电容器的基础知识及失效模式

合集下载

y电容失效模式

y电容失效模式

y电容失效模式摘要:一、引言二、y电容的定义和作用三、y电容失效模式1.容量变化2.漏电流增加3.击穿电压降低4.热稳定性变差四、y电容失效原因1.材料老化2.工艺问题3.电压和温度循环影响4.外界环境因素五、y电容失效对电路的影响1.电路性能下降2.电路稳定性降低3.可能引发火灾等安全隐患六、y电容的选用和维护1.选择优质产品2.合理布局和安装3.定期检测和更换七、结论正文:一、引言y电容失效是电子电路中常见的现象,它可能导致电路性能下降,甚至引发安全隐患。

因此,了解y电容失效模式、原因及应对措施具有重要意义。

二、y电容的定义和作用y电容,又称为抑制电容,是一种电子元件,主要用于滤波、去耦、旁路等电路中,以抑制干扰信号,提高电路的稳定性。

三、y电容失效模式1.容量变化:y电容的容量随使用时间的推移而发生变化,导致其性能降低。

2.漏电流增加:y电容失效后,漏电流会增加,可能对电路产生不良影响。

3.击穿电压降低:y电容失效后,其击穿电压会降低,容易在电压波动或异常情况下发生击穿。

4.热稳定性变差:y电容失效后,其热稳定性会变差,可能导致电容性能随温度波动而变化。

四、y电容失效原因1.材料老化:y电容的主要材料为陶瓷、电解液等,这些材料随时间的推移会发生老化现象,导致电容失效。

2.工艺问题:y电容生产过程中的工艺问题可能导致电容性能下降,如电极不均匀、电解液不纯等。

3.电压和温度循环影响:y电容在电路中受到电压和温度循环影响,可能使其性能发生不可逆的变化。

4.外界环境因素:如湿度、尘埃等环境因素也可能影响y电容的性能。

五、y电容失效对电路的影响1.电路性能下降:y电容失效后,电路的滤波、去耦等功能会受到影响,导致整体性能下降。

2.电路稳定性降低:y电容失效可能导致电路稳定性降低,容易受到干扰,发生故障。

3.可能引发火灾等安全隐患:y电容失效后,可能产生漏电、发热等问题,严重时可能引发火灾等安全事故。

电容器失效模式和失效机理

电容器失效模式和失效机理
B、引线断裂失效
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降.
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起.铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小.因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小.此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度.即使极板一引线间不存在导电不良的间隔层,也会产生这种后果.
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够.
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀.
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
⑧ 在机械应力作用下电介质瞬时短路.
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;

