生存分析概念
生存分析SPSS

√
√
2021/10/10
22
三、主要输出结果
1.分析例数描述
案 例 处 理摘 要
分析
事件 a
中可 用的
删失
案例
合计
删除
带有缺失值的案例
的案 例
带有负时间的案例
层中的最早事件之
前删失的案例
合计
N 26 37 63 0 0
0
0
合计
63
a. 因变量: t
2021/10/10
23
百分比 41.3% 58.7% 100.0% .0% .0% .0%
(4)预测:建立cox回归预测模型。
生存分析(Survival Analysis)菜单
寿命表(Life Tables)过程
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
1
35 50 1 0 0 1 0 26
1
36 33 1 1 0 0 0 120
0
37 57 1 1 1 0 0 120
0
38 48 1 0 0 1 0 120
0
39 28 0 0 0 1 0
3
1
40 54 1 0 1 1 0 120
1
41 35 0 1 0 1 1
7
1
42 41)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
统计学中的生存分析方法

统计学中的生存分析方法统计学是一门研究数据收集、分析和解释的学科,而生存分析是统计学中的一种重要方法。
生存分析是研究个体从某一特定事件(如诊断、治疗、手术等)发生到另一特定事件(如死亡、复发、康复等)的时间间隔的方法。
它可以帮助我们了解和预测事件发生的概率和时间。
一、生存分析的基本概念生存分析的基本概念包括生存时间、生存函数和生存率。
生存时间是指从特定事件发生到另一特定事件发生的时间间隔,可以是天、月、年等。
生存函数是描述个体在给定时间点存活下来的概率,通常用Kaplan-Meier曲线表示。
生存率是指在给定时间点存活下来的比例,可以通过生存函数计算得出。
二、生存分析的方法1. Kaplan-Meier方法Kaplan-Meier方法是最常用的生存分析方法之一。
它基于观测数据估计生存函数,考虑到了个体在不同时间点的观测情况。
Kaplan-Meier曲线可以用来比较不同组别之间的生存情况,例如治疗组和对照组之间的生存率差异。
2. Cox比例风险模型Cox比例风险模型是一种常用的多变量生存分析方法。
它可以同时考虑多个危险因素对生存时间的影响,并估计各个因素的风险比。
Cox模型的优势在于可以控制其他危险因素的影响,从而更准确地评估某个因素对生存时间的影响。
3. Log-rank检验Log-rank检验是用来比较两个或多个组别之间生存曲线差异的统计方法。
它基于Kaplan-Meier曲线,通过计算观测到的死亡事件数与期望死亡事件数的比值来判断组别之间的差异是否显著。
Log-rank检验广泛应用于生物医学研究中,帮助研究人员评估不同治疗方法或风险因素对生存时间的影响。
三、生存分析的应用领域生存分析方法在多个领域有广泛的应用,例如医学、流行病学、经济学等。
在医学领域,生存分析可以用来评估不同治疗方法对患者存活时间的影响,帮助医生制定更合理的治疗方案。
在流行病学研究中,生存分析可以用来评估某种疾病的发病率和死亡率,从而帮助制定预防和控制策略。
生存分析

欧春泉 生物统计系
一、生存分析的基本概念
1、生存分析(survival analysis)是将 事件的结果(终点事件)和出现这一 结果所经历的时间(生存时间)结合 起来分析的一种统计分析方法。 它不 同于其它多因素分析的主要区别点就 是生存分析考虑了每个个体出现某一 结局的时间长短。
10
6. 生存分析的特点
9 可以处理删失数据 9 与其它多元分析方法的区别:
▬ ▬
与线性回归不同, 结局变量为长短
9 与所有其它统计资料的分析一样,生存分析包括 以下三方面:
▬ ▬ ▬
计算生存率等指标(描述性分析) 可比较两组/多组的生存时间 (单变量分析) 评价各因素对生存时间的影响(多变量分析)
2. 生存率/生存函数 (survival rate/ survival function)
指观察对象经历t个单位时段后仍存活的 可能性,即生存时间大于等于t的概率 可见,生存率随时间而变化,即生存率是 时间t的函数,称生存函数,用S(t)表示, S(t)=P(T≥t) 。某时间点生存函数的值就 是该时间点的生存率
数据分析中用两个变量定义一个观察对象的 随访结果 δ – 结局变量:反映终点事件是否发 生,为二分类变量 – 1 (若终点事件出现) – 0 (若终点事件未出现) T- 观察时间 – 生存时间(若研究的结局出现) – 随访时间(若研究的结局未出现)
5
表1 16-1
病例号 1 2 3 4 开始日期 11/29/80 06/13/82 03/02/83 08/04/83
1 1 3 3 1 1 2 0 1 0 0 0 0 0 1 0 1 1
23 22 21 18 15 14 13 11 10 9 8 7 6 5 4 3 2 1
生存分析在统计学中的重要性与应用

