水泥物理性能检验方法
水泥物理性能检验报告

水泥物理性能检验报告一、实验目的:1.了解水泥的物理性能;2.掌握水泥物理性能的检验方法。
二、实验原理:水泥是由矿石熟料和适量石膏及混合材料经研磨而成的细粉体。
水泥的物理性能是衡量水泥质量的重要指标,包括水泥的比表面积、比重、初始凝结时间和终凝结时间等。
1.比表面积检测:比表面积反映了水泥的细度,是水泥颗粒表面积与质量之比。
常用的测定方法有比浸法、压滑法和气流法等。
2.比重检测:水泥的比重是指水泥的质量和相同体积的水的质量之比,常用的测定方法有密度瓶法和密度仪法。
3.初始凝结时间和终凝结时间检测:初始凝结时间是指水泥和水混合后开始凝结的时间,终凝结时间是指水泥和水混合后完全凝结的时间。
常用的测定方法有振动表法和细孔测定法等。
三、实验步骤:1.比表面积检测:(1)取少量水泥样品,将其加入研磨罐中;(2)加入一定量的石英砂,封好研磨罐盖,然后放入试验磨机中进行研磨;(3)研磨结束后,取出研磨罐,将磨料倒入筛分器中;(4)用筛分器筛分,得到不同粒径的试样;(5)根据筛分结果计算比表面积。
2.比重检测:(1)取一定质量的水泥样品,加入一定质量的水中,进行搅拌;(2)搅拌均匀后倒入密度瓶中,称量质量;(3)将密度瓶装满水,并称量质量;(4)根据测量结果计算比重。
3.初始凝结时间和终凝结时间检测:(1)将一定质量的水泥样品和一定质量的水混合,搅拌均匀;(2)将混合液倒入振动表中,开始计时;(3)不断观察混合液的状态,当混合液开始凝结时停止计时,记录初始凝结时间;(4)继续观察混合液的状态,当混合液完全凝结时停止计时,记录终凝结时间。
四、实验结果与分析:1.比表面积:根据筛分结果,计算得到水泥的比表面积为XXX平方米/克。
2.比重:根据测量结果,计算得到水泥的比重为XXX。
3.初始凝结时间和终凝结时间:根据实验观察记录,初始凝结时间为X分钟,终凝结时间为Y分钟。
根据以上数据,可以判断水泥的物理性能。
比表面积越大,说明水泥颗粒越细,水化反应面积增大,水泥的强度也相对较大。
水泥物理性能能力验证结果报告单

水泥物理性能能力验证结果报告单一、引言本报告单为水泥物理性能能力验证结果的详细报告,主要包括验证目的、方法、结果分析和结论等内容。
此次验证旨在评估水泥的物理性能能力,为产品质量提供可靠的参考。
二、验证目的本次验证的主要目的是评估水泥在物理性能能力方面是否符合相关标准的要求。
通过验证实验,我们将评估水泥的强度、密度、可塑性以及适应性等性能指标,以确保产品的质量和可靠性。
三、验证方法本次验证采用了以下方法和标准:2.密度测试:按照GB/T1346-2024《珠光体结构的金属矿用材料和水泥矿用材料的密度测定方法》进行,通过测定水泥样品的质量和体积来计算其密度。
3. 可塑性测试:按照 GB/T1345-2005《普通 Portland 水泥塑性试验方法》进行,通过观察和测量水泥样品的可塑性、流动性以及凝结时间等来评估其可塑性。
四、结果分析根据以上验证方法,我们对水泥样品进行了全面的测试,并得出了如下结果:1.强度测试结果显示,水泥样品的抗压强度符合相关标准的要求,达到了设计强度的要求,具有良好的承载能力。
2.密度测试结果显示,水泥样品的密度符合相关标准的要求,其质量和体积均处于合理范围内。
3.可塑性测试结果显示,水泥样品的可塑性和流动性良好,凝结时间合理,适合施工使用。
4.适应性测试结果显示,水泥样品的收缩或膨胀情况均在允许范围内,适应性良好,可在各种环境条件下使用。
五、结论根据以上的结果分析,我们得出以下结论:此次水泥的物理性能能力验证结果显示,水泥样品在强度、密度、可塑性以及适应性等方面均符合相关标准的要求。
该水泥具有较高的抗压强度、适当的密度、良好的可塑性以及良好的适应性,能够满足工程施工的需求。
六、建议根据本次验证的结果,我们建议生产商继续保持产品的物理性能能力,并进行定期的检测和评估,以确保产品的质量和可靠性。
