全等三角形基础测试题

合集下载

全等三角形的三套测试卷及答案

全等三角形的三套测试卷及答案

全等三角形的三套测试卷一 •填空题(每题3分,共30分)1.如图,△ ABC^A DBC 且/ A 和/ D, / ABC 和/ DBC 是对应角,其对应边: _______ .2 .如图,△ ABD^A ACE 且/ BAD 和/ CAE,/ ABD 和/ ACE,/ ADB 和/ AEC 是对应角,则对应边3.已知:如图,△ ABC^A FED 且 BC=DE 则/ A=9. __________________________________________________________________ 如图,/仁/2,由AAS 判定厶ABD^A ACD 则需添加的条件是 ___________________________________ .10. 如图,在平面上将△ ABC 绕B 点旋转到厶A ' BC 的位置时,AA // BC , / ABC=70 ,则/CBC为 _______ 度. 二.选择题(每题3分,共30分)11.下列条件中,不能判定三角形全等的是 ( )A.三条边对应相等 B. 两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A. 它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ ABE^A ACD,/仁/ 2, / B=/ C,不正确的等式是( )=AC B. / BAE / CAD =DC =DE 14. 图中全等的三角形是( )A. I 和UB. U 和WC. U 和川D. I 和川 15. 下列说法中不正确的是( )A.全等三角形的对应高相等B.全等三角形的面积相等,A D=4.如图,△ ABD^A ACE >则AB 的对应边是,/ BAD 的对应角是5.已知:如图,△ ABE^A ACD / B=/ C,则/ AEB= 一^ A '于 C, DEL AC 于 6.已知:如图, 8.如图,已知: 再证△ BDE^AD'△A',AE J ,AD£ AB 于 A , BC=:1 = / 2 , / 3=/4,要证 BD=CD ,需先证△ AEB^A A EC ,根据是 _ ,根据是 .7 .已知: BC^△A 'B ' B=5,贝U AD=贝殿ABC 的周长为 '的周长为12cC.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去/ DFE/ BFC()一.填空题:(每题3分,共30 分)1.如图 1,AD 丄AC D 为BC 的中点,则△ AB 医3.如图 AB H D& BE = CF,要证△ ABF3B D图3图1 DF 若 A AEB=100 , / ADB=30,贝u/BCF=龟4■-7 E1图 1 1AE , 1 27 , J 贝 2B ------------------ ----------- C5.如图 已知AB// CD AD// BC ,是BD 上两点,且 BF = DE \/A / DI 勺对角线相交于O 点且有AB// DC ,则图中共有对全等三角形.四边形A AD// BC ,则图中有 .对全等三角17.如图,OA=OB,OC=OD /O=60 , / C=25 则/ BED 的度数是()° B. 85° C. 65° D. 以上都不对18. 已知:如图,△ ABC^A DEF,AC/ DF,BC// EF.则不正确的等式是()=DF =BE =EF =EF 19.如图,/ A=Z D , OA=OD , / DOC=5°,求/ DBC 的度数为( )20. 如图,/ ABC M DCB=70 , / ABD=40 , AB=DC ,则/ BAC= ()三.解答题(每题8分,共40分)21. 已知:如图,四边形 ABC 冲,AB // CD , AD // BC.求证:△ ABD^A CDB.22. 如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达 A 和B 的点C, 连结AC 并延长到D,使CD=CA 连结BC 并延长到E,使EC=CB 连结DE,量出DE 的长,就是A 、B 的距 离.写出你的证明.23. 已知:如图,点 B,E,C,F 在同一直线上,AB // DE,且 AB=DE,BE=C 求证:AC / DF. 24. 如图,已知:AD 是BC 上的中线,且DF=DE 求证:BE / CF.25. 如图,已知:AB 丄BC 于B , EF 丄AC 于G , DF 丄BC 于D , BC=DF .求证:AC=EF 25.(1)证DE=EC (2)设BE 与CD 交于F,通过全等证 DF=CF.全等三角形 B 卷(考试时间为90分钟,满分100分)2.如图 2,A C 需补充条件AB=DCAD=BC 是DB 上两点 BE A5, 6.如图 6,A7.“全等三角形对应角相等”的条件是11. 如图9,A ABC^A BAD A 和和D 分别是对应顶点,若 AB= 6cm, AO 4cm, BO5cm 贝U AD 的 长为 以上都不对 12. 下列说法正确的是 ()A. 周长相等的两个三角形全等B. 有两边和其中一边的对角对应相等的两个三角形全等C. 面积相等的两个三角形全等D. 有两角和其中一角的对边对应相等的两个三角形全等13. 在厶ABC 中,/ B =Z 。

