{高中试卷}高一级数学下学期周测试题
高一数学下学期周考试题53 试题

高级中学2021-2021学年高一数学下学期周考试题〔5.3〕一、单项选择题〔一共27题,每一小题4分〕1.设集合222{(,)|16},{(,)|2}A x y x y B x y y x x =+===-,那么A B 的元素个数为〔 〕 A .0B .1C .2D .32.函数1()ln ||1xf x x+=-的图象大致为〔 〕 A . B .C .D .3.3log2a =,0.2log 0.3b =,11tan 3c π=,那么a ,b ,c 的大小关系是〔 〕 A .c b a << B .b a c << C .c a b << D .b c a << 4.对于函数()f x 定义域为R ,假设(1)(3)0f f <,那么〔 〕 A .方程()0f x =一定有一个实数解 B .方程()0f x =一定有两个实数解 C .方程()0f x =一定无实数解D .方程()0f x =可能无实数解5.用平面α截一个球,所得的截面面积为π,假设α到该球球心的间隔 为1,那么球的体积为〔 〕A .83π B .823πC .82πD .323π6.,m n 是两条不同的直线,,αβ是两个不同的平面.在以下条件中,可得出 αβ⊥的是〔 〕A .,,//m n m n αβ⊥⊥B .//,//,m n m n αβ⊥C .,//,//m n m n αβ⊥D .//,,m n m n αβ⊥⊥7.四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,且2PA AB ==,那么直线PB 与平面PAC 所成角为〔 〕A .6π B .4π C .3π D .2π 8.斐波那契螺旋线,也称“黄金螺旋〞,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规那么是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线如图1.它来源于斐波那契数列〔 Fibonacci sequence 〕,又称为黄金分割数列.根据该作图规那么有程序如图2,此时假设输入数值11a =,输出i 为〔 〕A .2B .3C .4D .59.图1中茎叶图是某班英语测试中学号为1至15号同学的成绩,学生成绩的编号依次为1a ,2a ,3a ,…,15a ,那么运行图2的程序框图,输出结果为〔 〕A .121B .119C .10D .510.假设98与63的最大公约数为a ,二进制数(2)110011化为十进制数为b ,那么a b +=〔 〕 A .53B .54C .58D .6011.72和168的最大公约数是〔 〕 A .24B .36C .42D .7212.用秦九韶算法计算多项式()258765323456++-+++=x x x x x x x f 在2x =的值时,其中4V 的值是〔 〕A .118B .63C .60D .2713.用秦九韶算法求n 次多项式1110()+n n n n f x a x a x a x a --=+++,当0x x =时,求0()f x 需要算乘方、乘法、加法的次数分别为〔 〕 A .(1),,2n n n n + B .,2,n n n C .0,2,n n D .0,,n n14.早在几千年之前,在文字还未创造出来的时候,人们通过绳结来记录简单的数字,即“结绳记事〞如图为一部落为记录羊群数量的绳结图,其记数的规那么为左大右小,即从右往左依次打结,每打8个结那么在该道绳子的左侧的绳子上打1个结,并解开这8个结,那么该部落的羊一共〔 〕A .1030只B .774只C .596只D .272只15.将()32012化为六进制数为()6abc ,那么a b c ++=〔 〕 A .6B .7C .8D .916.中国折叠扇有着深沉的文化底蕴.如图〔2〕,在半圆O 中作出两个扇形OAB 和OCD ,用扇环形ABDC ABDC 的面积为1S ,扇形OAB 的面积为2S ,当1S 与2S 的比值为512-时,扇面的形状较为美观,那么此时扇形OCD 的半径与半圆O 的半径之比为〔 〕A .514B .512C .35-D 5217.以下图所示函数图象经过何种变换可以得到sin 2y x =的图象〔 〕A .向左平移3π个单位 B .向右平移3π个单位C .向左平移6π个单位 D .向右平移6π个单位 18.()()()sin cos sin cos k k A k παπααα++=+∈Z ,那么A 的值构成的集合是〔 〕A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--19.函数()y f x =是(11)-,上的偶函数,且在区间(10)-,上是单调递增的,A ,B ,C 是锐角三角形ABC 的三个内角,那么以下不等式中一定成立的是〔 〕 A .(sin )(sin )f A f B > B .(sin )(cos )f A f B > C .(cos )(sin )f C f B >D .(sin )(cos )f C f B >20.函数()cos(2)(||)2f x x πϕϕ=-<的一条对称轴为3x π=,那么函数()f x 的对称轴不可能为〔 〕 A .6x π=-B .56x π= C .43x π=D .6x π=21.函数()cos(2)(0)f x A x ϕϕ=+>的图像向右平移8π个单位长度后,得到的图像关于y 轴对称,(0)1f =,当ϕ获得最小值时,函数()f x 的解析式为〔 〕A .())4f x x π=+B .()cos(2)4f x x π=+C .())4f x x π=-D .()cos(2)4f x x π=-22.函数()2sin f x x ω=〔其中0>ω〕,假设对任意13,04x π⎡⎫∈-⎪⎢⎣⎭,存在20,3x π⎛⎤∈ ⎥⎝⎦,使得()()12f x f x =,那么ω的取值范围为〔 〕 A .3ω≥B .03ω<≤C .902ω<≤D .92ω≥23.向量a ,b 满足4a =,b 在a 上投影为2-,那么3a b -的最小值为〔 〕A .12B .10CD .224.5MN a b =+,28NP a b =-+,3()PQ a b =-,那么〔 〕 A .,,M N P 三点一共线 B .,,M N Q 三点一共线 C .,,N P Q 三点一共线D .,,M P Q 三点一共线25.假设1a =,2b =,213a b +=a 与b 的夹角为〔 〕 A .6π B .3π C .2π D .23π 26.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,那么向量AF 在向量BC 方向上的投影为〔 〕 A .2B .32C .1D .327.向量(,2),(2,1)a m b ==-,且a b ⊥,那么2()a b a a b -⋅+等于〔 〕A .53- B .1 C .2D .54二、填空题〔一共4题,每一小题4分〕28.