同时,建议加强对原材料的质量控制,确保原材料的稳定性和可靠性。
2.GB/T1346-2024《珠光体结构的金属矿用材料和水泥矿用材料的密度测定方法》3. GB/T1345-2005《普通 Portland 水泥塑性试验方法》。
水泥物理性能检验报告

水泥物理性能检验报告1. 引言水泥是建筑材料中常用的一个组成部分,其物理性能的检验对于保证建筑质量至关重要。
本报告将介绍水泥物理性能的检验方法以及检验结果分析。
2. 检验方法2.1. 取样在进行水泥物理性能检验前,首先需要取样。
取样过程应遵循相关的取样标准,确保取得的样品能够代表整个批次的水泥。
2.2. 测试项目本次水泥物理性能检验涵盖了以下几个主要测试项目:2.2.1. 压缩强度测试压缩强度是评估水泥质量的重要指标之一。
该测试通过在标准条件下施加压缩力来确定水泥的抗压能力。
2.2.2. 抗折强度测试抗折强度测试用于评估水泥在受弯曲力作用下的承载能力。
该测试通过在标准条件下施加弯曲力来确定水泥的抗折能力。
2.2.3. 吸水性测试水泥的吸水性能对于建筑材料的使用寿命和质量至关重要。
吸水性测试通过浸泡水泥样品并测量其吸水量来评估水泥的抗渗透能力。
2.3. 检验设备为了完成上述测试项目,我们使用了以下检验设备:•压力机:用于进行压缩强度和抗折强度测试。
•吸水性测试仪:用于测量水泥样品的吸水量。
3. 检验结果与分析经过上述的检验方法,我们得到了以下检验结果:测试项目结果压缩强度50 MPa抗折强度30 MPa吸水性0.2%根据以上结果,我们可以得出以下分析:•水泥的压缩强度为50 MPa,表明其具有较高的抗压能力,适合用于承受较大压力的建筑结构。
•水泥的抗折强度为30 MPa,表明其在受弯曲力作用下具有一定的承载能力,适合用于需要抗弯性能的构件。
•水泥的吸水性为0.2%,说明其具有较好的抗渗透能力,适合用于需要防水性能的建筑材料。
4. 结论通过本次水泥物理性能检验,我们得出了水泥的压缩强度、抗折强度和吸水性等关键性能指标。
根据检验结果分析,我们可以认为该批次的水泥具有较高的抗压能力、一定的抗弯能力和较好的抗渗透能力,适合用于各类建筑工程中。
5. 参考文献[1] 国家标准化管理委员会. 水泥物理性能检验方法标准. 中国标准出版社, 20xx.。
水泥物理性能检测要点分析

一、细度检测与结果准确性提高方法在水泥物理性能检测中,细度检测是非常关键的一环,为确保检测结果的准确性,采取适当的方法至关重要。
采用负压筛法进行检测时,我们必须确保负压筛的负压值超出规范要求,并使用GSB14-1511标准样品对筛子进行修正。
当C值处于0.80~1.20范围内时,试验筛才能继续使用,同时所得的测量结果需乘以相应的修正系数。
此外,筛余量的精确称量也必须在具备一定精度的天平上进行。
为确保检测的准确性,我们还需定期检查负压筛的密封状态,并及时清理收尘布袋,以保持试验筛的清洁和筛孔的畅通。
每使用10次后,试验筛必须进行清洗,而每使用100次后,则需重新标定水泥试验筛。
这些措施的执行将有效提高细度检测的准确性,并确保水泥质量的可靠评估。
二、标准稠度用水量及凝结时间检测与结果准确性提高方法在水泥物理性能检测中,标准稠度用水量和凝结时间的准确测定对于保证水泥质量至关重要。
为了提高检测结果的准确性,我们可以采取以下方法:2.1 仪器设备方面:定期检查和校正检测设备是确保准确测量的关键。
例如,搅拌叶与搅拌锅之间的间隙,由于搅拌过程中水泥浆与搅拌叶及搅拌锅的摩擦,可能导致磨损,使间隙变大或变小,进而影响净浆搅拌的均匀性和充分程度。
因此,定期检查和校正这些设备是至关重要的。
同时,选择符合新要求的水泥抗压抗折试验机、水泥胶砂振实台和水泥胶砂搅拌机,能够进一步提升产品质量和检验结果的准确性。
2.2 标准稠度用水量方面:调整水量法是进行标准稠度用水量检测的首选方法。
在检测时,首先通过不变水量法找到初始用水量,然后根据试锥指针的下降位置,判断第二次应调整的用水量,以准确找到标准稠度用水量。
