医学统计学-知识梳理

合集下载

医学统计学知识点

医学统计学知识点

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。

2、研究对象:具有不确定性结果的事物。

3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。

4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。

5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断.6、医学统计学中的基本概念(1)同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同.变异,指总体内的个体间存在的、绝对的差异。

统计学通过对变异的研究来探索事物.(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。

变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。

(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。

包括二分类、无序多分类。

(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质.统计方法的选用与数据类型有密切的关系。

(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值.样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。

抽样,是从研究总体中随机抽取部分有代表性的观察单位。

参数,指描述总体特征的指标.统计量,指描述样本特征的指标。

(4)误差误差,指观测值与真实值、统计量与参数之间的差别.可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。

随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。

抽样误差,是抽样引起的统计量与参数间的差异。

抽样误差主要来源于个体的变异。

医学统计学知识点

医学统计学知识点

实用标准文案精彩文档第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。

2、研究对象:具有不确定性结果的事物。

3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。

4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。

5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。

6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。

变异,指总体内的个体间存在的、绝对的差异。

统计学通过对变异的研究来探索事物。

(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。

变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。

(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。

包括二分类、无序多分类。

(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。

统计方法的选用与数据类型有密切的关系。

(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。

样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。

抽样,是从研究总体中随机抽取部分有代表性的观察单位。

参数,指描述总体特征的指标。

统计量,指描述样本特征的指标。

(4)误差误差,指观测值与真实值、统计量与参数之间的差别。

可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。

随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。

抽样误差,是抽样引起的统计量与参数间的差异。

医学统计学知识点

医学统计学知识点

医学统计学知识点 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。

2、研究对象:具有不确定性结果的事物。

3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。

4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。

5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。

6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。

变异,指总体内的个体间存在的、绝对的差异。

统计学通过对变异的研究来探索事物。

(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。

变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。

(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。

包括二分类、无序多分类。

(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。

统计方法的选用与数据类型有密切的关系。

(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。

样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。

抽样,是从研究总体中随机抽取部分有代表性的观察单位。

参数,指描述总体特征的指标。

统计量,指描述样本特征的指标。

(4)误差误差,指观测值与真实值、统计量与参数之间的差别。

可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。

医科大学医学统计学重点知识总结

医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。

医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。

2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。

变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。

注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。

有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。

样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。

在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。

医学统计学重点重点知识总结

医学统计学重点重点知识总结

医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。

(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。

这个范围称作可信度为1-a的可信区间,又称置信区间。

3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。

三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。

分辨一个样本是否属于某特定总体等。

区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。

医学统计学重点知识梳理

医学统计学重点知识梳理

重点知识梳理第一章1.统计学(statistics)是研究数据的收集、整理和分析的一门科学,帮助人们分析所占有的信息,达到去伪存真、去粗取精、正确认识世界的一种重要手段。

2.总体(population)与样本(sample)任何统计研究都必须首先确定观察单位亦称个体(individual)总体(population)是根据研究目的确定的同质观察单位的全体,或者说,是同质的所有观察单位某种观察值(变量值)的集合。

总体又分为有限总体(finite population)和无限总体(infinite population),有限总体是指在某特定的时间与空间范围内,同质研究对象的所有观察单位的某变量值的个数为有限个无限总体是抽象的,无时间和空间的限制,观察单位数是无限的3.统计学的研究方法(1)大量观察法对所研究事物的全部或足够数量进行观察的方法。

依据是大数定律(2)综合指标法从数量方面对现象总体特征的概括说明(3)统计推断法在一定的置信度下,根据样本资料的特征对总体特征作出估计和预测的方法第二章1.方差(variance):为了全面考虑观察值的变异情况,克服全距和四分位数间距的缺点,需计算总体中每个观察值X与总体均数的差值(X-μ),称之为离均差。