在平面直角坐标系xOy 中,过点(2,1)M --的圆C 和直线-10x y +=相切,且圆心在直线 2 y x =上,那么圆C 的HY 方程为_____________.29.tan 2x =,那么34cos()sin()22cos()sin()x x x x ππππ-++=++-_____________.30.将函数()2sin 26f x x π⎛⎫=- ⎪⎝⎭向左平移6π个单位后得函数()g x ,那么()g x 在0,12π⎡⎤⎢⎥⎣⎦上的最大值是___________.31.()1,2a =,(2,2)b =-,(1,)c λ=,假设//(2)c a b +,那么λ=__________ .三、解答题〔一共2题,每一小题13分〕32.如图是()sin()f x A x ωϕ=+,,0,0,02x R A πωϕ⎛⎫∈>><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,(1)求函数()f x 的解析式;(2)假设把函数()f x 图像向左平移β个单位()0β>后,与函数()cos2g x x =重合,求β的最小值.33.在平面直角坐标系中,O 是坐标原点,向量()1,2OA =,()2,1OB =-,(),3OM t =. 〔1〕假设()OD OA OB λ=+,当()10OD DA DB ⋅+=-,求λ的值; 〔2〕假设BO ,OM 的夹角为钝角,求t 的取值范围. 四、附加题〔宏奥班学生必做〕34.如图,正方形ABCD ,点E ,F 分别为线段BC ,CD 上的动点,且2BE CF =,设AC x AE y AF =+〔x ,y R ∈〕,那么x y +的最大值为_____________.35.函数()sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的两条对称轴之间间隔 的最小值为4,将函数()f x 的图象向右平移1个单位长度后得到函数()g x 的图象,那么(1)(2)(3)(2019)g g g g ++++=_____________.高中2022届高一数学周练参考答案CDADB BADCC AADCD BDCCD ADBBD AB 28.()()22122x y +++= 29.7 30.3 31.12一、选择题1.C 【解析】在同一坐标系中分别作出的图像,如下图,观察22216,2x y y x x +==-可知,它们有2个交点,即元素的个数为2.应选:C .2.D 【解析】由题可得函数()f x 的定义域为{|1}x x ≠±, 因为1()ln ||1x f x x --==+1ln ||()1xf x x+-=--,所以函数()f x 为奇函数,排除选项B ; 又(1.1)ln 211f =>,(3)ln 21f =<,所以排除选项A 、C ,应选D . 3.A 【解析】由对数函数的单调性可知33log2log31a =>=,0.20.20log 0.3log 0.21b <=<=,由正切函数的性质得112tantan 3033c ππ===-<, 故01c b a <<<<.应选:A.4.D 【解析】因为(1)(3)0f f <,且()f x 的定义域为R ,假设()f x 是连续函数,那么根据函数的零点存在性定理,故可得()f x 在区间()1,3上一定有一个实数解;假设()f x 不是连续函数,那么()f x 在区间()1,3上不一定有实数解.应选:D.5.B 【解析】用一平面去截球所得截面的面积为π,那么截面圆的半径为1, 球心到该截面的间隔 为1,那么球的半径为2r =,∴球的体积为:348233r ππ=. 应选:B .6.B 【解析】A :当,,//m n m n αβ⊥⊥时,平面,αβ可以平行,故本选项不符合题意; B :因为//m α,所以存在平面,,m l γγγα⊂=,因此有//m l ,而//m n ,所以//l n ,又因为n β⊥,所以l β⊥,而l l γαα=⇒⊂,因此αβ⊥,故本选项符合题意;C :当//αβ时,也能满足,//,//m n m n αβ⊥成立,故本选项不符合题意;D ://,,//m n m n n ααβαβ⊥⇒⊥⊥∴,故本选项不符合题意.应选:B7.A 【解析】连接AC 交BD 于点O ,因为PA ⊥平面ABCD ,底面ABCD 是正方形, 所以BD AC ⊥,BD PA ⊥,因此BD ⊥平面PAC ;故BO ⊥平面PAC ; 连接OP ,那么BPO ∠即是直线PB 与平面PAC 所成角,又因2PA AB ==,所以22PB =,2BO =.所以1sin 2BO BPO PB ∠==,所以 6BPO π∠=.应选A8.D 【解析】11a =,211a a ==,此时121a S a ==,|0.618|0.3820.01S -=>, 3212a a a =+=,112i =+=,此时230.5a S a ==,|0.618|0.1180.01S -=>, 4323a a a =+=,213i =+=,此时340.667a S a =≈,|0.618|0.0490.01S -=>, 5435a a a =+=,314i =+=,此时4530.65a S a ===,|0.618|0.0180.01S -=>,6548a a a ++=,415i =+=,此时5650.6258a S a ===,|0.618|0.0070.01S -=<, 所以当5i =时,|0.618|0.0070.01S -=<.应选:D .9.C 【解析】由程序框图可知该框图的功能是统计分数不小于120分的人数.通过茎叶图可知分数不小于120分的人数为10.应选:C10.C 【解析】由题意知,9863135÷=⋯,6335128÷=⋯,352817÷=⋯,2874÷=, ∴98与63的最大公约数为7,∴7a =.又()234521100111120202121251=+⨯+⨯+⨯+⨯+⨯=,∴51b =51758a b ∴+=+=.选C .11.A 【解析】由辗转相除法可知,16872224=⨯+,72243=⨯,所以,72和168的最大公约数是24.故答案为A. 12.A 【解析】()()()()()()3567852f x x x x x x x =+++-++,当2x =时,03V =,10 511V V x =+=,21628V V x =+=,327282763V V x =+=⨯+=,43 86328118V V x =-=⨯-=.应选:A .13.D 【解析】()()112110110+n n n n n n n n f x a x a x a x a a x a x a x a -----=+++=++⋯++()()231210n n n n a x a x a x a x a ---=++⋯+++=⋯()()()1210n n n a x a x a x a x a --=⋯++⋯++求多项式的值时,首先计算最内层括号内一次多项式的值,即11n n v a x a -=+ 然后由内向外逐层计算一次多项式的值,即212n v v x a -=+.323n v v x a -=+. …11n n v v x a -=+.这样,求n 次多项式f (x )的值就转化为求n 个一次多项式的值. ∴对于一个n 次多项式,至多做n 次乘法和n 次加法。
高一数学下期试题及答案