在测定过程中,应避免中途添加水量,并确保滑动杆无紧涩和晃动情况。
此外,净浆搅拌机的间隙要调整到规定范围内,水泥净浆装入圆锥模后应立即进行插捣和振动以排除空气,抹平次数不宜过多。
最后,测定时要保证试锥自由下落,位置准确,整个操作过程应在规定时间内完成。
水泥物理性能检验报告

水泥物理性能检验报告一、引言水泥是建筑材料中常用的一种材料,它在工程中承担着重要的作用。
为了确保水泥质量的稳定和优良,需要对其物理性能进行检验和评价。
本报告旨在对批水泥样品进行物理性能检验,并对检验结果进行分析和评价。
二、实验方法1.取样:从供应商提供的水泥中随机取得一定数量的样品,保证样品的代表性。
2.检测项目:对水泥样品进行常规的物理性能检测,包括初凝时间、终凝时间、凝结时间、抗压强度等项目。
3.试验设备:试验设备主要包括细度计、细度筛、试验均匀器、试验机等。
三、实验结果1.初凝时间:本次试验中,水泥样品的平均初凝时间为30分钟。
2.终凝时间:本次试验中,水泥样品的平均终凝时间为240分钟。
3.凝结时间:在本次试验中,水泥样品的平均凝结时间为270分钟。
4.抗压强度:对水泥样品进行7天和28天抗压强度测试,结果如下表所示:抗压强度(MPa)时间(天)728样品13245样品23448样品33144四、分析和评价1.水泥样品的初凝时间和终凝时间符合国家标准要求。
初凝时间通常不应超过45分钟,终凝时间不应低于10小时。
2.水泥样品的凝结时间为270分钟,表明水泥具有较快的凝结速度。
这对于加快工程施工进度是有益的。
3.水泥样品在抗压强度测试中表现出较高的强度值。
根据试验结果,样品在7天和28天的抗压强度都达到了国家标准要求。
五、结论从本次试验结果可以得出以下结论:1.水泥样品的初凝时间和终凝时间符合国家标准要求。
2.水泥样品的凝结时间为270分钟,表明水泥具有较快的凝结速度。
3.水泥样品在抗压强度测试中表现出较高的强度值,符合国家标准要求。
六、建议基于本次试验结果,我们对水泥供应商提出以下建议:1.继续保持水泥样品的物理性能稳定性,确保其初凝时间和终凝时间符合国家标准要求。
2.进一步提高水泥的凝结速度,以满足各类工程施工的时间要求。
3.继续保持水泥样品的抗压强度指标,确保其质量稳定。
4.加强原料质量控制,确保水泥质量的稳定性和可靠性。
水泥物理性能试验的操作规程

水泥物理性能试验的操作规程一、水泥细度检验方法(80um筛筛析法)负压筛析仪(负压范围:4000~6000MPa)称取25g试样置于洁净的负压筛中,盖上筛盖,开动筛析仪连续筛析2min,轻轻敲击筛盖,使试样落下,筛毕用天平称量筛余物。
二、水泥标准稠度用水量、凝结时间、安定性检验方法1、标准稠度用水量的测定(标准法)试验前必须做到:维卡仪的金属棒能自由滑动;调整至试杆接触玻璃板时指针对准零点;搅拌机运行正常。
2、水泥净浆的拌制用水泥净浆搅拌机搅拌,搅拌机和搅拌叶片先用湿布擦过,将拌和水倒入搅拌锅内,然后在5s~10s内小心将称好的500g水泥加入水中,防止水和水泥溅出;拌和时,先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅锅壁上的水泥浆刮入锅中间,接着高速搅拌120s停机。
3、标准稠度用水量的测定步骤拌和结束后,立即将拌制好的水泥净浆装入已置于玻璃板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低度杆直至与水泥净浆表面接触,拧紧螺丝1s~2s后,突然放松,使试杆垂直自由地沉入水泥净浆中。
在试杆停止沉入或释放试杆30s时记录试杆距底板之间的距离,升起试杆后,立即擦净;整个操作过程应在搅拌后1.5min内完成。
以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆,其拌和水量为该水泥的标准稠度用水量(P),按水泥质量的百分比计。
4、凝结时间的测定测定准备工作:调整凝结时间测定仪的试针接触玻璃板时,指针对准零点。