高一物理《电容器的电容》知识点总结

高一物理《电容器的电容》知识点总结

高一物理《电容器的电容》知识点总结一、电容器1.基本构造:任何两个彼此绝缘又相距很近的导体,都可以看成一个电容器.2.充电、放电:使电容器两个极板分别带上等量异种电荷,这个过程叫充电.使电容器两极板上的电荷中和,电容器不再带电,这个过程叫放电.3.从能量的角度区分充电与放电:充电是从电源获得能量储存在电容器中,放电是把电容器中的能量转化为其他形式的能量.4.电容器的电荷量:其中一个极板所带电荷量的绝对值.二、电容1.定义:电容器所带电荷量Q 与电容器两极板之间的电势差U 之比.2.定义式:C =Q U. 3.单位:电容的国际单位是法拉,符号为F ,常用的单位还有微法和皮法,1 F =106 μF =1012 pF .4.物理意义:电容器的电容是表示电容器容纳电荷本领的物理量,在数值上等于使两极板之间的电势差为1 V 时,电容器所带的电荷量.5.击穿电压与额定电压(1)击穿电压:电介质不被击穿时加在电容器两极板上的极限电压,若电压超过这一限度,电容器就会损坏.(2)额定电压:电容器外壳上标的工作电压,也是电容器正常工作所能承受的最大电压,额定电压比击穿电压低.三、平行板电容器的电容1.结构:由两个平行且彼此绝缘的金属板构成.2.电容的决定因素:电容C 与两极板间电介质的相对介电常数εr 成正比,跟极板的正对面积S 成正比,跟极板间的距离d 成反比.3.电容的决定式:C =εr S 4πkd ,εr为电介质的相对介电常数,k 为静电力常量.当两极板间是真空时,C =S 4πkd. 四、电容器深度理解1.静电计实质上也是一种验电器,把验电器的金属球与一个导体连接,金属外壳与另一个导体相连(或者金属外壳与另一个导体同时接地),从验电器指针偏转角度的大小可以推知两个导体间电势差的大小.2.C =Q U 与C =εr S 4πkd的比较 (1)C =Q U 是电容的定义式,对某一电容器来说,Q ∝U 但C =Q U不变,反映电容器容纳电荷本领的大小;(2)C =εr S 4πkd 是平行板电容器电容的决定式,C ∝εr ,C ∝S ,C ∝1d ,反映了影响电容大小的因素.3.平行板电容器动态问题的分析方法抓住不变量,分析变化量,紧抓三个公式:C =Q U 、E =U d 和C =εr S 4πkd4.平行板电容器的两类典型问题(1)开关S 保持闭合,两极板间的电势差U 恒定,Q =CU =εr SU 4πkd ∝εr S d ,E =U d ∝1d. (2)充电后断开S ,电荷量Q 恒定,U =Q C =4πkdQ εr S ∝d εr S ,E =U d =4πkQ εr S ∝1εr S.。

电容的MTBF报告

电容的MTBF报告

电容的MTBF报告1. 引言本文旨在提供关于电容的可靠性指标MTBF(Mean Time Between Failures)的报告。

MTBF是一项重要的指标,用于评估电子元件的可靠性和预测故障发生的频率。

对于电容器而言,MTBF可以帮助我们了解其在特定工作条件下的使用寿命和可靠性。

2. 电容器的基本原理电容器是一种电子元件,由两个电极和介质组成。

电极之间的介质可以是空气、陶瓷或电解质等。

电容器的基本原理是利用电极之间的电场储存电荷。

当电压施加到电容器上时,电荷会在电极之间积累,从而形成电场。

3. 电容器故障模式电容器可能会出现多种故障模式,导致其失效或降低性能。

以下是一些常见的电容器故障模式:3.1. 电解液干燥对于电解电容器而言,电解液的干燥是一种常见的故障模式。

电解液的干燥可能会导致电容器内部的电解质浓度下降,从而影响电容器的性能和寿命。

3.2. 电极腐蚀电容器的电极可能会受到腐蚀。

腐蚀可能会导致电极的电阻增加,从而影响电容器的性能。

3.3. 电压过载电容器在使用过程中可能会遭受电压过载。

电压过载可能会导致电容器内部的电场强度超过其设计限制,从而引发电容器失效。

4. 电容器的MTBF计算计算电容器的MTBF需要考虑多个因素,包括电容器的设计、工作条件和环境条件等。

常见的MTBF计算方法包括基于实验数据和基于模型的方法。

4.1. 基于实验数据的MTBF计算基于实验数据的MTBF计算是通过对大量电容器的实际运行数据进行统计分析来得出MTBF值。

这种方法需要大量的实验数据和时间来进行统计分析,从而得出较为准确的MTBF值。

4.2. 基于模型的MTBF计算基于模型的MTBF计算是通过建立数学模型和可靠性模型来预测电容器的MTBF值。

这种方法需要考虑电容器的工作条件、故障模式和可靠性参数等因素,并使用数学方法进行计算和模拟。

5. 提高电容器的可靠性为了提高电容器的可靠性,我们可以采取一些措施:5.1. 选择合适的电容器根据实际需求选择合适的电容器,包括电容值、电压等级和使用环境等因素。

