人教版初三一元二次方程图像测试题及答案
人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页(1)x^2-9x+8=0答案:x1=8x2=1(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(22)x^2+13x-48=0答案:x1=3x2=-16(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(44)x^2-8x-209=0答案:x1=-11x2=19(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(66)x^2+13x+12=0答案:x1=-1x2=-12(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(88)x^2-4x-285=0答案:x1=19x2=-15(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6 (101)x^2+17x+72=0答案:x1=-8x2=-9 (102)x^2+13x-14=0答案:x1=-14x2=1 (103)x^2+9x-36=0答案:x1=-12x2=3 (104)x^2-9x-90=0答案:x1=-6x2=15 (105)x^2+14x+13=0答案:x1=-1x2=-13 (106)x^2-16x+63=0答案:x1=7x2=9 (107)x^2-15x+44=0答案:x1=4x2=11 (108)x^2+2x-168=0答案:x1=-14x2=12(110)x^2-6x-55=0答案:x1=11x2=-5 (111)x^2+18x+32=0答案:x1=-2x2=-16。
(常考题)人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(答案解析)

一、选择题1.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=2.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .3 3.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠ 4.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -=D .()238x -= 5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 6.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-7.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 8.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%9.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x10.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 11.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠-12.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 二、填空题13.一元二次方程(x +2)(x ﹣3)=0的解是:_____.14.写出有一个根为1的一元二次方程是______.15.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.16.一元二次方程()10x x -=的根是________________________.17.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.18.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.三、解答题21.已知关于x 的方程()220x mx m -+=-. (1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?23.(1)x 2﹣8x+1=0;(2)2(x ﹣2)2=x 2﹣4.24.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.25.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)26.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.2.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.3.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.4.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.7.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 8.D解析:D设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.10.A解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x 1=0,x 2=1,故选:A .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 11.D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.B解析:B【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 二、填空题13.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0然后解两个一次方程即可【详解】(x+2)(x ﹣3)=0x+2=0或x ﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x 1=﹣2,x 2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考 解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.15.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键. 16.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;17.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一 解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.18.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.【详解】(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根.(2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义.22.