2.标准差(standard deviation):方差的度量单位是原度量单位的平方,将方差开方后与原数据的度量单位相同。

标准差大,表示观察值的变异度大;反之,标准差小,表示观察值的变异度小。

3.变异系数(coefficient of variation,简记为CV):常用于比较度量单位不同或均数相差悬殊的两组或多组资料的变异度。

第三章1.正态分布(Normal distribution),也称“常态分布”,又名高斯分布。

是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。

医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。

以下是医学统计学知识点的一些精华汇总。

1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。

2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。

3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。

4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。

5.参数估计:常用的参数估计方法有点估计和区间估计。

点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。

6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。

常用的假设检验方法有t检验、卡方检验、方差分析等。

7.数据分析:包括描述性统计分析和推断性统计分析。

描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。

8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。

9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。

10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。

11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。

12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。

以上是医学统计学的一些精华知识点的汇总。

医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。

医学统计知识点整理

医学统计知识点整理

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。

统计推断:是使用样本信息来推断总体特征。

统计推断包括区间估计和假设检验。

第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。

标目:横标目和纵标目。

线条:通常采用三线表和四线表的形式。

没有竖线或斜线。

数字:表内数字一律用阿拉伯数字。

同一指标,小数位数应一致,位次对齐。

无数字用“—”表示。

暂缺用“…”表示。

“0”为确切值。

备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。

一张统计表的备注不宜太多。

二、制表原则1.(7理分布。

【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均数±标准差:表示集中位置、离散程度均数±标准误:表示平均水平、抽样误差大小P75一、标准差的主要作用是估计正常值的范围实际应用中,估计观察值正常值范围应该用标准差(s),表示为“Mean±SD”。

此写法综合表达一组观察值的集中和离散特征的变异情况,说明样本平均数对观察值的代表性。

s 的大或小说明数据取值的分散或集中。

s与样本均数合用, 主要是在大样本调查研究中, 对正态或近似正态分布的总体正常值范围进行估计。

如果不是为了正常值范围估计,一般不用。

当数据与正态分布相差很大,或者虽为正态分布, 但样本容量太小(小于30 或100),也不宜用估计正常值范围。

二、标准差还可用来计算变异系数(CV)当两组观察值单位不同, 或两均数相差较大时,不能直接用标准差比较其变异程度的大小, 须用变异系数系数来做比较。

:标准误的正确使用一、标准误用来衡量抽样误差的大小和了解用样本平均数来推论总体平均数的可靠程度。

在抽样调查中,往往通过样本平均数来推论总体平均数,样本标准误适用于正态或近似正态分布的数据, 是主要描述小样本试验中,样本容量相同的同质的多个样本平均均数间的变异程度的统计量。

即如果多次重复同一个试验, 它们之间的变异程度用。

显然它越小,样本平均数变异越小,越稳定,用样本平均数估计总体均数越可靠。

因此,为说明它的稳定性、可靠性或通过几个对几组数据进行比较(这是科研论文中最常见的),应当用描述数据。

实际应用中应该写成“平均数±标准误”或而英文表示为“Mean±SE”的形式。

二、标准误还可以进行总体平均数的区间估计与点估计(置信区间)。

根据正态分布原理,与合用还可以给出正态总体平均数的可信区间估计即推论总体平均数的可靠区间,例如常用(其中 (n-1) 为样本容量是n的t界值)表示总体均值的95%可信区间, 意指总体平均数有95%的把握在所给范围内。

三、标准误还可用来进行平均数间的显著性检验,从而判断平均数间的差别是否是由抽样误差引起的。

例如:某当地小麦良种的千粒重=34克,现在从外地引入一新品种,通过多小区的田间试验得到千粒重的平均数=克,问新引进品种千粒重与当地良种有无显著差异新引进品种千粒重与当地良种有无显著差异实质是判断与的差别是否是有田间试验是抽样误差引起,所以要进行显著性检验,这里用t测验进行检验,而,由于,故,所以认为新引进品种千粒重与当地良种千粒重的不同是由于田间试验是抽样误差引起,因此他们之间无显著差异。

所以在进行平均数间的显著性检验是必须用到。

总之,标准差和标准误最常用的统计量,二者都是衡量样本变量(观察值) 随机性的指标,只是从不同角度来反映误差,二者在统计推断和误差分析中都有重要的应用。

如果没有标准差,人们就无法看出一组观察值间变异程度有多大,这些数字到底有无代表性,如果没有标准误又很难看出我们的样本平均数是否可以代表总体平均数。

所以二者都非常重要。

定量资料的统计描述:频数分布表:全距,R=最大值-最小值;组距=全距/组数,(组数8-9人一组) 频数分布图:直方图 集中位置的描述:平均数31.算数均数:μ总体均数,X样本均数。

