时间序列的平稳性及其检验
时间序列的平稳性和单位根检验解读

0.05 -1.95 -1.95 -1.95 -1.95 -1.95 -1.95 -3.00 -2.93 -2.89 -2.88 -2.87 -2.86 2.61 2.56 2.54 2.53 2.52 2.52
0.10 -1.60 -1.61 -1.61 -1.61 -1.61 -1.61 -2.62 -2.60 -2.58 -2.57 -2.57 -2.57 2.20 2.18 2.17 2.16 2.16 2.16
只要其中有一个模型的检验结果拒绝了零假设,就可 以认为时间序列是平稳的;
当三个模型的检验结果都不能拒绝零假设时,则认为 时间序列是非平稳的。
20
整理课件
3、例:检验1978-2000年间中国支出法 GDP时间序列的平稳性
例8.1.6检验1978~2006年间中国实际支出法国 内生产总值GDPC时间序列的平稳性。
ADF检验在Eviews中的实现—检验 GDPP
29
整理课件
ADF检验在Eviews中的实现—检验 GDPP
30
整理课件
•从GDPP(-1) 的参数值看, 其t统计量的值 大于临界值, 不能拒绝存在 单位根的零假 设。同时,由 于常数项的t统 计量也小于 ADF分布表中 的临界值,因 此不能拒绝不 存在趋势项的 零假设。需进 一步检验模型 1。
均值E(Xt)=是与时间t 无关的常数; 方差Var(Xt)=2是与时间t 无关的常数;
协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时 间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而
该随机过程是一平稳随机过程(stationary
stochastic process)。
时间序列平稳性检验

时间序列平稳性检验分析姓名xxx学院xx学院专业xxxx学号xxxxxxxxxx时间序列平稳性分析检验时间序列是一个计量经济学中的概念,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。
一、时间序列平稳性的定义假定某个时间序列是由某一随机过程(stochasticprocess)生成的,即假定时间序列{Xt}(t=1,2,•)•的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=u是与时间t无关的常数;2)方差Var(Xt)=o2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k尸条是只与时期间隔k有关,与时间t无关的常数。
则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochasticprocess)。
eg:一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=Mt,Mt~N(0,o2)该序列常被称为是一个白噪声。
由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。
eg:另一个简单的随机时间列序被称为随机游走,该序列由如下随机过程生成:Xt=Xt-1+」t这里,出是一个白噪声。
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知X1=X0+」1X2=X1+」2=X0+J1+J2xt=X0+出+也++M由于X0为常数,%是一个白噪声,因此Var(Xt)=to2即Xt的方差与时间t有关而非常数,它是一非平稳序列二、时间序列平稳性检验的方法对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。
但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。
时间序列的平稳性及其检验63页PPT

一个时间序列的样本自相关函数定义为:
nk Xt X Xtk X
Xt
Xt
t
t
(a)
(b)
图 9.1 平 稳 时 间 序 列 与 非 平 稳 时 间 序 列 图
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0 分子是时间序列之后K期的协方差,分母是方差, 因此自相关函数是关于滞后期k的递减函数(Why)
时间序列分析已组成现代计量经济学的重要内
容,并广泛应用于经济分析与预测当中。
二、时间序列数据的平稳性
时间序列分析中首先遇到的问题是关于时间序列 数据的平稳性问题。
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
例9.1.1.一个最简单的随机时间序列是一具有零 均值同方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
例9.1.2.另一个简单的随机时间列序被称为随机 游走(random walk),该序列由如下随机过程生成:
Xt= 1Xt-1+2Xt-2…+kXt-k +t 该随机过程平稳性条件将在第二节中介绍。
三、平稳性检验的图示判断
时间序列的平稳性及其检验