生存分析在统计学中的重要性与应用生存分析是统计学中的一项重要分析方法,它被广泛应用于医学研究、生物学、经济学等领域。
生存分析旨在研究个体或群体的生存时间,并对其生存几率和生存函数进行估计与预测。
本文将介绍生存分析的基本概念与方法,并探讨其在统计学中的重要性与应用。
一、生存分析的基本概念生存分析的核心目标是对个体或群体的生存时间进行研究和分析。
其基本概念包括以下几个方面:1. 生存时间(Survival Time):指个体或群体从某一起始时间到达终止事件(如死亡、失效等)所经历的时间。
2. 生存状态(Survival Status):用来描述个体在某一时刻之前是否发生了终止事件,通常用1表示发生,用0表示未发生。
3. 生存函数(Survival Function):记为S(t),可用来描述个体在某一时刻之前生存下来的概率。
生存函数一般是一个递减函数,在开始时为1,随着时间的推移逐渐减小。
4. 风险函数(Hazard Function):记为h(t),用来描述在给定时刻t 生存下来的个体在下一时刻会发生终止事件的概率。
风险函数的大小与时间t有关,通常会随着时间的推移逐渐增大。
二、生存分析的方法与技巧生存分析采用的方法包括Kaplan-Meier法、Cox回归模型等。
下面将介绍这些方法的基本原理与应用技巧:1. Kaplan-Meier法(K-M法):该方法用于估计生存函数,相比其他方法更适合用于分析数据中存在截断或缺失的情况。
K-M法将生存时间按照不同的时间点进行分组,并计算每个时间点的生存几率。
2. Cox回归模型:该模型用于研究生存时间与多个危险因素之间的关系。
通过对危险因素的调整,可以得到更准确的生存预测。
Cox回归模型广泛应用于生物医学研究中,如癌症预后、药物疗效评价等领域。
三、生存分析在统计学中的重要性生存分析在统计学中具有重要的意义,主要体现在以下几个方面:1. 生存率研究:生存分析可以用来研究各种事件的生存率,如疾病的治疗效果、产品的使用寿命、经济市场的生存周期等。
关于生存分析的统计方法

关于生存分析的统计方法以生存分析的统计方法为标题,本文将介绍什么是生存分析,以及生存分析中的统计方法。
一、什么是生存分析生存分析是一种描述和分析生存时间的统计方法,它研究事件发生的概率和时间之间的关系,以及发生特定事件之前的时间长度。
生存分析是医学统计学中的一个重要部分,也被用于经济学、营销学和其他社会科学领域。
生存分析是统计分析的一种,它提供了一个可以测量特定事件发生的概率的方法。
生存分析的主要任务是研究不同的因素对某个事件发生的概率以及在该事件发生之前的持续时间方面的影响。
二、生存分析中的统计方法生存分析的主要统计方法包括单因素生存分析和多因素生存分析:1.因素生存分析单因素生存分析是一种用来估计特定事件发生的概率的统计方法,这种统计方法采用单一因素来评估特定事件发生的可能性。
单因素生存分析一般采用比例风险模型(或也叫做Cox比例风险模型),其中一个因素会影响另一个因素发生的概率。
比例风险模型分析需要经过正态分布的测试,以评估特定因素发生的概率。
2.因素生存分析多因素生存分析比单一因素生存分析更为复杂。
多因素生存分析采用多个因素,以估计特定事件发生的概率。
多因素生存分析一般使用多变量比例风险模型,该模型用多个变量衡量某一事件发生的概率。
通过多变量比例风险模型,可以确定影响特定事件发生的概率的每个变量及其重要性。
三、结论本文详细介绍了生存分析的定义以及生存分析中使用的两种主要统计方法:单因素生存分析和多因素生存分析。
生存分析的结果可以用来评估特定事件发生的概率以及在该事件发生之前的持续时间。
因此,生存分析为评估大量复杂数据提供了有用的信息,并且已经成为统计学中的重要技术。
14-生存分析