电容的主要失效模式、失效原理及预防措施

电容的主要失效模式、失效原理及预防措施
通过密封橡胶向外扩散,在工作条件下水分 化
产生电化学离解
固体钽电 短路

氧化膜缺陷、钽块与阳极引出线产生相对位 移、阳极引出钽丝与氧化膜颗电容器粒接触
开裂
热应力、机械应力
瓷介电容 短路
介质材料缺陷、生产工艺缺陷、银电极迁移

低 电 压 失 低电压失效介质内部存在空洞、裂纹和气孔

等缺陷工作条件类别
预防措施及注意事项
应确保不含卤素,在采用此类材料前应注意
助焊剂已完全干透
(7)使用清洁剂以后必须充分干燥,采用免洗
型助焊剂也需充分干燥
(8)确保电容的封口位置不受压
(9)当采用胶黏剂或其它材料固定元件时,应
小心不要让此类材料完全覆盖电容器的封
口,同时应确保电容器的完全阀不被封闭
储存
(1)电容器应储存在正常的温度、湿度条件 下。避免受到阳光直射
式和失效机理
类别
失效模式 失效原理
密封不佳、橡胶老化龟裂、高温高压下电解
漏液
液挥发,密封工艺不佳、阳极钽丝表面粗糙、
负极镍引线焊接不当液体
工作电压中交流成分过大、氧化膜介质缺陷、
炸裂
存在氯离子或硫酸根之类的有害离子、内气
压高
铝电解电 开路

电化学腐蚀、引出箔片和阳极接触不良、阳 极引出箔片和焊片的铆接部分氧化
类别
工作条件 预防措施及注意事项
(1)确定工作温度及纹波电流在规定范围内
工 作 温 度 纹波电流
及 纹 波 电 (2)当并联两个或更多电容时,需注意接线电
流 铝电解电