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

全等三角形判定基础50题

全等三角形判定基础50题

全等三角形的判定基础50题专练1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。

2.已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?3.已知AB =CD ,BE =DF ,AE =CF ,问AB ∥CD 吗?4.已知在四边形ABCD 中,AB =CD ,AD =CB ,问AB ∥CD 吗?说明理由。

5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,问ABD ≌⊿ACE .吗?为什么? 6.已知CD ∥AB ,DF ∥EB ,DF =EB ,问AF =CE 吗?说明理由。

7.已知BE =CF ,AB =CD , ∠B =∠C .问AF =DE 吗? 8.已知AD =CB , ∠A =∠C ,AE =CF ,问EB ∥DF 吗?说明理由。

9.已知,M 是AB 的中点,∠1=∠2,MC =MD ,问∠C =∠D 吗?说明理由。

AB CDFEA CB DE FDCF EA BAD E1 2 A D C E F B A C D B E F B A D F E C M A B C D 1 210.已知,AE =DF ,BF =CE ,AE ∥DF ,问AB =CD 吗?说明理由。

11.已知∠1=∠2,∠3=∠4,问AC =AD 吗?说明理由。

12.已知∠E =∠F ,∠1=∠2,AB =CD ,问AE =DF 吗?说明理由。

13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。

14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么? 15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗? 17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

全等三角形32道经典题

全等三角形32道经典题

B O P A C Q E D
2.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个 更小的正三角形,……如此继续下去,结果如下表: 所剪次数 正三角形个数 1 4 2 7 3 10 4 13 … … n an
则 an=________________(用含 n 的代数式表示). O B E D C C A
9.如图(10),AC∥DE, BC∥EF,AC=DE 求证:AF=BD E C F A
A
C N M N E D B M E 图② D A
D B B
C
A 图①
10. 已知: 如图,B,C,E 三点在同一条直线上,AC ∥ DE ,AC CE ,ACD B . 求证: △ABC ≌△CDE . D A
三、简答题 1、已知:如图,AD=BC,AC=BD.求证:OD=OC
D O
C
A
B
2、如图,AB∥CD(1)用直尺和圆规作 C 的平分线 CP,CP 交 AB 于点 E(保留作图痕迹,不
写作法) (2)在(1)中作出的线段 CE 上取一点 F,连结 AF。要使△ACF≌△AEF,还需要添加 一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不 要求证明)。 A B
A E C E’
A E D l E
A E D ’ D l D’ F ’ B
A E
B
l B C’ C (2)
’ B ′ C (3) ′ ′
C (4)
D
16.如图,在梯形 ABCD 中,AD∥BC,E 为 CD 中点,连接 AE 并延长 AE 交 BC 的延长线于 ′ 点 F.(1)求证:CF=AD;(2)若 AD=2,AB ′ =8,当 BC 为多少时,点 B 在线段 AF 的垂 直平分线上,为什么? A D