19
伪回归spurious regression
如果时间序列是有趋势的,那么一定是非平稳 的,从而采用OLS估计的t检验和F检验就是无 效的。
两个具有相同趋势的时间序列即便毫无关系, 在回归时也可能得到很高的显著性和复判定系 数 出现伪回归时,一种处理办法是加入趋势变量, 另一种办法是把非平稳的序列平稳化
时间序列分析模型:解释时间序列自身的变化 规律和相互联系的数学表达式
确定性的时间序列模型 随机时间序列模型
3
随机过程与随机序列
设T 为某个时间集,对t T,取xt为随机变量, 对于该随机变量的全体 xt , t T 当取T 为连续集,如T (, )或T [0, )
1000.0 900.0 800.0
GDP指数(1978=100)
700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0
年份
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
8
说 明
自然科学领域中的许多时间序列常常是 平稳的。如工业生产中对液面、压力、 温度的控制过程,某地的气温变化过程, 某地100年的水文资料,单位时间内路口 通过的车辆数过程等。 但经济领域中多数宏观经济时间序列却 都是非平稳的。如一个国家的年GDP序 列,年投资序列,年进出口序列等。
9
时间序列模型的例子
22
时间序列模型不同于经典计量模 型的两个特点
⑴ 这种建模方法不以经济理论为依据, 而是依据变量自身的变化规律,利用外 推机制描述时间序列的变化。 ⑵ 明确考虑时间序列的非平稳性。如果 时间序列非平稳,建立模型之前应先通 过差分把它变换成平稳的时间序列,再 考虑建模问题。
时间序列的预处理(平稳性检验和纯随机性检验)

1、时序图的绘制
在SAS系统中,使用GPLOT程序可以绘 制多种精美的时序图。
可以设置坐标轴、图形颜色、观察值点 的形状及点之间的连线方式等
例2-1
data example2_1;
input price1 price2;
time=intnx('month','01jul2004'd,_n_-1);
format time date.;
cards;
12.85 15.21
13.29 14.23
12.41 14.69
15.21 13.27
14.23 16.75
13.56 15.33
;
proc gplot data= example2_1; \\绘图过程开始
plot price1*time=1 price2*time=2/overlay; //确定纵横轴,按两种
时间序列分析之
试验二
时间序列的预处理 (平稳性检验和纯随机性检验)
一、平稳性检验
时序图检验
根据平稳时间序列的均值、方差
及周期特征。
自相关图检验
根据平稳时间序列的短期相关性, 其自相关图中随着延迟期数 的增加,自相关系数会很快 地衰减向零。
cards;
97 154 137.7 149 164 157 188 204 179 210 202 218 209
204 211 206 214 217 210 217 219 211 233 316 221 239
215 228 219 239 224 234 227 298 332 245 357 301 389
平稳时间序列的时序图与自相关图
第六讲时间序列的平稳性及其检验 ppt课件

1.000 0.480 0.018 -0.069 0.028 -0.016 -0.219 -0.063 0.126 0.024 -0.249 -0.404 -0.284 -0.088 -0.066 0.037 0.105 0.093
5.116 5.123 5.241 5.261 5.269 6.745 6.876 7.454 7.477 10.229 18.389 22.994 23.514 23.866 24.004 25.483 27.198
1)均值E(Xt)=是与时间t 无关的常数; 2)方差Var(Xt)=2是与时间t 无关的常数; 3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而该随 机过程是一平稳随机过程(stationary stochastic process)。
nk Xt X Xtk X
rk t1
n
Xt X 2
t1
k1,2,3,
随着k的增加,样本自相关函数下降且趋 于零。但从下降速度来看,平稳序列要比非 平稳序列快得多。
2020/12/15
15
rk
rk
1
1
0
k
0
k
(a)
(b)
图9.1.2 平稳时间序列与非平稳时间序列样本相关图
2020/12/15
下表给出了三个模型所使用的adf分布临352202182172162162162612562542532522522972892862842832833413283223193183182550100250500500262260258257257257300293289288287286333322317314313312375358351346344343255010025050050016016116116116116119519519519519519522622522422322322326626226025825825825501002505005000100050025001样本容统计量模型丌同模型使用的adf分布临界值表362392382382382382382852812792792782783253183143123113113743603533493483462550100250500500277275273273272272320314311309308308359342342339338338405387378374372371255010025050050032431831531331331236035034534334234139538037336936836643841540439939839625501002505005000100050025001样本容统计量模型丌同模型使用的adf分布临界值表37同时估计出上述三个模型的适当形式然后通过adf临界值表检验零假设h1只要其中有一个模型的检验结果拒绝了零假设就可以认为时间序列是平稳的
时间序列分析的基本概念是什么如何进行时间序列的平稳性检验