高一数学下期试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2-4x+3,下列哪个值是函数的最小值?A. 0B. 1C. 3D. 42. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}3. 已知等差数列的前三项依次为3,5,7,则该数列的第五项为:A. 9B. 11C. 13D. 154. 函数y=x^3-3x^2+3x+1的导数为:A. 3x^2-6x+3B. x^2-6x+3C. 3x^2-3x+1D. x^2-3x+15. 直线y=2x+1与x轴的交点坐标是:A. (0,1)B. (-1,0)C. (1,0)D. (0,-1)6. 已知复数z满足|z|=1,且z^2=i,则z的值为:A. 1B. -1C. iD. -i7. 函数y=x/(x^2+1)的值域是:A. (-1,1)B. (-∞,-1]∪[1,+∞)C. (-∞,0]∪[0,+∞)D. (-1,0)∪(0,1)8. 圆x^2+y^2=25的圆心坐标是:A. (0,0)B. (5,0)C. (-5,0)D. (0,5)9. 已知函数f(x)=x^3-3x^2+2,若f(a)=0,则a的值为:A. 0B. 1C. 2D. 310. 函数y=|x-2|+|x+3|的最小值是:A. 1B. 2C. 5D. 6二、填空题(每题4分,共20分)11. 函数f(x)=x^2-6x+8的顶点坐标为______。
12. 已知等比数列的前三项依次为2,4,8,则该数列的公比为______。
13. 圆的方程为x^2+y^2-6x+8y-24=0,其半径为______。
14. 函数y=|x-1|+|x+2|的最小值为______。
15. 已知向量a=(3,-4),向量b=(2,k),若a⊥b,则k的值为______。
三、解答题(每题10分,共50分)16. 解方程:2x^2-5x+2=0。
2021年高一数学下学期周测试题(十四)

2021年高一数学下学期周测试题(十四)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.的值是()A. B. C. D.2.如果,那么= ()3.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为 ( )A.0.3 B.0.5 C.0.8 D.0.74.已知,,且,则点的坐标为()A. B.C. D.5.随机抽取某中学甲乙两班各6名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.则甲班样本数据的众数和乙班样本数据的中位数分别是 ( )A.170,170B.171,171 C.171,170 D.170,1726.读程序:甲:INPUT i=1S=0WHILE i<=1000S=S+ii=i+1WENDPRINT SEND乙:INPUT i=1000S=0DOS=S+ii=i-1LOOP UNTIL i<1PRINT SEND对甲、乙两程序和输出结果判断正确的是 ( )A.程序不同,结果不同 B.程序不同,结果相同C.程序相同,结果不同 D.程序相同,结果相同7.函数是 ( )A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数8.函数的图象如图所示,为了得到的图象,则只需将的图象()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位9.已知与的夹角为600,若与垂直,则的值为()A .B .C .D . 10. 的值是 ( ) A. B. C. 2 D. 411.在区间[-1,1]上随机取一个数x ,的值介于0到之间的概率为( ). A. B. C. D.12.函数图像与函数图像所有交点的横坐标之和等于 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题 :(本大题共4小题,每小题5分,共20分.将最简答案填在题后横线上。
高一周测数学试卷(解析版)

利用两角和的余弦公式可判断选项 C;利用两角差的正切公式可判断选项 D;
【详解】对于选项 A:由二倍角正弦公式可得 2 sin 75 cos 75 sin150 1 ,故选项 A 正确; 2
对于选项 B:由二倍角余弦公式1 2 sin2 π cos π 3 ,故选项 B 不正确;
12
62
对于选项 C:由两角和的余弦公式 cos 45 cos15 sin 45 sin15 cos 45 15
,
0
,所以 x
π 3
π 3
,
2π 3
π 3
,要使得
f
x
在
0,
2π 3
上单
调递增,则
2π 3
π 3
π 2
,解得
1 4
,又由题意可知
0
,所以
0
1 4
,故选:B
7.下列关于函数
y
tan
x-
π 4
的说法正确的是(
)
A.图象关于点
3π 4
,0
成中心对称
B.图象关于直线 x 3π 成轴对称 4
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
【详解】角 的终边在第三、四象限,则 sin 0 ,反之,若 sin 0 ,则角 的终边在第三、
四象限或者 y 轴的非正半轴,所以“角 的终边在第三、四象限”是“ sin 0 ”的充分不必要条
件。故选:C
4.若 lg tan 1 , 2tan 2 ,则 tan ( )
3π 2
,0
,则当
x
π 4
π 2
时,函数无意义故
D
错误,
高一数学下学期周考卷-高一数学试题

高一数学下学期周考卷高一数学试题一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知等差数列{an},a1=1,a3=3,则公差d为()A. 1B. 2C. 3D. 43. 不等式2x 3 > 0的解集是()A. x > 1.5B. x < 1.5C. x > 3D. x < 34. 下列关于x的方程中,无解的是()A. x^2 4x + 4 = 0B. x^2 2x + 1 = 0C. x^2 + 2x + 1 = 0D. x^2 3x + 2 = 05. 若向量a与向量b的夹角为60°,|a| = 2,|b| = 3,则向量a与向量b的数量积为()A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 任何两个等差数列的乘积仍然是等差数列。
()2. 一次函数的图像是一条直线。
()3. 一元二次方程的解一定有两个实数根。
()4. 平行四边形的对角线互相平分。
()5. 若两个角互为补角,则它们的正切值互为倒数。
()三、填空题(每题1分,共5分)1. 已知等差数列{an},a1=1,a3=3,则a5=______。
2. 若函数f(x) = 2x + 1是单调递增的,那么f(3) > f(2)的解为______。
3. 向量a = (2, 3),向量b = (4, 1),则向量a与向量b的数量积为______。
4. 若一元二次方程x^2 4x + 3 = 0的两个根为x1和x2,则x1 + x2 =______。