全等三角形基础练习题及答案

全等三角形基础练习题及答案

全等三角形基础练习题及答案一、选择题1. △ABC和△A.△ABC≌△C. △ABC≌△2. 如图,已知AB=CD,AD=BC,则下列结论中错误的是A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC 中,若AB=,BC=,AC= .则B. △ABC≌△ D. △ABC≌△3. 下列判断正确的是A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB、CD、EF相交于O,且被O点平分,DF =CE,BF=AE,则图中全等三角形的对数共有A. 1对B.对C.对D.对5. 如图,将两根钢条,的中点O连在一起,使,可以绕着点O自由的转动,就做成了一个测量工件,则理由是的长等于内槽宽AB,那么判定△OAB≌△A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=______. 12. 已知,如图,AB=CD,AC=BD,则△ABC≌______,△ADC≌ ______.三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵ AB∥CD ,∴ ∠______=∠______ ,在△______和△______中,∴ Δ______≌Δ______ .∴ ∠______=∠______ .∴ ______∥______.15. 如图,已知AB=DC,AC=DB,BE=CE求证:AE =DE.答案与解析一.选择题1. B;注意对应顶点写在相应的位置.2. D;连接AC或BD证全等.3. D;4. C;△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5. A;将两根钢条再由对顶角相等可证.6. D;△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.,的中点O连在一起,说明OA=,OB=,二.填空题7. 66°;可由SSS证明△ABC≌△DCB,∠OBC=∠OCB=∠ABC=25°+41°=66°.8. 4;,所以∠DCB=△AOD≌△COB,△AOB≌△COD,△ABD≌△CDB,△ABC≌△CDA.9. BC=ED;10.56°;∠CBE=26°+30°=56°.11.20°;△ABE≌△ACD12.△DCB,△DAB;注意对应顶点写在相应的位置上.三.解答题13.证明:在△ADC与△BCD中,14.3,4;ABD,CDB;已知;1,2;两直线平行,内错角相等;ABD,CDB;AB,CD,已知;全等三角形 one 姓名一.填空题1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC 是对应角,其对应边:_______.2.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图, AC⊥BC于C , DE⊥AC于E , AD⊥AB 于 A , BC=AE.若AB=, 则AD=___________..已知:△ABC≌△A’B’C’,△A’B’C’的周长为12cm,则△ABC 的周长为 .8.如图, 已知:∠1=∠, ∠3=∠, 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.AC’A’AACBC9.如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.二.选择题11、下列条件中,不能判定三角形全等的是 A.三条边对应相等 B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是A.AB=ACB.∠BAE=∠CAD C.BE=DC D.AD=DE14. 图中全等的三角形是A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是 A.全等三角形的对应高相等 B.全等三角形的面积相等 C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有A.5对B.4对C.3对D.2对CADO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED 的度数是A.70°B.5°C.5°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图, ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为A.50°B.30°C.45°D.25°20. 如图, ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC=A.70°B.80°C.100°D.90° 三.解答题21. 已知:如图, 四边形ABCD中, AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC 于D , BC=DF.求证:AC=EF.BEDCAGF全等三角形 two一.填空题:1.如图1,AD⊥BC,D为BC的中点,则△ABD≌_________.图1图24. 如图4,△ABC≌△AED,若AB?AE,?1?27?,则?2? .5.如图5,已知AB∥CD,AD∥BC,E.F是BD上两点,且BF=DE,则图中共有对全等三角形.图56.如图6,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有___对全等三角形..“全等三角形对应角相等”的条件是 .8.如图8,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=__________.图9图8图6A9.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.10.在Rt△ABC中,∠C=90°,∠A.∠B的平分线相交于O,则∠AOB=_________. 二.选择题:11.如图9,△ABC≌△BAD,A和B.C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是A.∠AB.∠BC.∠CD.∠B或∠C 14.下列条件中,能判定△ABC≌△DEF的是 A.AB=DE,BC=ED,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EF C.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE15.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是 A.AD>1B.AD<5C.1<AD< D.2<AD<10 16.下列命题正确的是 A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC中,AB=AC,BD⊥AC于D,CE⊥AB 于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为A.3对B.4对C.5对D.6对OBD图 11CA图10全等三角形测试题一、选择题 1.下列命题中真命题的个数有⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, A、3个 B、2个 C、1个D、0个2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是 A.甲和乙B.乙和丙C.只有乙D.只有丙3.在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是A. ∠B=∠B′B. ∠C=∠C′C. BC=B′C′D. AC=A′C′4.P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.A.小于B.大于 C.等于D.不能确定两直角三角形全等的是6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。