时间序列分析的基本概念是什么如何进行时间序列的平稳性检验时间序列分析是一种应用广泛的统计分析方法,用于研究随时间变化的数据序列的规律性和特征。
时间序列数据是按照时间顺序排列的观测值序列,常见的包括股票价格、气温、销售额等。
时间序列分析的基本概念是对时间序列数据进行模型拟合和预测。
它的主要目的是揭示数据的内在规律和特征,为未来的预测和决策提供依据。
下面将介绍时间序列分析的基本概念和时间序列的平稳性检验。
一、时间序列分析的基本概念1. 趋势分析:指时间序列数据在长期内的增长或下降趋势。
趋势分析可以采用移动平均法和指数平滑法等方法进行预测和拟合。
2. 季节性分析:指时间序列数据在短期内的重复周期。
季节性分析可以使用季节指数法和季节自回归移动平均法等方法来对季节性进行分析和预测。
3. 循环分析:指时间序列数据在长期内的周期性波动。
循环分析可以利用时间序列的滞后项构建循环指标,并对周期性进行拟合和预测。
4. 不规则分量分析:指不能被趋势、季节性和循环等因素解释的随机变动。
不规则分量包含各种无法归类的随机因素,可以通过随机过程模型进行分析和预测。
二、时间序列的平稳性检验时间序列的平稳性是进行时间序列分析的基本要求,平稳性包括严平稳和弱平稳两个概念。
严平稳要求时间序列的联合概率分布不随时间的变化而改变,即均值和方差等参数在时间序列的不同阶段保持不变。
严平稳序列可以使用统计工具进行参数估计和假设检验。
弱平稳是指时间序列的均值和自相关性不随时间的变化而改变,但方差可能会随时间的变化而改变。
弱平稳序列可以通过差分进行处理,将非平稳序列转化为平稳序列。
进行时间序列的平稳性检验可以使用统计学方法,常用的方法包括ADF检验、单位根检验和KPSS检验等。
这些方法通过检验序列的单位根特征或自回归模型的稳定性来判断序列的平稳性。
ADF检验(Augmented Dickey-Fuller Test)是一种常用的平稳性检验方法,其原理是对序列进行单位根检验,并根据检验统计量与临界值的比较来判断序列的平稳性。
什么是平稳性假设如何进行平稳性的检验