5. 在直角坐标系中,点A(2, 3)关于原点的对称点坐标为______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 举例说明一次函数的实际应用。
3. 如何求解一元二次方程的解?4. 简述向量数量积的性质。
5. 举例说明平行四边形在实际生活中的应用。
2022-2023学年下学期高一数学周测试卷(解析版)

高一春季数学周测答案一.选择题1.下列命题中正确的是( )A .终边和始边都相同的角一定相等B .始边相同而终边不同的角一定不相等C .小于90︒的角一定是锐角D .大于或等于0︒且小于90︒的角一定是锐角 【答案】B2.下图终边在阴影部分的角的集合可表示为( )A .{}18018030,k k k Z αα⋅<<⋅+∈B .{}18018030,k k k Z αα⋅≤≤⋅+∈C .{}36036030,k k k Z αα⋅<<⋅+∈D .{}36036030,k k k Z αα⋅≤≤⋅+∈【答案】B3.一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( )A .1B .3C .πD .3π 【答案】A4.下列两组角的终边不相同的是()k ∈Z ( )A .512k ππ+与712k ππ−+ B .223k ππ−+与423k ππ+ C .126k ππ+与1326k ππ+D .14k ππ+与124k ππ±+【答案】D5.当α为第二象限角时,sin cos sin cos αααα−的值是( ). A .1B .0C .2D .2−【答案】C6.角α的终边上有一点P (a,a ),a ∈R ,且a ≠0,则sinα的值是( ) A .√22B .−√22C .±√22D .1【答案】C 7.已知sinα−2cosθ3sinα+5cosα=−5,则tanα的值为( )A .−2B .2C .2316 D .−2316 【答案】D8. 已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨−>⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72 B .8 C .92D .12 【答案】D【分析】先画出分段函数图像,确定1x ,2x ,3x ,4x 的范围,由()()3334log 1log 1x x −−=−结合对数运算可得()()34111x x −−=,)12x x 与34122x x +分别利用均值不等式求最小值,确认取等条件相同,即可得最小值.【详解】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <−<≤<<<,124x x +=−,由()()()()()()333433434log 1log 1log 110111x x x x x x −−=−⇒−−=⇒−−=, ∴()()34342112122251x x x x =−+++−5922≥=,当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫=−≥−=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =−=−+1t =.所以)1234122x x x x ++的最小值为91422−=.9.终边在直线y =的角的集合为( )A .{}0=60+360,k k Z αα−∈B .{}0=60+180,k k Z αα−∈C .{}=120+360,k k Z αα∈D .{}=120+180,k k Z αα∈【答案】BD10.化简√1−sin 2160°的结果是( ) A .cos160° B .|cos160°| C .±cos160° D .cos20°【答案】BD11.下列各式中,值为1的是( ) A .122sin45−︒B .4222sin sin cos cos αααα++C .9tan π4D .lg2lg5⨯【答案】ABC12.已知π1sin 33x ⎛⎫−= ⎪⎝⎭,且π02x <<,则以下结论正确的有( )A.π1sin 63x ⎛⎫+= ⎪⎝⎭B.πsin 6x ⎛⎫+ ⎪⎝⎭C.2π1cos 33x ⎛⎫+=− ⎪⎝⎭D.2πcos 3x ⎛⎫+= ⎪⎝⎭【答案】BD 二.填空题13.25cos 4π⎛⎫−= ⎪⎝⎭__________.【答案】√2214.已知:p “角α的终边在第一象限”,:q “sin 0α>”,则p 是q 的________ 条件(填“充分非必要”、“必要非充分”、“充要”或“既不充分也不必要”) 【答案】充分非必要”15.设()cos 24n f n ππ⎛⎫=+ ⎪⎝⎭,则(1)(2)(3)(2022)f f f f ++++=__________.【答案】-√216.已知()()222log 2log 24f x x t x t =−++,在1,164x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为()g t ,当关于t 的方程有()10g t t a −−+=有两个不等实根时,a 的取值范围是__________. 【答案】()5,−+∞【分析】换元[]2log 2,4s t =∈−,求出二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值()g t 的表达式,然后作出函数y a =−与函数()1y g t t =−−的图象,利用数形结合思想可求出实数a 的取值范围.【详解】当1,164x ⎡⎤∈⎢⎥⎣⎦时,令[]2log 2,4s x =∈−,则()g t 为二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值,该二次函数图象开口向上,对称轴为直线s t =.①当2t ≤−时,函数2224y s ts t =−++在区间[]2,4−上单调递增, 此时,()()()22222468g t t t t =−−⨯−++=+;②当24t −<<时,二次函数2224y s ts t =−++在s t =处取得最小值,即()224g t t t =−++;③当4t ≥时,二次函数2224y s ts t =−++在区间[]2,4−上单调递减,此时,()242424620g t t t t =−⨯++=−+.综上所述,()268,224,24620,4t t g t t t t t t +≤−⎧⎪=−++−<<⎨⎪−+≥⎩.由()10g t t a −−+=得()1a g t t −=−−,则函数y a =−与函数()1y g t t =−−的图象有两个交点,令()()2277,233,2115,14721,4t t t t t h t g t t t t t t t +≤−⎧⎪−++−<<⎪=−−=⎨−++≤<⎪⎪−+≥⎩,作出函数y a =−与函数()y h t =的图象如下图所示:如图所示,当5a −<时,即当5a >−时,函数y a =−与函数()y h t =的图象有两个交点,此时,关于t 的方程有()10g t t a −−+=有两个不等实根. 