阻应计算在内 (3)注意电容工作时的热能导致设备内部温 度的提升
(1)注意电容的正负极,不应施加反向电压或

电力电容器的故障模式与诊断方法

电力电容器的故障模式与诊断方法

电力电容器的故障模式与诊断方法电力电容器是电力系统中常用的电能贮存和滤波元件,其稳定运行对于保障电力系统的正常运行具有重要作用。

然而,由于长期运行或其他原因,电力电容器也会出现各种故障。

本文将针对电力电容器的故障模式及其诊断方法进行深入探讨。

一、电力电容器的故障模式1. 短路故障短路故障是电力电容器常见的故障模式之一。

当电容器内部绝缘击穿或电容器的金属箔之间出现短路时,导致电容器的电极直接连接在一起。

短路故障会导致电容器电流异常增大,并可能引发其他故障。

2. 开路故障开路故障是指电容器内部绝缘失效或导体断裂,导致电容器的电极间无法传导电流。

开路故障会导致电容器无法正常工作,严重影响电力系统的运行。

3. 老化故障电力电容器在长期运行过程中,由于外界环境、电压波动等因素的影响,会出现老化故障。

老化故障主要体现在电容器的绝缘材料老化、电容值损失等方面,会导致电容器性能下降,甚至完全失效。

二、电力电容器故障的诊断方法1. 外部检查法外部检查法是最基本的电力电容器故障诊断方法之一。

通过观察电容器外部是否有明显损坏、变形、漏液等异常情况,判断电容器是否存在故障。

这种方法简单易行,但只能发现一些明显的故障。

2. 声音诊断法声音诊断法是利用电力电容器发出的声音信号来判断是否存在故障。

通过对电容器进行高频放电,观察听觉上是否有明显的噪音,可以初步判断电容器的故障类型。

3. 电容器质量指标测量法电容器质量指标测量法是一种较为直接的故障诊断方法。

通过测量电容器的电容值、损耗角正切值等参数,可以客观地评估电容器的健康状况。

这种方法需要专业的测试设备和技术,可以提供较为准确的故障诊断结果。

4. 热红外检测法热红外检测法是通过红外热像仪对电容器进行扫描,观察其温度分布情况来判断是否存在故障。

热红外检测法可以有效地发现电容器内部故障,如热点、短路等。

5. 偏差电流分析法偏差电流分析法是一种通过分析电容器绝缘材料中的偏差电流来判断其健康状况的方法。

y电容失效模式

y电容失效模式

Y电容失效模式1. 引言Y电容是一种常见的电子元件,用于存储电荷和调节电路中的信号。

然而,由于各种因素的影响,Y电容有可能出现失效现象,导致电路性能下降甚至完全失效。

本文将详细介绍Y电容失效的模式和原因,并提供相应的解决方案。

2. Y电容失效模式Y电容失效主要表现为以下几种模式:2.1 电容值减小Y电容在使用一定时间后,其电容值可能会逐渐减小。

这可能是由于材料老化、温度变化、机械应力等原因引起的。

当电容值减小到一定程度时,可能导致整个电路无法正常工作。

2.2 漏液Y电容内部有液体介质,如果封装不良或者受到外界物理损伤,液体有可能泄漏出来。

漏液会导致Y电容无法正常工作,并且对周围环境造成潜在危害。

2.3 短路Y电容在使用过程中可能发生短路故障。

这可能是由于材料破裂、金属层间短路等原因引起的。

短路会导致电路过载,可能引发火灾等安全问题。

2.4 极性反转Y电容需要正确连接极性才能正常工作,如果连接错误或者电压波动过大,可能会导致极性反转。

极性反转会导致电容损坏,并且对整个电路造成影响。

3. Y电容失效原因Y电容失效的原因多种多样,下面列举了一些常见的原因:3.1 质量问题Y电容在制造过程中可能存在质量问题。

例如,材料不纯、封装不良、焊接不牢固等都有可能导致失效。

3.2 环境因素环境因素是导致Y电容失效的重要原因之一。

例如,温度变化、湿度变化、振动等都会对Y电容产生影响,加速其老化和失效。

3.3 过载如果Y电容所在的电路长期处于过载状态,超出了其设计工作范围,就有可能导致失效。

3.4 错误使用错误使用也是导致Y电容失效的常见原因之一。

例如,连接错误、过高的工作电压、频率过大等都会对Y电容产生损害。

4. Y电容失效的解决方案针对Y电容失效的不同模式和原因,可以采取以下解决方案:4.1 电容值减小如果Y电容的电容值减小,可以考虑更换新的Y电容。

在选用新的Y电容时,应选择质量可靠、稳定性好的产品,并且根据实际需求合理选择额定参数。

陶瓷电容失效模式和失效机理_概述说明以及解释

陶瓷电容失效模式和失效机理_概述说明以及解释

陶瓷电容失效模式和失效机理概述说明以及解释1. 引言1.1 概述陶瓷电容是一种常见且广泛应用于电子设备中的元件。

它具有体积小、重量轻、稳定性高、温度特性好等优点,因此在各个领域都有着广泛的应用。

然而,陶瓷电容在使用中也会出现失效现象,导致其功能无法正常发挥或完全失去功能。