什么是平稳性假设如何进行平稳性的检验平稳性假设及其检验方法平稳性假设是时间序列分析中的一个重要假设,它要求时间序列的均值和方差在不同时间段之间保持不变。
平稳性的检验可以帮助我们确定时间序列是否适合应用特定的统计模型,从而更好地进行预测和分析。
一、平稳性假设的含义和重要性平稳性假设是指时间序列在不同时间段内的统计特性保持不变,即其均值和方差不随时间变化而改变。
如果时间序列不满足平稳性假设,那么我们在建立模型和进行预测时可能会产生误差,导致不准确的结果。
平稳性在时间序列分析中具有重要意义,它是许多经典模型的前提条件,如ARMA(自回归滑动平均模型)、ARIMA(差分自回归滑动平均模型)等。
只有当时间序列满足平稳性假设时,才能应用这些模型进行预测和分析。
二、平稳性的检验方法为了判断时间序列是否满足平稳性假设,我们可以采用多种检验方法,下面介绍两种常见的方法:单位根检验和ADF检验。
1. 单位根检验(Unit Root Test)单位根检验是平稳性检验的一种方法,其中最常用的检验统计量是DF检验(Dickey-Fuller test),通过检验序列存在是否单位根来判断平稳性。
如果序列存在单位根,则说明序列不满足平稳性假设。
DF检验的原假设是序列存在单位根,即不满足平稳性。
通过计算检验统计量的p值,如果p值小于设定的显著水平(通常为0.05),则可以拒绝原假设,认为序列具有平稳性。
2. ADF检验(Augmented Dickey-Fuller Test)ADF检验是对单位根检验的改进,它通过引入更多滞后项来减小检验的误差。
ADF检验将序列进行差分,然后对差分后的序列进行单位根检验,判断序列是否平稳。
ADF检验也是通过计算检验统计量的p值来进行判断,如果p值小于设定的显著水平,则可以拒绝原假设,认为序列平稳。
三、平稳性检验的实例应用为了更好地理解平稳性检验的应用,我们以股票价格为例进行说明。
假设我们想要分析某只股票的价格是否满足平稳性假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
X
t
t
t
t
(a)
(b)
图 4.1 平稳时间序列与非平稳时间序列图
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0 自相关函数是关于滞后期k的递减函数(Why?)。
实际上,对一个随机过程只有一个实现(样本), 因此,可以计算样本自相关函数(Sample autocorrelation function)来判断该随机过程是 否平稳。
一个时间序列的样本自相关函数定义为:
nk X t X X tk X
rk t1
n
Xt X 2
t 1
k 1,2,3,
易知,随着k的增加,样本自相关函数下降且趋
于零。但从下降速度来看,平稳序列要比非平稳
序列快得多。
rk
rk
1
1
0
k
0
k
(a)
(b)
图 4.2 平稳时间序列与非平稳时间序列样本相关图
(1)X与随机扰动项 不相关∶Cov(X,)=0
(2)
(Xi X)2 / n
依概率收敛: Plim((X i X )2 / n) Q n
第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致
性”特性P:lim(ˆ) n
注意:在双变量模型中:
ˆ xiui xiui / n
例4.1.一个最简单的随机时间序列是一具有零均 值同方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
例4.2.另一个简单的随机时间列序被称为随机游 走(random walk),该序列由如下随机过程生成:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
Xt=Xt-1+t
这里, t是一个白噪声。
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)
为了检验该序列是否具有相同的方差,可假设Xt的 初值为X0,则易知
X1=X0+1 X2=X1+2=X0+1+2
……
Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序 列。
时间序列分析模型方法就是在这样的情况下, 以通过揭示时间序列自身的变化规律为主线而发 展起来的全新的计量经济学方法论。
时间序列分析已组成现代计量经济学的重要内
容,并广泛应用于经济分析与预测当中。
二、时间序列数据的平稳性
Hale Waihona Puke 时间序列分析中首先遇到的问题是关于时间序列 数据的平稳性问题。
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
xi2
xi2 / n
因此:
P lim
ˆ
P lim xiui
/n
0
n
P lim xi2 / n
Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
不难验证:1)||>1时,该随机过程生成的时间序列是 发散的,表现为持续上升(>1)或持续下降(<-1), 因此是非平稳的;
2)=1时,是一个随机游走过程,也是非平稳的。
第二节中将证明:只有当-1<<1时,该随机过程 才是平稳的。
• 1阶自回归过程AR(1)又是如下k阶自回归AR(K)过 程的特例:
1)均值E(Xt)=是与时间t 无关的常数; 2)方差Var(Xt)=2是与时间t 无关的常数;
3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。
• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{Xt}是平稳的。
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
Xt= 1Xt-1+2Xt-2…+kXt-k 该随机过程平稳性条件将在第二节中介绍。
三、平稳性检验的图示判断
• 给出一个随机时间序列,首先可通过该 序列的时间路径图来粗略地判断它是否 是平稳的。
• 一个平稳的时间序列在图形上往往表现 出一种围绕其均值不断波动的过程;
• 而非平稳序列则往往表现出在不同的时 间段具有不同的均值(如持续上升或持 续下降)。
data) ★时间序列数据是最常见,也是最常用到的数据。
⒉经典回归模型与数据的平稳性
• 经典回归分析暗含着一个重要假设:数据是平稳的。 • 数据非平稳,大样本下的统计推断基础——“一致
性”要求——被破怀。 • 经典回归分析的假设之一:解释变量X是非随机变
量 • 放宽该假设:X是随机变量,则需进一步要求:
第四章时间序列模型平稳性检验
一、问题的引出:非平稳变量与经典回归模型 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程
一、问题的引出:非平稳变量与经典 回归模型
⒈常见的数据类型
到目前为止,经典计量经济模型常用到的数据有: • 时间序列数据(time-series data); • 截面数据(cross-sectional data) • 平行/面板数据(panel data/time-series cross-section