因此,实数a 的取值范围是()5,−+∞. 故答案为:()5,−+∞. 三.解答题 17. 【答案】 (1)3sin 5α=−(2)5418. 【答案】(1)17;(2)15−. 19. 【答案】(1)−√39;(2)√22.20.【答案】(1)函数()()233log a f x a a x =−+是对数函数,233101a a a a ⎧−+=⎪∴>⎨⎪≠⎩,解得2a =,()2log f x x ∴=,211log 122f ⎛⎫∴==− ⎪⎝⎭(2)()2log f x x =在定义域()0,∞+上单调递增,()121f f m m ⎛⎫∴>− ⎪⎝⎭可得到21010121m mm m⎧⎪−>⎪⎪>⎨⎪⎪>−⎪⎩,解得112m <<,∴不等式()121f f m m ⎛⎫>−⎪⎝⎭解集为1,12⎛⎫ ⎪⎝⎭.21. 【答案】(1)(,4][2,)−∞−+∞;(2)存在,91,4⎛−+− ⎝⎦. 【解析】(1)利用绝对值三角不等式求得()f x 的最小值,进而根据不等式恒成立的意义得到关于a 的含绝对值的不等式,求解即得;(2)根据a 和x 的范围化简得到含有参数a 的关于x 的一元二次不等式,利用二次函数的图象和性质,并根据不等式恒成立的意义得到关于实数a 的有关不等式(组),求解即得.【详解】解:(1)∵()|31||3|f x x x a =−++,的∴()|(31)(3)||1|f x x x a a ≥−−+=+, 当且仅当(31)(3)0x x a −+≤时,取等号. ∴原不等式等价于13a +≥, 解得2a ≥或4a ≤−.故a 的取值范围是(,4][2,)−∞−+∞. (2)∵1a >−,∴133a −<, ∵1,33a x ⎡⎤∈−⎢⎥⎣⎦,∴()|31||3|1f x x x a a =−++=+,()(1) g x a x =+,∴原不等式恒成立22(1)53(6)30a x x x x a x ⇔+≥−−⇔−+−≤在1,33a x ⎡⎤∈−⎢⎥⎣⎦上恒成立,令2()(6)3u x x a x =−+−,2423039a u a a ⎛⎫−=+−≤ ⎪⎝⎭得a ≤≤且14410393u a ⎛⎫=−−≤ ⎪⎝⎭,得443a ≥−,又1a >−,得914a −+−<≤.故实数a 的取值范围是91,4⎛−+− ⎝⎦.22.【答案】(1)略;(2)17,18⎡⎤−−⎢⎥⎣⎦;(3)1⎡⎣. 【分析】(1)根据“伪奇函数”的概念,可以求出1x =±满足()()f x f x −=−,得到()f x 是“伪奇函数”;(2)由幂函数的概念求出n 的值,把结论转化为对勾函数在1,44⎡⎤⎢⎥⎣⎦的值域问题,进而解不等式得答案;(3)由题意把结论化为关于22x x −+的二次方程有解的问题,通过换元引入二次函数,进而转化二次函数为在给定的区间有零点问题,列不等式解得答案.【详解】(1)若函数2()21f x x x =−−为“伪奇函数”,则方程()()f x f x −=−有实数解, 即222121x x x x +−=−++有解,整理得21x =解得1x =±,所以()f x 为“伪奇函数”; (2)因为3()(1)(R)n g x n x n −=−∈为幂函数,所以11n −=即2n =,所以()g x x =, 则由()2x f x m =+为定义在[2,2]−上的“伪奇函数”, 所以22x x m m −+=−−在[2,2]−有解,整理得122222x x x xm −−=+=+, 令2x t =,则144t ≤≤,对于函数()1h t t t=+, 设12144t t ≤<≤,则()()()212121211t t h t h t t t t t −−=−⋅ 当121,,14t t ⎡⎤∈⎢⎥⎣⎦时,有()()21h t h t <,所以()h t 是减函数,当[]12,1,4t t ∈时,有()()21h t h t >,所以()h t 是增函数, 又()111744444h h ⎛⎫==+= ⎪⎝⎭,()12h =,所以()1724h t ≤≤,所以17224m ≤−≤解得1718m −≤≤−,所以实数m 的取值范围是17,18⎡⎤−−⎢⎥⎣⎦;(3)若12()422x x f x m m +=−⋅+−是定义在R 上的“伪奇函数”,则()()f x f x −=−在R 上有实数解,即2242224222x x x x m m m m −−−⋅+−=−+⋅−+,整理得()244222240x x x x m m −−+−++−=,()()2222222260x x x x m m −−+−++−=,令122222x x x x s −=+=+≥=,当且仅当0x =取到等号, 则222260s ms m −+−=在[)2,+∞上有解,令()()22222266h s s ms m s m m =−+−=−+−在[)2,+∞上有零点,所以()222Δ44260m m m ≥⎧⎪⎨=−⨯−≥⎪⎩,即2m m ≥⎧⎪⎨≤≤⎪⎩2m ≤或者()()222222420Δ44260m h m m m m ⎧<⎪⎪=−−≤⎨⎪=−⨯−≥⎪⎩,即211m m m <⎧⎪≤≤+⎨⎪≤≤⎩12m <,综上可得m的取值范围是1⎡⎣。
高一下数学训练题及答案

周末数学训练卷(三)一、选择题(每题5分,共计60分)1.若不等式20x ax b -+<的解集为(1,2),则不等式1bx a<的解集为( )A .2(,)3+∞B .3(,0)(,)2-∞+∞C .3(,)2+∞D .2(,0)(,)3-∞+∞ 2.设等比数列{}n a 的前n 项和为n S ,若633S S =,则96S S =( ) A .2 B .73 C .83D .33.已知非零向量a,b 夹角为45︒ ,且2a =,2a b -=. 则b等于( )B.24.已知点A (2,3)、B (-5,2),若直线l 过点P(-1,6),且与线段AB 相交,则直线l 斜率的取值范围是( )A .[1,1]-B .(,1][1,)-∞-+∞C . (1,1)-D .(,1)(1,)-∞-+∞5.两圆x 2+y 2﹣1=0和x 2+y 2﹣4x+2y ﹣4=0的位置关系是( )A . 内切B . 外切C .相交D .外离6.若实数x y 、满足2400 0x y x y +-≤⎧⎪≥⎨⎪≥⎩,则21y z x +=-的取值范围为 ( )A.2(,4][,)3-∞-⋃+∞B .2(,2][,)3-∞-⋃+∞C .2[2,]3-D .2[4,]3-7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则⋅PA PB 的最大值为( ) A .3 B .4 C . 5D .68.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于点A 、B ,则弦AB 的垂直平分线的方程为( )A .3x -2y -3=0B .3x -2y +3=0C .2x -3y -3=0D .2x -3y +3=0 9.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切(m ﹣1)⋅(n ﹣1)等于( ) A . 2 B .1 C .﹣1D .