了解陶瓷电容的失效模式和失效机理对于设计和维护电子设备至关重要。

1.2 文章结构本文将首先对陶瓷电容进行概念和应用领域的介绍,接着对其失效模式进行分类和定义,并简要介绍相关的失效机理。

随后,我们将分别详细探讨两种常见失效模式及其相关要点,并提供实际示例加以说明。

最后,本文将总结研究成果并展望未来的研究方向。

1.3 目的本文旨在提供一个系统且全面的概述,以帮助读者更好地了解陶瓷电容的失效模式和失效机理。

通过清晰地描述每种失效模式及其相关要点,并给出实例以加深理解,读者将能够发现并解决陶瓷电容在实际应用中可能出现的问题,并提供改进和优化的方向。

此外,本文也为未来相关研究提供了参考和展望。

以上是“1. 引言”部分的内容,希望对你的长文撰写有所帮助。

2. 陶瓷电容失效模式和失效机理概述2.1 陶瓷电容概念和应用领域陶瓷电容是一种广泛使用于电子产品中的passives 元件,其主要由导体和绝缘体构成。

导体常采用金属,例如银或钨,并具有可靠的电导性能。

绝缘体通常采用陶瓷材料,如硬陶瓷(多为氧化铁、氧化锰、二氧化硅等),以提供良好的介电性。

由于其优异的特性,陶瓷电容被广泛应用于各种电子设备中,包括通信设备、计算机及消费类电子产品等。

它们常用于储存与释放电能、稳定电流和阻抗匹配等功能。

2.2 失效模式分类和定义对于陶瓷电容而言,失效模式指元件在使用过程中可能出现的故障或损坏类型。

这些失效模式可以基于不同因素进行分类,如环境条件、操作方式和设计问题等。

常见的陶瓷电容失效模式包括但不限于以下几种:a) 短路:陶瓷电容内部存在导体间接触或导体与外壳产生直接短路现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容器的基础知识的讲义——孔 星1.电容器的基本概念a.电容:使导体每升高单位电位所需要的电量。

C=q/U(库仑/伏特)b.单位(法拉 F)1F=1库仑/1伏特=106μF=1012pF1μF=103nFc.电容器:由多个导电体组成的能够存储电荷的容器。

C AB=Q A/(U A- U B)d.电容器的联接:串联:1/Cs=1/C1+1/C2并联:Cp=C1+C22.电容器的基本参数2.1电容量 平板电容: C=εs/dε=ε0εr S=L*W2.2损耗角正切D D=tgδ=P有/P 即通过电容器的总功率与在电容器内的热功耗D=D(f×t); P=P无+P有P有=VIP无=t gδ=tgδS+tgδPtgδS=ωCRS tgδp=1/ωCR PR S:串联电阻 R P:并联电阻2.3耐压Vt-t:穿介电场强度与电应力有关,V=V(f×t)e g:弹性势能E=1/2kX² 弹性力:f=-ƏE/Əx=-1/2×k×2x=-kx2.4绝缘电阻RI(漏电流):介质内部的本征漏电流及吸收电流;本征漏电流:杂质决定吸收电流:介质极化引起(例如偶极子⊕----Θ)运动2.5过流能力(dv/dt) Ip=C dv/dt ;I=Ir+IpIr=2πfcu Ip=c*dv/dt2.6耐温T : 电容器的最高/最低使用温度(-40/105);2.7热稳定性(Δt-t):电容器正常发热时温升达到稳定所需要的时间,(2h,48h );热稳定时间越短(同体积),说明热稳定性越好。

2.8自愈性(SH):介质击穿后自我恢复能力(ΔC/C≤0.5%,自愈次数<2次);a.ΔC/C≤0.5% u≤3.5un 自愈声 0.8un <2次介质自愈性:碳沉积量:ppa 1 pp 45 PET 55b. 电板自愈性:焦耳热(cm²) AL:1.6*10-²JZnAL:3.2*10-³2.9 安全性(1)阻燃性:(UL94V-0级)(2)防爆 :P0 P1 P2三级;(3)灼热丝:带焰燃烧 t<30S(T=750℃,10S)2.10 耐久性(寿命等级) 条件:电压1.25Un/1.4Un 温度 T=Tmax 连续工作A级 10000hB级 2000hC级 600hD级 200h2.11 可靠性等级(λ:失效率10-λ)分为 五级 六级 七级 八级 九级。

(1) 失效率 • λ=1/(元件数•小时) 1fit=1×10-9/h• 平均无故障时间 MTBF (R(t)e-λt)=1/λ(2) 失效率等级•亚五级 Y 3*10-5五级 W 1*10-5六级 L七级 Q八级 B九级 J十级 S 1*10-10• 民用级 军用级 宇航级24 168h 240h100h 1000h2.12 热阻(1) 电容器的发热点与环境的温度与电容器产生的功率耗损的比值:Rδ=△T/ P有(稳定态)(2)Rδ与P有关系3.电容器的分类与特点:3.1按介质分类(1)金属化纸介质电容器,其代表型号有:CJ10、CJ41、CJ48、CJ3、CJD、CJZ、CJMJ等。