试件的准备:以标准稠度用水量量制成的标准稠度净浆一次装满试模,振动数次刮平,立即放入湿气养护箱中。
记录水泥全部加入水中的时间作为凝结时间的起始时间。
A、初凝时间的测定:试件在湿气养护箱中养护至加水后30min时进行第一次测定。
测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触,拧紧螺丝1s~2s后,突然放松,试针垂直自由地沉入水泥净浆。
1 水泥物理力学性能检验

• • • • •
水泥取样方法:GB/T 12573-2008 水泥细度检验方法(筛析法): GB/T 1345-2005 水泥胶砂流动度测定方法:GB/T 2419-2005 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T1346-2011 水泥胶砂强度检验方法(ISO法):GB 17671-1999 水泥密度测定方法:GB/T 208-1994 水泥比表面积测定方法(勃氏法):GB/T 8074-2008 水泥化学分析:GB/T 176-2008 通用硅酸盐水泥:GB 175-2007
使用时注意:抗压夹具随着使用时间的增长,在做压力试验时其 强度值会逐步减少,因此在做好比对试验的前提下要注意更换, 日常使用时注意传压柱进行导向运动时垂直滑动而不发生摩擦和 晃动,上压板的球面应能自由滑动。
二、水泥胶砂强度检验方法( ISO法)
10 )试模:符合 JC/T726-2005《水泥胶砂试模》。重量: 6.25kg±0.25kg , 试模组装后模腔基本尺寸:长( A )为 160mm±0.8mm ,宽( B )为 40mm±0.2mm,深(C)为40.1mm±0.1mm,用前自检,日常使用注 意不要混用。 11)天平:精度应为±1g。 12)加水器:当使用自动滴管加225ml水时,滴定管的精度应为 225ml±1ml。
二、水泥胶砂强度检验方法( ISO法)
3、试验条件 1)试验室:试体成型试验室的温度应保持 20℃±2℃,相对湿度应 不低于50%。 2)养护箱:试体带模养护的养护箱或雾室温度保持在 20℃±1℃, 相对湿度不低于90%。 3)养护池:水的温度应在20℃±1℃。 养护池温度及试验室温、湿度每天至少记录一次,养护箱或雾室 的温度与相对湿度至少每4小时记录一次,在自动控制的情况下记 录次数可以酌减至一天二次。 6、胶砂配比: P· Ⅰ、 P· Ⅱ、 P· O 、 P· S 、 P· F 、 P· C 水泥每锅胶砂配比均为:中国 ISO标准砂 1350g±5g,水泥 450g±2g,水 225g±1g。 P· P(火山灰质硅酸盐)水泥每锅的砂及水泥的量不变,但加水量 必须按GB/T2419-2005《水泥胶砂流动度测定方法》测定其水泥的 流动度后来确定强度成型的加水量。(水泥胶砂流动度不小于 180mm,用0.01整倍数递增法)
水泥物理力学性能检验(整理后)

水泥物理力学性能检验杨利雄第一节水泥1.1基本知识1.1.1水泥的定义、用途及分类1、定义:凡细磨材料,加水后变为塑性浆体,既能在水中硬化又能在空气中硬化的水硬性胶凝材料统称为水泥。
2、用途:水泥属于无机水硬性胶凝材料,不仅可用于干燥环境中的工程,而且也可以用于潮湿环境及水中的工程,在建筑、交通、水利电力、能源矿山、国防、航空航天、农业等基础设施建筑工程中得到广泛应用。
3、分类:水泥的分类方法主要有以下两种。
按水泥的性能和用途分水泥按性能和用途分为通用水泥、专用水泥和特性水泥三大类,见表1.1-1.表1.1-1 水泥按性能和用途的分类(2)按水泥中主要水硬性物质分水泥按主要水硬性物质的分类见表1.1-2。
1.1.2水泥生产所用的原材料及主要化学组成1、原材料:硅酸盐系列水泥原材料分为生产硅酸盐水泥熟料的原材料、石膏和混合材料三类。
(1)硅酸盐系列水泥熟料的原材料①石灰石:石灰质原料采用天然石灰石、凝灰岩和贝壳等,主要提供水泥中的CaO。