﹣210.已知圆的方程为015822=+-+x y x ,若直线2+=kx y 上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A.43- B .53- C .35-D .54- 11.若⊙O 1:x 2+y 2=5与⊙O 2:(x ﹣m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( ) A .1 B .2 C .3D .4 12.设M是)(,30,32,M f BAC AC AB ABC =︒=∠=⋅∆定义且内一点其中m、n、p分别是114,,,()(,,)2MBC MCA MAB f M x y x y∆∆∆=+的面积若则的最小值是 ( )A .8B .9C .16D .18 二、填空题(每题5分,共计20分)13.不论k 为何实数,直线(2k ﹣1)x ﹣(k+3)y ﹣(k ﹣11)=0恒通过一个定点,这个定点的坐标是 .14.已知实数x 、y 满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,则2Z x y=-的取值范围是 .15.已知直线:10()l x ay a R +-=∈是圆C:224210x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则AB = .16.若直线y x b =+与曲线3y =-2个不同的公共点,则实数b 的取值范围是____________. 三、解答题(17题10分,18,19,20,21,22每题12分)17.已知不等式22log (36)2ax x -+>的解集是{}|1x x x b <>或.(1)求,a b 的值; (2)解不等式0c xax b->+(c 为常数). 18.已知点(),x y 是圆222x y y +=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 19.已知直线062:1=++y ax l 和01)1(:22=-+-+a y a x l .(1)若21l l ⊥, 求实数a 的值;(2)若21//l l , 求实数a 的值.20.已知数列{}n a 的前n 项和为n S ,12a =,且满足112n n n a S ++=+*()n N ∈.(1)证明数列{}2nn S 为等差数列; (2)求12...n S S S +++.21.矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.22.已知以点)2,1(-A 为圆心的圆与直线072:1=++y x l 相切.过点)0,2(-B 的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点,直线l与1l 相交于点P .(1)求圆A 的方程;(2线l 的方程;(3)BP BQ ⋅是否为定值,如果是,求出这个定值;如果不是,请说明理由.周末数学训练卷(三)答案一、选择题(题型注释) 1.若不等式20x ax b -+<的解集为(1,2),则不等式1bx a<的解集为( ) A .2(,)3+∞ B .3(,0)(,)2-∞+∞C .3(,)2+∞D .2(,0)(,)3-∞+∞【答案】B 试题分析:Q 不等式20x ax b -+<的解集为(1,2),1,2∴是一元二次方程20x ax b -+=的两个实根,由韦达定理得:123122a ab b +==⎧⎧⇒⎨⎨⨯==⎩⎩, 那么不等式1b x a<化为:1223300,332x x x x x-<⇒>⇒<>或,2.设等比数列{}n a 的前n 项和为n S ,若633SS =,则96SS =( ) A .2 B .73 C .83 D .3【答案】B 试题分析:设等比数列{}n a 的公比为()0q q ≠,则:由633S S =,知1q ≠,得:63313131q q q-=⇒+=-,那么93362963361(1)(1)3271(1)(1)33S q q q q S q q q --+++====--+3.已知非零向量a,b 夹角为45︒ ,且2a =,2a b -=. 则b 等于( )B.2【答案】A 试题分析:由题22220()2cos 45a b a b a a b b -=-=-+,则:244,b b -+==4.已知点A (2,3)、B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则直线l 斜率的取值范围是( )A .[1,1]-B . (,1][1,)-∞-+∞C . (1,1)-D .(,1)(1,)-∞-+∞【答案】B 试题分析:直线PA 的斜率36121k -==-+,倾斜角等于135°,直线PB 的斜率'26151k -==-+,倾斜角等于45°,结合图象由条件可得直线l 的倾斜角α的取值范围是:90°<α≤135°,或45°≤α<90°.5.两圆x 2+y 2﹣1=0和x 2+y 2﹣4x+2y ﹣4=0的位置关系是( )A . 内切B . 外切C .相交D .外离【答案】C 试题分析:由已知得:圆221=0x y +-,圆心()100O ,,半径11r =;圆22x y 4x 2y 40++=﹣﹣化为标准方程为()()22219x y -++=,圆心()2O 2,-1,半径23r =;则12OO =,124r r +=,1212OO r r <+,所以两圆相交.故选C.6.若实数x y 、满足2400 0x y x y +-≤⎧⎪≥⎨⎪≥⎩,则21y z x +=-的取值范围为 ( ) A.2(,4][,)3-∞-⋃+∞B .2(,2][,)3-∞-⋃+∞C .2[2,]3- D .2[4,]3- 【答案】B 试题分析:由不等式可知可行域为直线0,0,240x y x y ==+-=围成的三角形,顶点为()()()0,0,0,2,4,0,21y z x +=-看作点()(),,1,2x y -连线的斜率,结合图形可知斜率的范围为2(,2][,)3-∞-⋃+∞7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则⋅PA PB 的最大值为( )A .3 B .4 C . 5D .6【答案】C 试题分析:由题意可知,动直线0x my +=经过定点()0,0A ,动直线30mx y m --+=即()130m x y --+=,经过点定点()1,3B , 动直线 0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有222,10P A P BP AP BA B⊥∴+==,故2252+⋅≤=PA PBPA PB (当且仅当P A P ===”) ,故选C.8.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于点A 、B ,则弦AB 的垂直平分线的方程为A .3x -2y -3=0B .3x -2y +3=0C .2x -3y -3=0D .2x -3y +3=0【答案】A 试题分析:弦AB 的垂直平分线必过圆心,而圆的标准方程是()4122=+-y x ,圆心()0,1,已知直线的斜率32-=k ,那么垂直平分线的斜率23='k ,故垂直平分线方程是()123-=x y ,整理为0323=--y x9.