数量相同21.低水头(低于20m)且水头变化范围较大的情况下,一般选择轴流转浆式机组。
02 第二节 机翼与叶栅的升力理论

w∞ ——翼型前后无穷远处未受翼型影响的来流速度。 ▲说明
△如果介质是实际流体,则 F 力的大小与式(6-37)所计算的值有所偏差。
3、升力和阻力 ▲F 力可以看作是垂直于 w∞ 的升力 Fy 和平行于 w∞ 的阻力 Fx 的合力,如图 6-11 所示。
6-2
▲攻角 △来流 w∞ 与翼弦的夹角 α 称为攻角,如图 6-11 所示。
Fy
=
ρ mtw∞z ∆wu cos λ sin(b ∞ + λ)
b
(6 − 47)
由式(6-43)和式(6-47)可得
cy
l t
=
2 cos l sin 2 β ∞ ∆wu sin(β ∞ + l)w∞z
(6 − 48)
根据三角恒等式,上式还可以写成
cy
λ t
=
2∆wu w∞z
sin β ∞ 1 + tan λ / tan β ∞
参数。 ◇其倒数 t/l 称相对栅距。
翼型安放角——翼弦与列线方向之夹角 βb。 进口安放角——翼型前缘点中线的切线与圆周方向之夹角 βb1。 出口安放角——翼型后缘点中线的切线与圆周方向之夹角 βb2。 翼型弯曲角——θ=βb2-βb1。
⑵ 叶栅的动力特性 ▲叶栅绕流如图 6-17 所示。
▲说明 △叶栅绕流与孤立翼型绕流不同,由于栅中翼型有无穷多,因此对流场的扰 动可以传播到无穷远的地方,这样流场中就不再有未受扰动的流动速度 w∞,栅前 栅后足够远处的速度 w1 和 w2 的大小和方向都是不同的。
⑵ 平面直列叶栅 ▲ 圆柱面沿母线割开后,可以展开在平面上。 ▲圆柱面和各叶片相交,其截面(翼型剖面或翼型)在平面上构成一组叶栅。如 图:
用数值模拟研究叶片数变化对轴流泵性能的影响

差 分格 式 中 ,为 了提 高求 解 精 度 , 差分 格 式 在 中 ,压力项 采 用 二 阶 中心 差分 格 式 ,速 度项 、紊 动
能项和紊粘系数项均采用二阶迎风差分格式。求解
2 计算模型及边界条件
2 1 控制 方程 .
过程中各迭代松 弛系数分别 为 : 压力项为 0 3 速 ., 度项为 07 紊动能项和紊粘系数项为 l ., 。
2 3 边 界条件 .
假设 转 轮转 速一 定 ,由 B us eq涡粘 性假设 o sns i
喷 水推进 器 为水 平 放置 ,为 了减小 在计 算 过程 中 因计 算 域 进 口与 出 口位 置 对 叶 轮 内部 流 场 的影 响 ,本文计 算 域 的进 口与 出 口适 当 向外 作 了延 伸 。
率 为 叶轮产 生 的有效 功率 与计 算轴 功率 之 比。
渐增加 , 其中效率的变化较缓 , 一般在 1 %左右。 可
见 ,叶片数 的变 化对 轴 流泵效 率 影 响不 大 。该结 论 与文 献 [] 2 中的实 验结 果相 符 。 2 轴流 泵 的叶 片 数从 3片 变 化 到 8片 的过 程 )
以预 测泵 的扬 程 。进 口的总能量 以进 口处 的总压 表 示 ; 口处 的总能 量 以出 口处 的总压 出 表
宣 毒
示 。预 测 的扬 程 按下式 计算 :
:
P g
一
P g
+△
式 中 p 水 的密度 一
0 2 .1 0.1 3 0. 4 1 0 5 .1 0 6 l 0.1 7
化对 轴 流泵 性能 的影 响 。 由于只 改变 叶 片数 ,反映 的是 叶栅 稠 密度 I t / 的变化 ,故其 它参数 均保 持不 变 。为 了便 于 比较 , 算过 程 中 , 叶保持 不变 ( 计 导 导 叶为 7片 ) 。直 径 为 2 0mm, 速 n=15 / i, 0 转 40r mn
深井泵详细参数及长轴泵技术维护 湖南通大长轴泵长沙知名长轴泵厂家