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得:()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.24.(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.25.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =, ()2247423250b ac =-=--⨯⨯=>,∴754x ±==, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程.26.(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=,【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)(1)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2-C .2D .4 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x += 3.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x += 4.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .165.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 6.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 7.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1 C .17- D .178.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x9.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或010.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >11.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020 D .201912.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 14.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____15.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.16.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.17.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 18.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.19.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______ 20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.22.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)23.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?24.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.25.解方程:(2)4x x x +=-26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 2.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.5.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.6.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.8.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x)2=500,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.9.A解析:A【分析】由关于x的方程x2+mx=0的一个根为-1,得出将x=-1,代入方程x2+mx=0求出m即可.【详解】解:∵-1是方程x2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.10.B解析:B【分析】由方程有实数根即△=b2﹣4ac≥0,从而得出关于m的不等式,解之可得.【详解】解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:14 m,故选:B.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.11.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019. 【点睛】 本题考查根与系数关系.熟记根与系数关系的公式是解题关键.14.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 15.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.16.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.17.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 18.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 19.【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的 解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =,()2247423250b ac =-=--⨯⨯=>,∴775224x ±±==⨯, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程. 23.(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.24.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.25.1241x x =-=,【分析】方程整理后,利用因式分解法求解即可.【详解】解:(2)4x x x +=-,方程整理得:2340x x +-=,因式分解得:()()410x x +-=,则40x +=或10x -=,∴1241x x =-=,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)人教版初三上学期数学一元二次方程及解法练习题(附答案)(1);(2);(3);(4)。