②粘土:主要为黏土(或页岩、泥岩、粉砂岩、河泥等),其主要成分为SiO2,其次为Al2O3和少量Fe2O3。
③铁粉:铁矿粉采用赤铁矿,化学成分为Fe2O3,主要弥补黏土中铁质含量的不足。
(2)石膏:在生产水泥时,必须掺入适量石膏,以延缓水泥的凝结。
在硅酸盐水泥、普通硅酸盐水泥中石膏主要起缓凝作用;而在掺较多混合材料的水泥中,石膏还起激发混合材料活性的作用。
掺入的石膏主要为天然石膏、工业副产石膏(无水硫酸钙)等。
(3)混合材料:为了改善水泥的性能,调节水泥强度等级,提高水泥的产量,扩大水泥品种,降低成本,在生产水泥时加入的矿物质材料,称为混合材料。
混合材料分为活性混合材料和非活性混合材料两类,其种类、性能及常用品种见表1.1-3。
①粒化高炉矿渣。
它是高炉冶炼生铁的副产品,以硅酸钙和铝酸钙为主要成分的熔融物,经水淬成粒后的产品。
粒化高炉矿渣的化学成分主要为CaO、Al2O3 、SiO2 ,约占总质量的90%以上,另外还含有少量的MgO、Fe2O3 和一些硫化物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥物理性能检验方法1、目的根据国家标准检验水泥标准稠度用水量、凝结时间、安定性是否符合国家的标准要求。
2、检验范围a)通用硅酸盐水泥;3、引用国家标准a)GBl75-2007 通用硅酸盐水泥b)GB/Tl346-2011水泥标准稠度用水量、凝洁时间、安定性检验方法c) GB/T1345-2005水泥细度检验方法d) GB/T8074-2008比表面积测定方法4、仪器设备a)、标准稠度与凝结时间测定仪。
b),水泥净浆搅拌机(NJ-160)c)沸煮箱(FZ-3lA)d)雷氏夹e)量筒(50ml,100m1)f)天平(DJ-10002 0.01g/1000g)g) 负压筛析仪(FSY-150G)h) 所用仪器设备应保证经过相关部门的检定,且应检定合格达到相应的精度,并在有效期内使用。
5、人员和实验条件检验人员应是通过省级或省级以上部门培训合格且取得相应上岗证书的技术人员,应了解本站的《质量手册》及相关程序文件的质量要求,能熟练操作检验仪器设备并能处理一般例外情况的发生。
试验室的温度(20±2)℃相对温度大于50%;水泥试样,拌和水、仪器和用具温度应与试验一致;湿气养护箱温度为20℃±1℃,相对湿度不低于90%。
6、样品试验前应按照程序文件《样品收发管理制度》检查试验样品的来源、性质、规格等技术指标和处置程序是否符合国家的要求。
若不符合应退回样品登记室,联系委托方重新取样,若符合进入检验环节。
7、标准稠度用水量的测定:(标准法)GB/Tl346-20117.1标准稠度用水量用符合JC/T727按修改后维卡仪标尺刻度进行测定,此时仪器试棒下端应为空心试锥,装净浆的试模采用锥形模。
标准稠度用水量可用调整用水量和不变水量两种方法中的任一种测定,如发生争议时以调整用水量方法为准。
7.2试验前须检查维卡仪的滑动杆能自由滑动;试模和玻璃底板用湿布擦拭,将试模放在底板上;调整至试杆接触玻璃时,指针应对准标尺零点;搅拌机运转正常等。
7.3水泥净浆的拌制:7.3.1用符合TC/T729的水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿棉布擦过,将拌和水倒入搅拌锅内,然后再5s~10s内小心将称好的500g水泥加入水中,防止水和水泥溅出。
拌和时,先将锅放到搅拌机锅座上,升至搅拌位置,开动搅拌机,低速搅拌120s,停拌15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着快速搅拌120s后停机。
7.3.2拌和结束后,立即取适量水泥净一次性将其装入已置于玻璃底板上的试模中,浆体超过试模上端用宽约25mm的直边刀轻轻拍打超出试模部分的浆体5次以排除浆体中的孔隙,然后再试模上表面约1/3处,略倾斜于试模分别向外轻轻锯掉多余净浆,再从试模边沿轻抹顶部一次,使净浆表面光滑。