适用定量资料,对称分布,正态或近似正态2.几何均数:G ,适用变量值呈倍数关系,偏态尤其对数变换后正态或近似正态3.中 位 数:M ,各种分布(不对称,两端无确切值,分布不明确),正态等于算数均数,对数正态等于几何均数。

离散程度描述:51.极差:R ,同全距,各种分布,但一般单峰、对称、小样本2.四分位数间距:P 75—P 25,(不对称,两端无确切值,分布不明确),P 25,P 50,P 75,共三点将全部观察值分为四部分3.方差:总体σ2,样本S 2(计算时除以自由度n-1)。

单峰对称。

4.标准差:总体σ,样本S 。

单峰对称,对数变换后正态或近似正态使用几何标准差。

5.适用不同计量单位(身高和体重),或均数相差很大正态分布及其应用:N(μ,σ2)特征:4①横轴上方均数处最高;②均数为中线,左右对称;③位置参数/总体均数μ,形态参数/标准差σ;④曲线下面积分布有一定规律,对称,—%,—%,—%。

6.正态分布:N (μ,2σ)经标准化转换 为标准正态分布/Z 分布:Z (0,1)7.制定医学参考限值时,分双侧(±)、单侧,单侧又分只有下限(-)、只有上限(+)。

定性资料描述:分类/计数资料,性别,疾病感染情况,病情轻重...,相对数进行统计描述。

相对数:31.率:频率(发病率、患病率),0到1之间;速率(肿瘤患者5年生存率),分母乘以时间数(125人追踪2年死亡2人,年死亡率=2/125*2 *100%)0到∞。

2.构成比:3.相对比:两个有关联的指标比值(变异系数,相对危险度,比值比..) 应用注意:①足够的观察单位数;②不能以构成比代替率,事物内部各组分所占比重不能说明某现象发生的频率或强度大小; ③分别将分子和分母合计求合计率;④相对数的比较注意可比性,其他的年龄、性别等相同或相近,可分层或标准化再比较;⑤样本率、样本构成比应做假设检验再比较(是比较其所代表的总体~有无差异)。

率的标准化:标准化率:p ’=Np Nii∑(p i 被标化组死亡率,N i 标准组年龄别人口,N 标准组总人口)标准化死亡率比:SMR=被标化组实际死亡数/预期死亡数被标化组实际死亡数=本年龄组死亡率*标准组本年龄组人口(用被标化组年龄别死亡率去预测标准人口中可能死亡人数) 总体均数的估计:抽样误差:由个体变异产生的、随机抽样引起的样本统计量与总体参数间的差异。

样本均数的标准差=(进行一次抽样即可估计均数标准误) t 分布 1nS/-X S -X t X-===n v ,μμ (总体均数的区间估计,t 检验...)t 分布特征:①以t=0为左右对称的单峰分布;②曲线形态取决于自由度大小,n 越小,X S 越大,样本X 间差异越大,n →∞,t 分布就是标准正态分布(Z 分布)。

总体均数的估计:点估计用X 作为μ,无法评价可信程度。

区间估计:21、单样本:n 不论大小,μ双侧(1-α)置信区间 X v S t X ,2/α±(确切法)n >100,t 接近Z ,μ双侧(1-α)置信区间 X v S Z X ,2/α± ( )(正态近似法) 2、两样本:两均数之差的标准误:① n 1、n 2不论大小,)11(21221n n S SC X X +=-(确切法) ② n 1、n 2均较大时,t 接近Z ,则221221n S n S SCC X X +=-(正态近似法) 两总体均数差值的置信区间:(μ1-μ2) 为212/21-XX v S t X X -±,α(t 与Z 根据条件可互换) t 检验:Student ’s t 检验,从样本均数推总体均数 条件:①t 检验,单样本中,n <50,总体正态分布。

②t ’检验,两小样本,总体正态分布,但两样本总体方差不等。

公式好复杂,P 96③Z 检验,两大样本,n 均>50,单峰、近似正态。

1、单样本t 检验:样本所代表的总体均数μ与已知总体均数μ0比较 1nS/-X S -X t 0X0-===n v ,μμ2、配对t 检验:①配对的两受试对象分别接受2种不同处理;②同一样品用两种方法或仪器检测;③同一受试对象两不同部位测定数据。