4、一元二次方程根的判别式与其根的关系:综合练习: 1.观察下列方程: ①x2=1 ②3x2=1-x ③x(x-1)= x -1 ④ +2x-5=0 ⑤x2-y-1=0 ⑥x2-(x-3)2=9 其中是一元二次方程的是 . 2.把方程(x-2)(x+3)=5化为一元二次方程一般形式为 .其中二次项系数为 . 一次项系数为 . 常数项为 . 3.关于x的方程(m+2)xn-1-(2m-1)x-3=0,当时,它是一元二次方程,当时,它是一元一次方程. 1、用直接开平方法解方程:⑴x2=9 ⑵3x2=12 ⑶ 1/3 x2-3=0 ⑷ (3x+1)2=1 ⑸(2x-1)2 -9=0 ⑹x2+4x+4=1(7).x2=16 (8) . 2x2 -6 =0 (9) (x+1)2=4(10) (3x+2)2=4 (11)3(x-1)2=15 (12)x2+6x+9=25能力提升: 1.关于x的方程(n-1)xn2+1-(2n+1)x-3=0,当n= 时,它是一元二次方程 2.解一元二次方程:(1) x2+2x+1=4 (2)x2+2x-3=0一元二次方程及解法(2)配方法步骤:举例说明题组训练: 1、把下列方程化为(x+ m)2=n(m,n是常数,n≥0)的形式(1)x2+2x=48;(2)x2-4x=12;(3)x2-6x+6=0;(4) 2、完成下列填空:x2+4x+4=(__+__)2 x2-8x+___=(__―__)2 4x2+__x+25=(___+__)2 16 x2+__x+1=(__+__)2 x2+10x+___=(__+__)2 x2-5x+___=(__―__)29x2-__x+25=(___+__)2 9 x2-¬__x+1=(__-__)2 3、用配方法解方程(1)x2-10x-11=0 (2)x2-6x+4= 0 (3)x2+4x-16= 0(4)x2-4x=12;(5)x2-6x=7 (6)x2+8x+2=0(7)x2-4x-5=0 (8) x2+5x+2=0 (9)3x2+2x-5=0(10)2y2+y-6=0 (11)3x2+8x-3=0 (12)-2x2=5x-3一元一次方程及解法(3)求根公式推导过程:(和应用求根公式的步骤)根的判别式与根的关系:跟踪训练:先用根的判别式判断根的情况再求解:(1)x -x-1=0;(2)5x +2=3x2;(3)y -6=5y(4)3t -2t-1=0 (5)4x(x-1)=x -1 (6)x2-6x+4= 0(7)3x +1=2 x (8)2y2+y-5= 0 (9)x2-4x=12;(10)3x2+6x=1 (11)2t2-7t-4=0; (12)x2-x-1=0(13)y2-6=5y (14)3t2-2t-1=0 (15)4x(x-1)=x2-1一元一次方程及解法(4)因式分解法解一元二次方程的原理: 1、填空(1)方程x2=x的解是。
人教版九年级数学上册:《一元二次方程》测试卷(含答案解析)

《一元二次方程》测试卷一、精心选一选(每小题3分,共30分)1.下列方程中是一元二次方程的是( ).A.xy +2=1B. 09212=-+x x C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 3.(20XX 山东潍坊)已知反比例函数y abx =,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.若1762+--x x x 的值等于零,则x 的值是( ) A 7或-1 B -7或1 C 7 D -15.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 26.方程0134)2(||=++++m x x m m 是关于x 的一元二次方程,则( )A. m=±2B. m=2C. m= -2D. m ≠±27.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A .4个B .5个C .6个D .7个8.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+4c =0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根9.下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A .若x 2=4,则x=2B 若3x 2=6x ,则x=2C .02=-+k x x 的一个根是1,则k=2D .若分式()xx x 2- 的值为零,则x=2 10.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( )A .8B .10C .8或10D . 不能确定二、耐心填一填(每小题3分,共24分)1.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.2.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.3.已知代数式532++x x 的值是7,则代数式2932-+x x 的值是4.(20XX 江苏宿迁)已知一元二次方程032=++px x 的一个根为3-,则_____=p5.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,a c x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ . 6.若()()06522222=-+-+y x y x ,则=+22y x __________。
初三数学一元二次方程试题答案及解析

初三数学一元二次方程试题答案及解析1.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)A(12,0),C(﹣6,0);(2)k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q4(10,﹣12),Q6(﹣3,6﹣3);【解析】(1)先求出一元二次方程x2﹣18x+72=0的两根就可以求出OA,OC的值,进而求出点A,C的坐标;(2)先由勾股定理求出AB的值,得出AE的值,如图1,作EM⊥x轴于点M,由相似三角形的现在就可以求出EM的值,AM的值,就可以求出E的坐标,由待定系数法就可以求出结论;(3)如图2,分别过C、E作CE的垂线交坐标轴三个点P1、P3、P4,可作出三个Q点,过E点作x轴的垂线与x轴交与P2,即可作出Q2,以CE为直径作圆交于y轴两个点P5、P6,使PC⊥PE,即可作出Q5、Q6.试题解析:(1)∵x2﹣18x+72=0∴x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∴=,∴,∴OB=16.在Rt△AOB中,由勾股定理,得AB=.∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,∴,∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=3×12=36;(3)满足条件的点Q的个数是6,如图2所示,x轴的下方的Q4(10,﹣12),Q6(﹣3,6﹣3);【考点】1、一次函数的交点;2、勾股定理的运用;3、三角函数;4、三角形相似2.设x1,x2是方程2x2+4x-3=0的两个根,则x12+x22= .【答案】7【解析】根据根与系数的关系得x1+x2=-2,x1x2=-,再根据完全平方公式变形得到x12+x22=(x1+x2)2-2x1x2,然后利用整体代入的方法计算.根据题意得x1+x2=-2,x1x2=-,所以x12+x22=(x1+x2)2-2x1x2=(-2)2-2×(-)=7.故答案为7.【考点】根与系数的关系.3.如果关于x的方程有两个相等的实数根,那么m的值为.【答案】.