在锯掉多余净浆和抹平的操作过程中,注意不要压实净浆;抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s-2s后实然放松,使试杆垂直自由地沉入水泥净浆中。
在试杆定止沉入或释放试杆30s时记录试杆距底板之间的距离,升起试杆后立即擦净;整个操作应在搅拌后1.5mim内完成。
以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。
其拌和水量为该水泥的标准稠度用水量(p),按水泥质量的百分比计7.4标准稠度用水浪测定方法(代用法):7.4.1试验前准备工作。
7.4.2维卡仪的金属棒能自由滑动,调整至试锥接触锥模顶面的指针为零点。
7.4.3搅拌机运行正常。
7.4.4水泥净浆的拌制同7.3.17.5标准稠度的测定:7.5.1采用代用法测定水泥标准稠度用水量可用调整水量和不变水量两种方法的任一种测定,采用调整水量方法的拌和水量按经验伐水,采用不变水量方法时拌和水量用142.5ml。
7.5.2拌和结束后,立即将拌制好的水泥浆装入锥模中,用宽约25mm的直边刀在浆体表面轻轻插捣5次,再轻振5次,刮去多余的净浆,抹平后迅速放到锥下面固定的位置上,将试锥降至净浆表面,拧紧螺丝1s-2s后实然放松,让试锥垂直自由地沉入水泥净浆中。
到试锥停止下沉或释放试锥30s时记录试锥下沉深度。
整个操作应在搅拌后1.5mim内完成。
7.5.3用调整水量方法测定时,以试锥下沉深度30mm±1mm时的净浆为标准稠度净浆。
其拌和水量为该水泥的标准稠度用水量(p),按水泥质量的百分比计。
如下沉深度超出范围需另称试样,调整水量重新试验,直至达到30mm±1mm为止。
7.5.4用不变水量方法测定时,根据(1)或(仪器上对应标尺)计算得到标准稠度用水量P。
当试锥下沉深度小于13mm 时,应改用调整水量法测定。
P=33.4-0.185S (1)式中:P—标准稠度用水量%;S—试锥下沉深度,单位为毫米(mm)8、凝结时间的测定:8.1测定前的准备工作:将圆模放在玻璃板上,在内侧稍稍涂上一层机油,调整凝结时间测定仪的试针接触玻璃板时指针应对准标尺零点。
试件的制备:以标准稠度用水量按7.3.1制成标准稠度净浆,按7.3.2装模和刮平后,立即放入湿汽养护箱中。
记录水泥全部加入中的时间作为凝结时间的起始时间。
8.2初凝时间的测定:试件在湿汽养护箱中养护至加水后30min时进行第一次测定。
测定时,从湿汽养护箱中取出圆模放到试针下,降低试针与净浆表面接触,拧紧螺丝1-2s 后突然放松,试针垂直自由沉入净浆,观察试针停止下沉时或释放试针30s的指针读数,临近初凝时间时每隔5mim(或更短时间)测定一次。
当试针沉至距底板4mm±1mm时,即为水泥达到初凝状态;8.3终凝时间的测定:为了准确观测试针沉入的状况,在终凝针上安装了一个环形附件,在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下翻转180°,直径大端向上,小端向下放在玻璃板上,再放入湿气养护箱中继续养护。
临近终凝时间每隔15mm(或更短时间)测定一次,当试针沉入试体0.5mm 时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态。
由水泥全部加入水中至初、终凝状态时间为水泥的初凝时间或终凝时间用“mim”表示。
测定时应注意在最初测定的操作时应轻轻扶持金属棒,使其徐徐下降以防试针撞弯,但结果以自由下落为准;在整个测试过程中试针贯入的位置至少要距圆模内壁10mm。
临近初凝时,每隔5min(或更短时间)测定一次,临近终凝时每隔15min(或更短时间)测定一次,到达初凝或终凝状态时,应立即重复一次,当两次结论相同时才能定为到达初凝状态,到达终凝时,需要在试体另外两个不同点测试,确定结论相同才能确定到达终凝状态。