纸介电容器,其代表型号有:CZ、CZM、CZK、CZC、CZY等。

这类电容器的比电容较高,体积较小,但损耗较大、绝缘电阻啼低。

主要用于交流分量小于额定直流电压,以及可容许偶然出现低的绝缘电阻及瞬间击穿的直流或低频电路中。

应用交流峰值不得超过额定直流电压的20%;直流电压与交流电压之和不得超过额定直流电压值。

(2)有机薄膜电容器,适用于高频范围的代表型号有:聚苯乙烯CB、CBM、CBF、CBJ-L、CBMJ及聚丙烯CBB、CBBS。

这类电容器,其特点是介质损耗小,绝缘电阻高、吸收系数低,温度稳定性好、频率特性稳定;适用于低电压及储能的涤纶电容CL及聚碳脂漆膜电容CQ;其特点是耐热性好、耐压强度高、比电容大、高温性能好。

而CBMJ适用于标准电容器,其精度最高可达±0.05%。

这种电容可用在宽的温度范围内,要求有较高的绝缘电阻、低的介质吸收或低损耗的电路中,其外加电压的交流分量和直流电压之和不得超过额定直流电压值,交流峰值不得超过额定直流电压值的20%(在60HZ)、15%(120HZ)、在1%(1000HZ)。

(3)陶瓷电容器,其代表型号有:1型陶瓷电容器(CC、CCG、CCW、CCWY、CCSD、CCTD、CCM等)主要用于高稳定电路和温度补偿电路。

它们的损耗角正切较低、介质系统变化小范围较宽。

其中,独石瓷介电容器(CC4D)具有比电容高、介质损耗低、绝缘电阻高及电容量稳定等特点。

它们可有效地工作在高额、超高额或微波段,特别适合于谐振电路或其它要求低损耗和容量稳定的电路中,2型陶瓷电容器CT具有很高的介电系数和较大的损耗角正切值,其容量和和损耗角正切值的频率—温度特性都较差。

主要用于体积小、大电量的电路中。

这些电容器可作为容许容量随温度而变化的高频电路的旁路、滤波及非磁键耦合元件。

典型的应用有音频、射频的电阻—电容性耦合,射频、中频的射极旁路等。

可以用于损耗系数不是关键的,即使由于温度、电压及频率变化而引起了中等变化,也不致于影响电路正常功能的电路。

(4)云母电容器,其代表型号有:CY、CYRX、CYS、CYM 等,其特点是介质损耗小、抗电强度高、频率及温度特性稳定、电容精度高等特性。

可用于有高精度要求的电路、或高频滤波及旁路、耦合电路中;可在对与温度、频率及老化等有关的阻抗容限要求很严格的电路上使用;可作为调谐电路的垫整电容器、二次电容标准使用。

云母电容器的工作频率可达500兆赫,可用于甚高频的耦合、旁路及调谐电路中。

一般,在提高工作温度和工作频率时,要降低电容器的工作电压。

如有适当的防高温及防潮措施,电容器可具有高可靠性。

否则,受高温、高湿及直流电压应力的长期作用,电容器被银云母片上的银离子迁移过程加剧,将导致电容量、绝缘电阻和工作电场强度降低。

元件的失效取决于其应用条件。

在常温下,电容器的寿命与直源工作电压的8次幂成反比;在恒定直流电压条件下,温度每提高10度,电容器的寿命约降低50%。

(5)玻璃电容器。

其代表型号有:CI、CII等,这类电容器用在需要考虑不同的温度系数和介质损耗的电路中,可代替云母电容器。

在苛刻的工作环境条件下很稳定、寿命长。

能耐受高的加速应力。

但却易受中等程度机械冲击的破坏。

因此,应小心操作。

它们比云母电容器更能耐受高的速度应力,而且电容量范围较宽。

在高温、高湿及直流电压应力的长期作用下,可能产生银离子迁移,导致工作电压降低,甚至还能产生电极短路的危险。

(6)铝电解电容器,其代表型号有CD、CDZ、CDA、CDM、CDW、CDS、CDJ、CDDS、CDXW、CDL-T、CDX等,其优点是体积小、容量大、价格便宜。