七年级全等三角形测试题(卷)八套

七年级全等三角形测试题(卷)八套

全等三角形测试题一1.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.在△ABC和△A'B'C'中 , 要使△ABC≌△A'B'C' , 需满足条件()A.AB=A'B', AC=A'C', ∠B=∠B'B.AB =A'B', BC=B'C', ∠A=∠A'C.AC=A'C', BC=B'C', ∠C=∠C'D.AC=A'C', BC=B'C', ∠C=∠B'3.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C.7 D.84.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )A.1 B.2 C.3 D.45.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.6.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=__ ______.7.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于8.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=9.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=10.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数11.已知:如图AB=CD,AD=BC 求证:AD∥BC.12.已知:如图 , E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C13.如图 , AB BC于B , AD DC于D , 且CB=CD , AC , BD相交于O.求证:∠ABD=∠ADB14.已知:如图 , AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC.15.已知:如图 , AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.16.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.全等三角形测试题二1.如图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。

3.5全等三角形判定(基础题)

3.5全等三角形判定(基础题)

第一板块-认识三角形-三角形三线一、训练平台1.如图1所示,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()A.90° B.95° C.75° D.55°(1) (2) (3) (4)2.如图2所示,在△ABC中,∠ABC=40°,AD,CD•分别平分∠BAC,•∠ACB,•则∠ADC等于()A.110° B.100° C.190° D.120°3.如图3所示,D,E分别为△ABC的边AC,BC的中点,则下列说法中不正确的是()A.DE是△BDC的中线 B.图中∠C的对边是DE C.BD是△ABC的中线 D.AD=DC,BE=EC4.如图4所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()A.50° B.60° C.70° D.80°5.如图5所示,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,且CD,BE•交于一点P,若∠A=50°,则∠BPC的度数是()A.150° B.130° C.120° D.100°6.在如图6所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点(即正方形的格点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A.5个 B.4个 C.3个 D.2个(5) (6) (7)7.已知,如图7所示,在△ABC中,AD⊥BC于D,AE平分∠BAC,若∠B=28°,•∠DAE=16°,求∠C的度数.二、提高训练(9) (10) (11)1.如图9所示,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB的中线,•将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于_______.2.若一个三角形三条高线的交点在这个三角形的一个顶点上,•则这个三角形是__________三角形.3.如图10所示,△ABC中,BD=DE=EC,则AD,AE分别是________的中线.4.如图11所示,若∠ACB=90°,CD⊥AB于D,则AC边上的高是______,CD是____边上的高.5.已知△ABC中,AB=5cm,BC=8cm,若AD是BC边上的中线,则中线AD•的取值范围是________.第二板块-全等三角形1.重叠型(边):已知:如图,A、B、C、D在同一条直线上,AC=BD,AM=CN,BM=DN.求证:AM∥CN,BM∥DN。

全等三角形练习(基础证明题)

全等三角形练习(基础证明题)

全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。

2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。

5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。

9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。

10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。

11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。

ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。

A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形基础测试题
( 练习时间60分钟)
班别姓名学号成绩
(一) 精心选一选6小题(每小题4分,共24分)
1、使两个直角三角形全等的条件是(

A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等
2、如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,
∠B =30°,则∠D 的度数为( ).
A .50°
B .30°
C .80°
D .100°
3、如图,在△ABC 和△DEF 中,给出以下六个条件中:
① AB=DE ;②BC=EF ;③AC=DF ;④∠A=∠D ; ⑤∠B=∠E ;⑥∠C=∠F 。

以其中三个作为已知条件, 不能判断△ABC 和△DEF 全等的是( )
A .①⑤②
B 、①②③
C 、④⑥①
D 、②③④
4、下列说法中不正确的是( )
A.全等三角形一定能重合
B.全等三角形的面积相等
C.全等三角形的周长相等
D.周长相等的两个三角形全等
5、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店
去配一块完全一样的玻璃,那么最省事方法是( ) A .带①去 B .带②去 C .带③去 D .①②③都带去
6、如图,∠B=∠C=90,M 是BC 的中点,DM 平分∠ADC ,
∠CMD=35°,∠MAB 的度数是( ) A .35° B .45° C .55° D .65°
(二) 细心填一填6小题(每小题4分,共24分)
7、如图示,AC ,BD 相交于点O ,△AOB ≌△COD ,∠A=∠C ,
则其它对应角分别为______________________, 对应边分别为_____________________.
8、已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,
那么,图中共有对全等三角形.
9、△ABC 中,∠B =60°,∠C =80°,O 则∠OAC =______,∠BOC =________.
10、将一张长方形纸片按如图所示的方式进行折叠,其中
BC BD ,为折痕,则BCD ∠的度数为.
O
C B
A
第8题
B
D 第7题图
O
D
A
C
B
A
B
C
E D
F
(第3题)
D
A B
C M
(第6题) O D
C
B A
(第2题)
11、EO =12= 13、(6分ACD ∵AD 平分∠BAC
∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中
∴△ABD ≌△ACD ( )
14、(6分)已知:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(要求写出作
法,并保留作图痕迹,写出结论)
15、(8分)已知:如图,点A 、E 、F 、C 在同一直线上,AD ∥BC ,AD=CB ,AE=CF 。