H 0为两总体均数相同,差值的样本均数d 所代表的总体均数d μ为0,则 1n/S d n/S 0-d S -d t d d d -====n v d ,μ(n 为对子数)3、两独立样本/成组t 检验:两样本分别正态分布,H 0为两总体均数相等,则① n 1、n 2不论大小,2)2111(21221-+=+-=n n v n n S X X t c ,(确切法)② n 1、n 2均>50,t 接近Z ,22212121n S n S X X Z +-=(正态近似法)4、两样本几何均数t 检验:(抗体滴度等)不服从正态,但服从对数正态,公式同成组t 检验。

正态性检验:①图示法:P-P 图法,Q-Q 图法②统计检验法:W 检验(n ≤50),矩法检验(总体偏度、峰度),D 检验 方差齐性检验:①两总体方差齐性检验,判断两总体方差是否相等,F 检验11(22112221-=-==n v n v S S F ,,(较小)较大)(进行假设检验,α=,查F 界值表) ②多样本方差齐性检验:q 检验Levene 检验(可两总体),Bartlett 检验。

用于方差分析。

方差分析ANOVA/F 检验:总体均数之间差别多样本均数的比较,通过对数据变异的分析来推断两个/多个样本均数所代表的总体均数是否有差别。

应用条件:①各样本是相互独立的随机样本,均服从正态;②各样本总体方差相等,即方差齐性。

总变异:数据的均方MS 总,处理影响+随机误差(个体差异+测量误差)组间变异:MS 组间,处理因素的影响 组内变异:MS 组内,随机误差的影响21,v v MS MS F 分母(服从自由度分子组内组间=)NX C 2)(∑=)540(≥≥T n ,1、完全随机设计资料:成组设计的多个样本~,单因素两水平/多水平方差分析。

3变异 同质的受试对象 随机分配到各处理组,各组样本含量相等或不等。

SS 总=SS 组间+SS 组内 1X MS2总--=∑N CNX C k Cn X v ii221/SS MS )(,)(组间组间组间∑∑∑=--==V 总=V 组间+V 组内v总=N-1 V 组间=k-1 V 组内=N-k 21,v v MS MS F 分母(服从自由度分子组内组间=) v1组间,v2组内 注意:总体均数不全相同,两两之间比较用另外的方法。

2、随机区组设计资料;配伍组设计,两因素。

3变异受试对象按照性质分成b 个区组/配伍组,每个区组随机分配到k 个处理组。

MS 总=MS 处理组+MS 区组+MS 误差vSS =MS v 总=v 处理组+v 区组+v 误差 =(处理-1)+(区组-1)+误差=N-1处理误差处理处理,v MS MS F =区组误差区组区组,v MS MS F =同理:总体均数不全相同,两两之间比较用另外的方法。

3、多个样本均数两两比较,即上面的“注意”、“同理” ①SNK 法,q 检验 ②Dunnett-t 检验 4、交叉设计资料,分两阶段和多阶段(×)两阶段交叉设计:一、二组患者和A 、B 处理方法,一患者服药顺序A →B ,二组患者B →A 。

5、析因设计资料 6、重复测量资料2x 检验:样本率或构成比推总体率/构成比之间两个及以上的比较1、独立样本列联表资料1)2×2列联表(四格表)成组 连续性校正(Yates 校正)3种 ))()()(()(22c d b d c a b a n bc ad x ++++-=① ②(n ≥40,1≤T <5) ))()()(()2n -(22c d b d c a b a n bc ad x ++++-=③(n <40,或T <1) ()∑-=TT A x 22(确切概率法,以上均适用)A 实际频数,T 理论频数(总有效率乘以各组人数)2)R 行×C 列 列联表资料 多个样本率/两个或多个构成比⎪⎪⎭⎫⎝⎛-=∑122C R n n A n x v=(R-1)(C-1) 注意:①必须绝对数,不能相对数,因x 2与频数有关;②理论频数太小:1/5以上格子的理论频数<5,或一个格子理论频数<1。

相关文档
最新文档