【解析】若一元二次方程有两相等根,则根的判别式△=b2-4ac=0,建立关于m的等式,求出m 的值:∵方程有两相等的实数根,∴.【考点】一元二次方程根的判别式.4.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2B.a<2C.a<2且a≠1D.a<-2【答案】C.【解析】根据题意得:△=b2-4ac=4-4(a-1)=8-4a>0,且a-1≠0,解得:a<2,且a≠1.故选C.考点: 1.根的判别式;2.一元二次方程的定义.5.在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2,求道路的宽度.【答案】2米【解析】解:设道路的宽度为x m,则(20-x)(32-x)=540即x2-52x+100=0,解之得x1=50(舍),x2=2.答:道路的宽度为2米.6.现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【答案】3cm.【解析】设剪去的小正方形的边长为x,根据题意列出方程,求出方程的解即可得到结果.试题解析:设剪去的小正方形的边长为xcm,根据题意得:(20-2x)(10-2x)=56,整理得:(x-3)(x-12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.考点: 一元二次方程的应用.7.为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
人教版九年级上册数学《一元二次方程》测试卷(含答案)
人教版九年级上册数学《一元二次方程》测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题).1.若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【答案解析】B;关于一元二次方程的定义考查点有两个:①二次项系数不为0,②最高次项的次数为22.关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【答案解析】C;21a +恒大于03.如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A .1k <B .0k ≠C .10k k <≠且D .1k >【答案解析】C ;由题可得363600k k ∆=->⎧⎨≠⎩,所以 10k k <≠且4.不解方程判定下列方程根的情况:⑴2210x ax a ++-=220-+=;⑶4(1)30x x +-=;⑷2(1)(2)x x m --=【答案解析】⑴两个不等的实数根;⑵无实数根;⑶两个不相等的实数根;⑷两个不相等的实数根5.已知2是关于x 的方程23202x a -=的一个根,则21a -的值是( )A.3B.4C.5D.6【答案解析】C6.小明要在一幅长90厘米、宽40厘米的水彩画得外围镶上一条宽度相等的金色彩条,要求使水彩画的面积是整幅画面积的54%,设金色彩条的宽为x 厘米,根据题意列方程为( )A.(90)(40)54%9040x x ++⨯=⨯B.(902)(402)54%9040x x ++⨯=⨯C.(90)(402)54%9040x x ++⨯=⨯D.(902)(40)54%9040x x ++⨯=⨯【答案解析】B7.不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【答案解析】A ;由方程可得3680∆=+>,所以方程有两个不相等的实数根.8.对于方程2()ax b c +=下列叙述正确的是( )A.不论c 为何值,方程均有实数根B.方程根是c b x a-=C.当0c ≥时,方程可化为:ax b +=ax b +=当0c =时,bx a =【答案解析】C9.已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【答案解析】C;22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b a c b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .10.若方程20ax bx c ++=(0)a ≠的一个根是另一个根的3倍,则a 、b 、c 的关系是()A.2316b ac =B.2316b ac =-C.2163b ac =D.2163b ac =-【答案解析】A;不妨设方程20ax bx c ++=的两个根为1x 、2x ,且123x x = ∴1224x x x +=,则24b x a=- ∴24b x a =-,将24b x a =-代入方程20ax bx c ++=整理,即可得A 【解析】韦达定理二、填空题(本大题共5小题).11.方程222(4)20k x x k --+-=没有实数根,那么k 的最小正整数值是【答案解析】解得92k >,∴最小正整数值是5 12.以3-和2为根,二次项系数为1的一元二次方程为____________【答案解析】(3)(2)0x x +-=,(最好让学生整理出一般形式260x x +-=)13.关于x 的方程2210x bx +-=的一个根为2-,则另一个根是 ,______b =【答案解析】设另一个根是2x ,根据题意得,22(2)2(2)1x b x +-=-⎧⎨⋅-=-⎩,解得212x =,34b =14.若方程210x px ++=的一个根为1,则它的另一根等于 ,p 等于【答案解析】设方程的另一根为2x ,根据题意得22(1(11x p x ⎧+-=-⎪⎨⋅=⎪⎩,解得21x =,p =【解析】部分学生喜欢将1x =p 的数值,然后再求方程另外一个根,此方法较慢。
人教版九年级上册第21章《一元二次方程》达标测试卷 附答案
4.解:把 x=﹣3 代入方程 x2+ax+a=0 得 9﹣3a+a=0, 解得 a=4.5. 故选:B.
5.解:设全市 5G 用户数年平均增长率为 x,则 2020 年底全市 5G 用户数为 2(1+x)万户, 2021 年底全市 5G 用户数为 2(1+x)2 万户, 依题意,得:2+2(1+x)+2(1+x)2=8.72, 整理,得:x2+3x﹣1.36=0, 解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去). 故选:C.
项式 x2+2ax﹣3a2 中先加上一项 a2,使它与 x2+2ax 成为一个完全平方式,再减去 a2,整
个式子的值不变,于是有:
x2+2ax﹣3a2
=(x2+2ax+a2)﹣a2﹣3a2
=(x+a)2﹣4a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的
8 / 12
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∵(a※x)※x= ,
∴(ax+x)x+x= ,
整理得(a+1)x2+x﹣ =0,
根据题意得 a+1≠0 且△=12﹣4(a+1)×(﹣ )=0,
∴a=﹣ .
故答案为﹣ .
三.解答题(共 7 小题,满分 66 分) 19.解:(1)x2+4x=﹣3
1.关于 x 的方程 x +x﹣3=0 是一元二次方程,则( )
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
人教版九年级数学上册第《一元二次方程》《二次函数》测试题(含答案)