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切(m ﹣1)⋅(n ﹣1)等于()A . 2B .1C .﹣1 D .﹣2【答案】A 试题分析:由题意知:圆心()1,1到直线m 1x n 1y 20+++=()()﹣的距离等于半径1,所以1=,化简得1mn m n --=;则()()11111m n mn mn-⋅-=--. 10.已知圆的方程为015822=+-+x y x ,若直线2+=kx y 上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是A.43-B .53-C .35-D .54-【答案】A 试题分析::∵圆C 的方程为15822=+-+x y x ,∴整理得:()2241x y -+=,∴圆心为C (4,0),半径r=1.又∵直线2+=kx y 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴点C 到直线y=kx+2的距离小于或等于2,2≤化简得:2340k k +≤,解之得43-≤k ≤0,∴k 的最小值是43-11.若⊙O 1:x 2+y 2=5与⊙O 2:(x ﹣m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( )A .1B .2C .3D .4【答案】D 解:由题意做出图形分析得:由圆的几何性质两圆在点A 处的切线互相垂直,且过对方圆心O 2O 1.则在Rt △O 2AO 1中,|O 1A|=|O 2A|=,斜边上的高为半弦,用等积法易得:AB52⋅=?|AB|=4 12.设M是)(,30,32,M f BAC AC AB ABC =︒=∠=⋅∆定义且内一点其中m、n、p分别是114,,,()(,,)2MBC MCA MAB f M x y x y∆∆∆=+的面积若则的最小值是 ( ) A .8 B .9 C .16 D .18【答案】D 试题分析: 因为在ABC ∆ 23,30AB AC BAC ⋅=∠=︒,所以01||||cos3023,||||4,S |||2ABC AB AC AB AC AB AC ∆=∴==,S ABC ∆是,,MBC MCA MAB ∆∆∆的面积之和,12x y +=,所以141428()(22)101018y x x y x y x y x y +=++=++≥+=,当且仅当28y x x y =,即2y x =时,即11,63x y ==时取等号,故选D.二、填空题(题型注释)13.不论k 为何实数,直线(2k ﹣1)x ﹣(k+3)y ﹣(k ﹣11)=0恒通过一个定点,这个定点的坐标是 . 【答案】(2,3)试题分析:直线(2k ﹣1)x ﹣(k+3)y ﹣(k ﹣11)=0 即 k (2x ﹣y ﹣1)+(﹣x ﹣3y+11)=0, 根据k 的任意性可得,解得,∴不论k 取什么实数时,直线(2k ﹣1)x+(k+3)y ﹣(k ﹣11)=0都经过一个定点(2,3).14.已知实数x 、y 满足2203x y xy y +≥⎧⎪-≤⎨⎪≤≤⎩,则2Z x y=-的取值范围是 .【答案】[5,7]-试题分析:画出可行域如图 由2z x y =-可变形得2y x z =-,当直线经过点B 时z 取得最小值,直线经过点C 时z 取得最大值,所以z 取得最小值是2(1)35⨯--=-, z 取得最大值是2537⨯-=,可得z 的取值范围是[5,7]-. 考点:利用线性规划求最值.15.已知直线:10()l x ay a R +-=∈是圆C:224210x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则AB = . 【答案】6试题分析:圆C:224210x y x y +--+=的圆心为)1,2(,直线l 是圆C 的对称轴,则直线过点)1,2(可求得1-=a ,01=--y x ,也即点)14(--,A ,则102,又圆的半径为2=r ,由圆的切线长定理可知6))((=-+=r AC r AC AB ,所以6=AB .16.若直线y x b =+与曲线3y =2个不同的公共点,则实数b 的取值范围是____________. 【答案】(11]--试题分析:曲线方程变形为()()22234x y -+-=,表示圆心A 为(2,3),半径为2的下半圆,根据题意画出图形,如图所示,当直线y=x+b 过B (4,3)时,将B 坐标代入直线方程得:3=4+b ,即b=-1;当直线y=x+b 与半圆相切时,圆心A 到直线的距离d=r ,即2=,即1b -=(不合题意舍去)或b-1=1b -=-,解得:1b =-则直线与曲线有两个公共点时b 的范围为11b -<≤-三、解答题(题型注释)17.已知不等式22log (36)2ax x -+>的解集是{}|1x x x b <>或.(1)求,a b 的值;(2)解不等式0c xax b->+(c 为常数).【答案】(1) 1,2a b ==;(2)当2c =-时,不等式的解集是∅,当2c >-时,不等式的解集为{}|2x x c -<<,当2c <-时,不等式的解集为{}|2x c x <<-.试题解析:(1)由22l o g (36)2ax x -+>得2364ax x -+>,即2320ax x -+>,由题可知2320ax x -+>的解集是{}|1x x x b <>或,则1,b 是2320ax x -+=的两根,由韦达定理得33121b a ab a -⎧+=-=⎪⎪⎨⎪⨯=⎪⎩,解得1,2a b ==(2)原不等式可化为()(2)0c x x -+>,即()(2)0x c x -+<.当2c =-时,不等式的解集是∅,当2c >-时,不等式的解集为{}|2x x c -<<;当2c <-时,不等式的解集为{}|2x c x <<-18.已知点(),x y 是圆222x y y +=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 【答案】(1)1⎡⎤⎣⎦;(2试题解析:(1)设圆的参数方程为cos sin x y θθ=⎧⎨=⎩(2)cos sin 10x y a a θθ++=+++≥19.已知直线062:1=++y ax l 和01)1(:22=-+-+a y a x l .(1)若21l l ⊥, 求实数a 的值;(2)若21//l l , 求实数a 的值. 【答案】(1)23a =;(2).1-=a 试题解析:(1)若21l l ⊥, 则212(1)0.3a a a ⨯+-=⇒=(2)若21//l l , 则(1)1201 2.a a a ⋅--⨯=⇒=-或 经检验, 2a =时, 1l 与2l 重合. 1-=a 时, 符合条件.∴ .1-=a20.已知数列{}n a 的前n 项和为n S ,12a =,且满足112n n n a S ++=+*()n N ∈.(1)证明数列{}2nn S 为等差数列; (2)求12...n S S S +++.