求证:∠B =∠D .
16、(8分)已知:如图,AB=DC ,AE=BF ,CE=DF ,∠A=60°.
(1)求∠FBD 的度数. (2)求证:AE ∥BF.
17、(8分)已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE
相交于点F ,求证:BE =CD .
18、(8分)已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE ,求证:AB=AC .
19、(8分)(1)如图(1),以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形
ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由。

(2)园林小路,曲径通幽,如图(2)所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?
(第13题) D C B A
(第16题)
A B E C
F D
(第15题)
A E
B
C F
D
A
B C D E (第18题)
M N
A
O
B C
B D E F
附参考答案
(一)精心选一选(每小题4分,共24分)
1D ,2B ,3D ,4D ,5C ,6A (二)细心填一填(每小题4分,共24分)
∠B=∠D, ∠AOB=∠COD ,OA=OC ,OB=OD ,AB=CD
8、3; 9、20°,110°; 10、90°; 11、
60°,10; 12、∠F=∠E
(三)用心做一做7小题(13、14各6分,15、16、
17、18、19各8分,共52分,)
13、BAD ,CAD ,AB=AC ,∠BAD=∠CAD ,AD=AD ,SAS 14、作∠BOA 的平分线交MN 于P 点,就是所求做的点。

15、证明:∵AD ∥CB 16、(1)解:∵AB=DC
∴∠A=∠C ------------------2分 ∴AB+BC=DC+BC
∵AE=CF 即AC=BD--------------2分 ∴AE+EF=CF+EF 即AF=CE----4分 在△ACE 和△BDF 中 在△ADF 和△CBE 中 AC=BD AD=CB AE=BF ∠A=∠C CE=DF
AF=CE ∴△ACE ≌△BDF (SSS )----5分 ∴△ADF ≌△CBE (SAS )-------7分 ∴∠FBD=∠A=60°--------6分 ∴∠B=∠D ------------------8分 (2)证明:∵∠FBD=∠A
∴AE ∥BF -----------8分
17、证明:∵BD ⊥AC ,CE ⊥AB 18、证明:作AO ⊥BC 于O , ∴∠ADB=∠AEC=90°-------2分 则∠AOB=∠AOC=90°----1分 在△ABD 和△ACE 中 在Rt △AOD 和Rt △AOE 中 ∠ADB=∠AEC AB=AC ∠A=∠A AO=AO
AB=AC ∴Rt △AOD ≌Rt △AOE (HL )--3分
∴△ABD ≌△ACE (AAS )------4分 ∴OD=OE------------------4分 ∴AD=AE---------------------------5分 ∵BD=CE ∵AB=AC ∴OD+BD=OE+CE
∴AB-AE=AC-AD-----------7分 即OB=OC-----------------5分 即AB=AC-------------------8分 在△AOB 和△AOC 中
OB=OC
∠AOB=∠AOC AO=AO
∴△A0B ≌△AOC (SAS )-----7分 ∴AB=AC-------------------8分
A
G F C
B D
E
(图1)
28. (1)解:ABC △与AEG △面积相等
过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则
AMC ∠=90ANG ∠=
四边形ABDE 和四边形ACFG 都是正方形
90180
BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,
180
EAG GAN BAC GAN
∠+∠=∴∠=

ACM AGN ∴△≌△
11
22
ABC
AEG CM GN S AB CM S AE GN ∴===△△, ABC AEG S S ∴=△△
(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和
∴这条小路的面积为(2)a b +平方米.
B
D。

相关文档
最新文档