长沙水泵厂通大泵业:深井泵详细参数及长轴泵技术维护长沙水泵厂深水井泵:①水温在17度左右,广泛用于生产、生活和厂用冷却。
②取水量在每小时1—150吨。
③钻探深度为10米—500米。
④深井隐蔽不占场地、施工条件要求不高,用长沙水泵厂长轴深井泵提水,可常时常年供水,深井水可代替价格昂贵的自来水。
冷风机是由表面积很大的特种纸质波纹蜂蜜窝状湿帘,高效节能风机,水循环系统,浮球阀补水装置。
机壳及电器元件等组成。
工作原理:当风机运行时冷风机腔内产生负压、使机外空气通过吸水性很强的湿帘进入腔内,湿帘上的水在绝热状态下蒸发,带走大量潜热,净化、冷却增氧的冷气被风机送入车间,通过不断对流,从而使厂房和车间达到制冷的效果。
长沙水泵厂产品主要特点:①耗电量少,每台每小时用电量在0.5--0.8度,不用氟里昂。
②能将室内浑浊、闷热及有异味的空气替换排出室外。
③使用环保可以不闭门窗。
④投资少,效能大⑤降温主件(湿帘)采用进口件。
⑥每台冷风覆盖面积达60--80平方米。
⑦每台冷风机送风量:8000—20000立方米每升。
21世度低于12度。
制冷量可增加一倍。
在自来水低于17度的地方,接自来水可以制冷,有热水条件的用户接热水取暖比接暖气效果纪提倡使用天然能源的产品。
大地把冬天的冷气保温储存在地下,为使用空调提供了丰富的冷水资源,采用双井制取水还水,取之不尽,用之不竭。
长江流域(江浙沪)井水常年恒温在17度左右,夏天用于制冷把室温降至25度左右,北方进水温好。
特点:①外型和电空调一样美观,分挂机式和立柜式。
②空气新鲜,无污染,无氟里昂,像自然风一样风凉。
③节能环保、无噪音,每台机每四小时用电量为1度。
④用深井水循环,把相对密封的室内空气通过机组吸进送出从而达到制冷。
⑤每台实用体积在300立方米左右,能把温度降至26度左右降温原理是:水份蒸发时带走周围的热量,从而使空气的温度降低。
工作原理是:通过风机抽风,机内产生负压,空气穿过湿帘,同时水泵把水输送到湿帘上的布水管,水均匀地湿润整个湿帘的接触面,而且湿帘的特殊角度使水流向空气进风的一侧,吸收空气中大量的热量,使通过湿帘的空气降温,同时得到过滤使送出的风变得凉爽、湿润且清新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是叶栅稠密度
一个在离心泵设计中不常用的参数——叶栅稠密度 0 C1 d2 l# m7 T9 K2 e( v0 ^- z
在常见泵书中,例:‘现代泵手册’(关醒凡),‘离心泵轴流泵设计手册’,(中国农科院)以及斯捷潘诺夫,爱杰斯钦,及丁成伟等多种泵书,在其离心泵设计的篇章中很少或不
提‘叶栅稠密度’这一参数。
在轴流泵篇章中作了详细介绍,因为叶栅稠密度是叶栅理论中要用到的一个重要参数。
& J+ r’ O) m/ h0 u” n+ [ K
是不是叶栅稠密度这一参数在离心泵(包括混流泵)设计不需要了或者说不重要了?完全可以被别的参数所代替?3 a5 `+ ^. R1 O% Z6 t/ I
笔者对此持有异议,认为叶栅稠密度在离心泵设计中是一个重要的参数。
6 P’ t& i( d. h
叶栅稠密度又称弦节比,在轴流泵中是指直列叶栅弦节比。
在离心泵中是将环列叶栅通过保角变换为直列叶栅的弦节比。
8 b) p: o+ v/ N
(叶栅稠密度)σ=Z*ln(D2/D1)/[2π*sinγ*sin[(β2+β1)/2]]
式中:* f3 d5 e9 s# F; N: E0 o% c5 O
σ——叶栅稠密度;
Z——叶片数;
D2——叶轮出口直径;( J0 O$ w! S1 B; c
D1——叶轮进口直径;
γ——叶轮半锥角(当叶轮为径向轮时γ=90°);- }4 c’ n6 L” A* Q+ T2 [/ i$ y
β2——叶片出口角;
β1——叶片出口角。
1)叶栅稠密度是多个参数的综合式
从叶栅稠密度公式可以看出叶栅稠密度是除了叶轮进出口宽B1、B2之外几乎包含了叶轮所有几何参数,它是多个参数的综合式。
! W% ]$ T6 G( K1 Y6 Z
2)叶栅稠密度对扬程式的影响6 b! V* E/ l+ |9 ]
从沈天耀的书中“离心叶轮的内流理论基础”一书及农科院的“离心泵轴流泵设计手册)中提到的扬程公式都含有叶栅系数项。
9 ?/ x” k- x% b( m) X” O& e1 B
威斯克里塞勒斯(Wisclicenus)推荐扬程计算式:: P2 d, @2 {! ?6 Q
gH=η(水力)*K*(U2*Vu2)
式中:H——指真实扬程;1 T$ j/ a. d! s6 B( O1 m
η(水力)——水力效率;/ }9 `& [+ I: J4 s( G+ c5 S) q
K——系数,K是叶栅稠密度及二分之一进出口角之和的函数;
U2——叶轮出口圆周速度;
Vu2——叶轮出口绝对速度在圆周方向上的分量。
由此可见,叶栅稠密度和水力效率一样,直接影响泵扬程。
m+ m0 w+ B7 q8 v0 n) L
3)针对某一比转数性能优秀的叶轮。
其叶栅稠密度也必然是最佳的叶栅稠密度。
4)从叶栅稠密度表达式可以看出叶轮各几何参数之间的层次关系。
当你进行叶轮设计时建议将叶栅稠密度加入计算,经过多次设计积累,可以找到比转数和叶栅稠密的度对应关系,供以后的设计用。