将原始数据录入计算软件,首先对每个备选的自变量作单因素Cox回 归模型,得到表23-9所示结果。由表23-9可见,在水准上,有统计 学意义的因素为年龄和确诊到手术时间。
Cox回归应用中的注意事项
1.Cox回归分析结论的正确性要以科学的设计、有代 表性的抽样为前提。如果样本例数过少(多因素分析 中死亡例数一般应在自变量个数的10倍以上),或者 抽样不随机而使得某些变量在其各个水平上分布极偏, 很难得到真正的结果。有时回归分析得到的相对危险 度与专业知识相悖,并非是什么专业上的新发现,而 是设计上的缺陷造成。通过计算机软件进行模型拟合 只能保证计算上的准确,不合理的设计得到的数据计 算出的结果只能是错得更复杂。另外,虽然它可以利 用删失数据的信息,但过多的删失很可能会带来分析 结果的偏倚。
2. 截尾原因无偏性 例如,老年患者常因不重视随访而失访,由此可能 使估计的生存率偏高。为防止截尾偏性,常需对被截尾者的年龄、 职业和地区等构成情况进行分析。
3. 生存时间尽可能精确 因为多数生存分析方法都是在生存时间排序的 基础上进行的,即使是小小的舍入误差,也可能改变生存时间顺序 而影响结果。对于随访资料,生存时间最好精确到天数。
完全数据
完全数据(complete data):是指从观 察的起始事件一直达到观察的终点事件。 是生存分析最重要的资料,即观察对象 完整的生存时间。
截尾数据
截尾数据(censored data)在随访工作中,由于某种 原因未能观察到病人的明确结局(即终止事件),所 以不知道该病人的确切生存时间,它所提供关于生存 时间的信息是不完全的。
产生截尾现象的原因: ①病人失访 ②病人的生存期超过了研究的终止期
③在动物实验中,达到了事先规定的终止事件
生存分析入门及其应用领域

生存分析入门及其应用领域生存分析是一种统计方法,用于研究个体在给定时间内生存或发生特定事件的概率。
它广泛应用于医学、生物学、社会科学等领域,帮助研究人员了解个体的生存状况和预测未来事件的发生概率。
本文将介绍生存分析的基本概念和方法,并探讨其在不同领域的应用。
一、生存分析的基本概念和方法1.1 生存函数和生存率生存函数是描述个体在给定时间内存活的概率分布函数。
它可以用来计算个体在不同时间点的生存率。
生存率是指个体在给定时间段内存活下来的概率。
1.2 风险函数和累积风险函数风险函数是描述个体在给定时间点发生事件的概率密度函数。
它可以用来计算个体在不同时间点发生事件的风险。
累积风险函数是指个体在给定时间段内发生事件的累积概率。
1.3 生存分析方法生存分析方法包括Kaplan-Meier方法、Cox比例风险模型等。
Kaplan-Meier方法用于估计生存函数和生存率,适用于无法满足正态分布假设的数据。
Cox比例风险模型用于分析多个协变量对生存时间的影响,可以得出各个协变量的风险比。
二、生存分析在医学领域的应用2.1 癌症生存分析生存分析在癌症研究中广泛应用。
研究人员可以通过分析患者的生存时间和相关协变量,评估不同治疗方法对患者生存率的影响。
此外,生存分析还可以用于预测患者的生存时间和制定个体化治疗方案。
2.2 药物研发生存分析在药物研发中也有重要应用。
研究人员可以通过分析药物对动物或人体的生存时间和相关协变量,评估药物的疗效和安全性。
生存分析可以帮助筛选出具有潜在治疗效果的药物,并为临床试验的设计提供依据。
三、生存分析在社会科学领域的应用3.1 人口统计学生存分析在人口统计学中被广泛应用。
研究人员可以通过分析人群的生存时间和相关协变量,评估不同因素对人口生存率的影响。
生存分析可以帮助政府和决策者制定人口政策和社会福利政策。
3.2 金融风险管理生存分析在金融风险管理中也有应用。
研究人员可以通过分析金融产品的生存时间和相关协变量,评估不同因素对金融产品的风险和收益的影响。
医学统计学中的生存分析方法