每两次测定不得让试针落入原针孔,每次测试完毕须将试针擦净并将圆模放回湿汽养护箱内,整个测定过程中要防止圆模受振。
9、安定性的测定:9.1安定性的测定方法可用饼法可用雷氏法,有争议以雷氏法为准。
饼法是观察水泥净浆试饼沸煮后的外形变化来检验水泥的体积安定性。
雷氏法是测定水泥净浆在雷氏夹中沸煮后的膨胀值。
9.2测定前的准备工作:若采用雷,氏法时每个试样需成型两个试件,每个雷氏夹需配备两个边长或直径约80mm,厚度4mm~5mm的玻璃板两块,若采用饼法时一个样品需准备两块约100mm ×100mm的玻璃板。
每种方法每个试样需成型两个试件。
凡与水泥净浆接触的玻璃板和雷氏夹表面都需稍稍涂上一层油。
水泥标准稠度净浆的制备,按标准稠度用水量法制成的标准稠度净浆。
9.3试饼的成型方法:将制备好的净浆取出一部分成两等份,使之成球形,放在预先准备好的玻璃板上,轻轻振动玻璃板并用温布擦过的小刀由边缘向中央抹动。
做成直径70-80mm,中心厚约10mm,边缘渐薄,表面光滑的试饼,接着将试饼放入湿汽养护箱内养护24±2h。
9.4雷氏夹试件的制备方法:将预先制备好的雷氏夹放在已稍擦油的玻璃板上,并立刻将已制好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约25mm 的直边刀在浆体表面轻轻插捣3次然后抹平,盖上稍涂油的玻璃板,接着立刻将试模移至湿汽养护箱内养护24土2h。
9.5沸煮:调整好沸煮箱内的水位,使能保证在整个沸煮过程中都超过试件,不需中途添补试验用水,同时又保证能在30±5min内升至沸腾。
9.5.1当为饼法时,脱去玻璃板取下试饼,先检查试饼是否完整(如已开裂翘曲要检查原因,确证无外因时,该试饼已属不合格,不必沸煮),在试饼无缺陷的情况下将试饼放在沸煮箱的水中蓖板上,然后在30土5min内加热至沸并恒沸3h±5min。
9.5.2当用雷氏法时,脱去玻璃板取下试饼,先测量试件指尖端间的距离(A),精确到0.5mm,接着将试件放入沸煮箱水中试件架上,指针朝上,试件之间互不交叉,然后在30±5min内加热至沸并恒沸180mim土5min。
9.6结果判别:沸煮结束,即放掉箱中的热水,打开箱盖,待箱体冷却至室温,取出试件进行判别。
若为试饼,且目测未发现裂缝,用直尺检查也没有弯曲,使钢直尺和试饼底部靠紧,以两者间不透光为不弯曲的试饼为安定性合格,反之为不合格。
当两个试饼判别结果有矛盾时,该水泥的安定性为不合格。
若为雷氏夹,测量雷氏夹指针尖端间的距离(C),准确至0.5mm,当两个试件煮后增加距离(C-A)的平均值不大于5.0mm时,即认为该水泥安定性合格,当两个试件煮后增加距离(C-A)的平均值大于5.0mm时,应用同一样品立即重做一次试验,以复检结果为准。
9.7试验报告:试验报告应包括标准稠度用水量、初凝时间、终凝时间、雷氏夹膨胀值或试饼的裂缝弯曲形态等所有的试验结果。
10、水泥细度检验方法GB/T1345-200510.1样品处理水泥样品应充分拌匀,通过0.9mm方孔筛,记录筛余物情况,要防止过筛时混进其他水泥。
10.2使用的仪器设备:10.2.1天平:最大称量为100g,分度值不大于0.01g。
10.3操作步骤10.3.1试验准备:试验前所用试验筛应保持清洁,负压筛和手工筛应保持干燥。
试验时,80um筛析试验称取试样25g、45um筛析试验称取样10g。
10.3.2筛析试验前,应把负压筛放在筛座上,盖上筛盖,接通电源,检查控制系统,调节负压至4000-6000Pa范围内。
采用80um筛析试验时,称取试样25g精确至0.01g,置于洁净的负压筛中,盖上筛盖,放在筛座上,接通电流开动筛析仪连续筛析2min,在此期间如有试样附着在筛盖上,可轻轻地敲击,使试样落下。
筛毕,用天平称量筛余物。
10.3.3当工作负压小于4000Pa时,应清理吸尘器内水泥,使负压恢复正常。
10.3.4试验筛的清洗:试验筛必须经常保持洁净,筛孔通畅,使用10后要进行清洗,金属框筛、铜丝网筛清洗时应用专门的清洗剂,不可用弱酸浸泡。