台用于滤波、耦合及旁通电路。

在这些场合,只要求大的容量值、而允许容量可以大大超过电容器的标准值。

对于有极性的电容器,所加的交流峰值和直流电压之和不得超过电容器的额定直流工作电压值。

长期不用的铝电解电容器,由于铝氧化膜可能受侵蚀,漏电流变大,瞬时加额定直流工作电压,将使用电容器内部产生大量气体,以致将外壳顶开。

因此,对长期不用的电容器应逐步加大电压,进行老练,高压电容器尤应注意。

一般库存二年以上的铝电解容器不要装机。

(7)因体钽、铌电解电容器,其代表型号有:CCTF、CCTJ、CCDD、CCM、CCX、CA9、CA41、CA43、CA70、CAP、CAK、CA、CN(铌)等,这类电容器是现有电解电容器中性能最稳定、最可靠、寿命最长、储存性能最好的电容器。

对温度不敏感。

其缺点是,漏电流大、电压范围较小(6-120)伏。

在正25度,额定直流电压条件下,最大允许反向电流为1%。

这类电容器可在需要对低频或脉动电流分量进行旁路、滤波的电路中及耦合、反馈电路中使用;在需要大容量、小体积并能耐受较强的冲击、震动应力是电路上应用。

可用于滤波、旁路、耦合、隔直流、储能及其它低压直流电路上,有极性电容器在使用时,需要注意直流电压的极性。

同时最大允许的反向电压不大于1伏。

无极性烧结钽固体电容器可用于工作电压6.3-63伏的自动控制系统的校正网络中,作为积分、滤波和耦合电容;或用于直流电压极性出现反向的电路中,如调谐电路、低频电路、交流马达电路及计算机电路等。

(8)液态钽电解电容器,其代表型号有:CAI、CA30、CA51S、CA34A、CA341、CA342等,这类电容器为有极性电容器,其比电容最大,漏电流小,主要用于需要大电容量,而允许容量偏差大的电路上,用作低频脉动直流分量的旁路或滤波。

当用于电子管及晶体管电路作低频耦合使用时,要允许有漏电流。

液态钽电解电容器没有耐反向电压的能力,故仅用于直流电路中,并应特别注意极性。

其密封性差,在低气压下工作,容易发生漏液现象,引起性能蜕变,导致失效。

这种电容内部电解液呈酸性,对外壳有腐蚀作用,严重漏液会造成失效。

如有交流分量,峰值交流电压与所加直流电压之和不能超过额定的直流电压值。

同时峰值交流电压不得超过所加的直流电压。

(9)穿心电容器,用于射频抗干扰滤波器。

把流经机壳或设备某点的低频电流或射频电流(它可能引起干扰)通过尽可能短的通路接地。

典型的应用有:旋转式装置;点火装置;机电调压器、震动器、开关;电子装置(发射机、雷达调制器、闸流管等)及设备交流滤波。

(10)陶瓷微调电容器,在需要定期进行清密调节的电路上使用,常在射频、中频、振荡、相位调整及鉴频使用。

电容量及其调整分量是线性的,电容量随温度的变化是非线性的,在容量范围内,对温度的敏感性也非线的。

不能把这种电容用于温度补偿。

这种小型微调电容器,在冲击、振动环境下相当稳定。

若需要更高的稳定宽,则应使用空气微调电容器。

(11)空气微调电容器,应用情况与“陶瓷微调电容器”相同,但这种是容器的温度稳定性更稳定。

3.2 按形状分类:分片式、卷绕式等。

4.电容器的认证制度(1)UL认证(UL810、UL1414)(2)VDE认证(IEC831、IEC384、IEC252)(3)CQC认证(GB12474、GB3667)5.电容器的失效模式自愈性电弱点清洗不干净 C (1)电击穿↓永久性 耐压不够 C ∞(2)热击穿芯子过热电极氧化引出端过热端面焊接汤伤端面接触不好端面氧化开路端面接触不好端面氧化(3)容量下降电极氧化(耐久性)低压自愈点多介质材料不纯抗爆强度不够(t<100ms)(4)爆炸着火选型不当(P0 P1 P0)防爆装置失灵材料防火等级不够(UL94—V0)6.薄膜电容器生产流程。

相关文档
最新文档