人教版九年级数学上册《一元二次方程》《二次函数》测试题(含答案)满分120分 考试时间120分钟一、选择题(每题3分,共30分)1.一元二次方程(2)(1)0x x +-=的根为( )A .2x =-B .1x =C .12x =-,21x =D .12x =,21x =-2.若方程有两个不相等的实数根,则m 的取值范围( )A .m≥49B .m≤49C .m <49D .m >49 3.把方程08482=--x x 化成()n m x =+2的形式得( )A .100)4x (2=-B .100)16x (2=-C .84)4x (2=- D .84)16x (2=-4.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A .都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 C .都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点5.若2=x 是关于x 的一元二次方程082=+-mx x 的一个解.则m 的值是( )A .6B .5C .2D .﹣66.如图,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644 m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为( ) A .100×80-100x -80x =7644 B .(100-x )(80-x )+x 2=7644 C .(100-x )(80-x )=7644 D .100x +80x =3567.对于抛物线()1322++=x y ,下列说法错误的是 ( )A .开口向上B .对称轴是x=-3C .当x >-3时,y 随x 的增大而减小D .当x=-3时,函数值有最小值是18.若点()11A y ,,()222B y ,,()34C y ,在抛物线26y x x c =-+上,则123y y y ,,的大小关系是( ) A .213y y y << B .123y y y << C .312y y y << D .231y y y <<9.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )10.如下图,在▱ABCD 中,AE ⊥BC 于E ,AE=EB=EC=a ,且a 是一元二次方程0322=-+x x 的根,则▱ABCD 的周长为( )x yOA xy OBxy OCxy ODA .224+B .2612+C .222+D .222+或2612+二、填空(每题3分,共24分)11.已知,则________.12.若y =(m +1)265mm x --是二次函数,则m = ,13.对称轴平行于y 轴的抛物线与,与x 轴交于(1,0),(3,0)两点,則它的对称轴为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( )
A.m ,n ,p 均不为0 B 。
m ≠0,且n ≠0
C .m ≠0 D.m ≠0,或p ≠0
2.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )
3.二次函数y =-x 2+2x 的图象可能是( )
4.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )
A .y =2x 2+x +2
B .y =x 2+3x +2
C .y =x 2-2x +3
D .y =x 2-3x +2
5.二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是( )
A. a>0,b>0,c<0
B. a<0,b<0,c>0
C. a<0,b>0,c<0
D. a<0,b>0,c>0
6.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )
A .3 s
B .4 s
C .5 s
D .6 s
7.如图,是二次函数y=ax 2+bx+c 的图象,点P(a+b ,ac)是坐标平面内的点,则点P 在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
8.已知函数y=ax+b 的图象经过第一、二、三象限,那么y=ax 2+bx+1的图象大致为( )
9.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )
A .8人
B .9人
C .10人
D .11人
10.二次函数y=x 2+2x-5取最小值时,自变量x 的值是( )
A. 2
B. -2
C. 1
D. -1
11.某制药厂生产的某种针剂,每支成本3元,由于连续两次降低成本,现在的成本是2.43元,则平均每次降低的百分数是 ____ ;
12.已知抛物线y =x 2+(m -1)x -14
的顶点的横坐标是2,则m 的值是________.
13.已知x 2-7xy+12y 2=0,那么x 与y 的关系是_________.
14.已知210x x +-=,则323x x x +-+的值为_________.
15.已知a 2+3a=7,b 2+3b=7,且a ≠b,则a+b=_______.
16.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 _______.
17.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为____.
18.若函数y=-x 2+4x+k 的最大值等于3,则k 的值等于_____。
19.已知二次函数 。
求证:不论a 为何实数,此函数图象与x 轴总有两个交点。
20.某商店将甲、乙两种糖果混合运算,•并按以下公式确定混合糖果的单价:单价=112212
a m a m m m ++(元/千克),其中m 1,m 2分别为甲、乙两种糖果的重量(千克),a 1,a 2分别为甲、乙两种糖果的单价(元/千克).已知a 1=20元/千克,a 2=16元/千克,现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,•又在混合糖果中加入5千克乙种糖果,再出售时混合糖果的单价为17.5元/千克,问这箱甲种糖果有多少千克?
21.用长为20cm 的铁丝,折成一个矩形,设它的一边长为xcm ,面积为ycm2。
(1)求出y 与x 的函数关系式。
(2)当边长x 为多少时,矩形的面积最大,最大面积是多少?
22.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-x2+3x +1的一部分.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A
的水平距离是4米,问这次表演是否成功?说明理由.
22-++=a ax x y
答案
1-5 CDBDD 6-10 BCABD 11.10℅ 12.-3 13.x=3y 或x=4y 14.3 15. -3
16. 25或36 17. 6或10或12 18.-1 19.略
20. 解:设这箱甲种糖果重x 千克,则
20x+(10+5)×16=201610
10x x +⨯+×5+(x+10)×17.5.
去分母整理,得x2-4x -60=0,
解得x1=10,x2=-6.
经检验,x1,x2都是原方程的根,但x2=-6不合题意,舍去,∴
x=10. 答:这箱甲种糖果重10千克.
21.解:(1)y=x(10-x)=-x2+10x (0<x<10)
(2) y=-x2+10x=-(x-5)2+25
所以,x=5时矩形面积最大,最大面积为25
22.解:(1)y =-35x 2+3x +1
=-35⎝ ⎛
⎭⎪⎫
x -522
+194.
故函数的最大值是194,
∴演员弹跳离地面的最大高度是194米.
(2)当x =4时,y =-35×42+3×4+1=3.4=BC .
∴这次表演成功.。