【答案】(1)见解析; (2) 12(1)2n n ++-⋅.试题解析: (1) 证明:由条件可知,112n n n n S S S ++-=+,即1122n n n S S ++-=,整理得11122n nn nS S ++-=, 所以数列{}2nn S 是以1为首项,1为公差的等差数列.(2) 由(1)可知,112n n S n n =+-=,即2nn S n =⋅, 令12n n T S S S =+++212222nn T n =⋅+⋅++⋅①21212(1)22n n n T n n += ⋅++-⋅+⋅②①-②,212222n n n T n +-=+++-⋅,整理得12(1)2n n T n +=+-⋅.21.矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.【答案】(1)023=++y x ;(2)8)2(22=+-y x . 试题解析:(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T(-1, 1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩得02x y =⎧⎨=-⎩∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M(2,0), ∴M 为矩形ABCD 外接圆的圆心,又|AM|==,∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8 22.已知以点)2,1(-A 为圆心的圆与直线072:1=++y x l 相切.过点)0,2(-B 的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点,直线l 与1l 相交于点P . (1)求圆A 的方程;(2直线l 的方程;(3)BP BQ ⋅是否为定值,如果是,求出这个定值;如果不是,请说明理由.【答案】(1)20)2()1(22=-++y x ;(2)2-=x 或0643=+-y x ;(3)BP BQ ⋅是定值,且5-=⋅.试题解析:(1)设圆A 的半径为R ,由于圆A 与直线072:1=++y x l 相切,∴525741=++-=R , ∴圆A 的方程为20)2()1(22=-++y x .(2)①当直线l 与x 轴垂直时,易知2-=x ,符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为)2(+=x k y ,即02=+-k y kx . 连结AQ ,则MNAQ ⊥,∵,∴,则由11222=++--=k k k AQ ,∴直线l :0643=+-y x . 故直线l 的方程为2-=x 或0643=+-y x .(3)解法1:∵BP AQ ⊥,∴0=⋅BP AQ ,∴BPBA BP AQ BA BP BQ ⋅=⋅+=⋅)(,①当直线l 与x 轴垂直时,解得)25,2(--P ,则)25,0(-=,又)2,1(=BA ,∴5-=⋅=⋅BP BA BP BQ .②当直线l 的斜率存在时,设直线l 的方程为)2(+=x k y ,由⎩⎨⎧=+++=072),2(y x x k y 得)215,2174(k kk k P +-+--,则)215,215(kkk BP +-+-=,(021≠+k ,否则l 与1l 平行).∴5110215-=+-++-=⋅=⋅kk .解法2:①当直线l 与x ,又)2,1(=BA ,∴5-=⋅=⋅BP BA BP BQ .②当直线l 的斜率存在时,设直线l 的方程为)2(+=x k y ,由⎩⎨⎧=+++=072),2(y x x k y 得,则,(021≠+k ,否则l 与1l平行) 由⎩⎨⎧=-+++=20)2()1(),2(22y x x k y ,得)1584()244()1(2222=--++-++k k x k k x k ,∴,∴1242221++=+k kk y y ,∴)12,1122(2222+++-+-k k k k k k Q , ∴)12,112(222++++=k kk k k , ∴5)21)(1()212(5)215,215()12,112(223222-=+++++-=+-+-⋅++++=⋅k k k k k k k k k k k k k ,综上所述,BP BQ ⋅是定值,且5-=⋅BP BQ . 解法3:设),(00y x P ,则07200=++y x ,),2(),2,1(00y x +==,∵BP AQ ⊥,∴0=⋅BP AQ , ∴52722),2()2,1()(0000-=+-=++=+⋅=⋅=⋅+=⋅y x y x BP BA BP AQ BA BP BQ ,∴BP BQ ⋅是定值,且5-=⋅BP BQ .。
2021年高一数学下学期周测试题(六)

2021年高一数学下学期周测试题(六)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法正确的个数是( ).①小于90°的角是锐角; ②钝角一定大于第一象限的角;③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°.A . 0 B.1 C.2 D.3 2.若角α与β终边相同,则一定有( ). A .α+β=180° B.α+β=0°C.α-β=k ·360°,k ∈Z D.α+β=k ·360°,k ∈Z3. 若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是( ).A.4 cm 2 B.2 cm 2 C.4πcm 2 D.2πcm 2 4.把-1125°化成α+2k π ( 0≤α<2π,k ∈Z )的形式是( ). A .-π4 -6π B. 7π4 -6π C.-π4-8π D.7π4-8π5.已知集合M ={x ∣x = , ∈Z },N ={x ∣x = , k ∈Z },则( ). A .集合M 是集合N 的真子集 B .集合N 是集合M 的真子集C .M = ND .集合M 与集合N 之间没有包含关系 6.半径为cm ,中心角为120o 的弧长为( ). A .B .C .D .7.如果点P (tan θ,cos θ)位于第三象限,那么θ所在的象限是( ). A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限8.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( ). A .B .C .D .9.集合{α∣α = -,k ∈Z }∩{α∣-π<α<π}为( ). A .{-π5 ,3π10 } B .{-7π10 ,4π5 } C .{-π5 , 3π10 ,-7π10 ,4π5} D .{3π10 ,7π10}10.已知,,那么( )A B C D11.已知,,那么的值是()A B C D12.函数的值域是().A.{1} B.{1,3} C.{-1}D.{-1,3}二、填空题:(本大题共4小题,每小题5分,共20分.将最简答案填在题后横线上。