医学统计学中的生存分析方法一、引言在医学领域中,了解疾病的生存状况对于预测患者的预后、制定治疗方案以及评估新药疗效至关重要。
为了帮助我们更好地理解疾病的生存情况,医学统计学中的生存分析方法应运而生。
本文将介绍生存分析的基本概念、常用的生存分析方法以及其在医学研究中的应用。
二、生存分析的基本概念生存分析是一种用于研究事件发生时间的统计方法,常用于分析疾病的生存状况。
其核心概念是生存时间(Survival Time)、生存状态(Survival Status)以及危险比(Hazard Ratio)。
生存时间是指从一个特定事件(例如诊断疾病)发生到另一个特定事件(例如死亡或复发)发生的时间间隔。
生存状态是指在某个特定时间点上,观察的个体是否存活。
危险比是比较两组生存时间的风险差异,通常用来评估不同因素对生存时间的影响。
三、常用的生存分析方法1. Kaplan-Meier曲线Kaplan-Meier曲线是一种常用的生存分析方法,它可以估计在不同时间点上的生存概率。
通过绘制Kaplan-Meier曲线,我们可以直观地观察到不同组别、不同变量对生存时间的影响。
2. Log-Rank检验Log-Rank检验是一种常用的假设检验方法,用于比较两组或多组生存曲线之间是否有差异。
通过计算观察到的生存时间与预期生存时间之间的差异,可以判断不同因素对生存时间的影响是否显著。
3. Cox比例风险回归模型Cox比例风险回归模型是一种常用的多变量生存分析方法,用于评估多个因素对生存时间的影响。
该模型可以控制其他潜在影响因素,并计算危险比,从而确定不同因素对生存时间的相对危险性。
四、生存分析方法在医学研究中的应用生存分析方法在医学研究中有着广泛的应用,以下是其中一些典型的例子:1. 癌症研究生存分析方法可以用于评估不同治疗方法对癌症患者生存时间的影响,帮助医生制定个体化的治疗方案。
此外,生存分析还可以确定某种基因突变是否与癌症预后相关,从而为基因治疗提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、生存分析的概念:将事件的结果和出现此结果所经历的时间结合起来分析的统计分析方法。
研究生存现象和响应时间数据及其统计规律的一门学科。
对一个或多个非负随机变量(生存时间)进行统计分析研究。
对生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度的统计分析方法。
在综合考虑相关因素(内因和外因)的基础上,对涉及生物学、医学(临床、流行病)、工程(可靠性)、保险精算学、公共卫生学、社会学和人口学(老龄问题、犯罪、婚姻)、经济学(市场学)等领域中,与事件(死亡,疾病发生、发展和缓解,失效,状态持续)发生的时间(也叫寿命、存活时间或失效时间,统称生存时间)有关的问题提供相关的统计规律的分析与推断方法的学科。
二、“生存时间”(Survival Time)的概念生存时间也叫寿命、存活时间、失效时间等等。
医学:疾病发生时间、治疗后疾病复发时间可靠性工程系:元件或系统失效时间犯罪学:重罪犯人的假释时间社会学:首次婚姻持续时间人口学:母乳喂养新生儿断奶时间经济学:经济危机爆发时间、发行债券的违约时间保险精算学:保险人的索赔时间、保险公司某一索赔中所付保费汽车工业:汽车车轮转数市场学中:报纸和杂志的篇幅和订阅费三、生存分析的应用领域:社会学,保险学,医学,生物学,人口学,医学,经济学,可靠性工程学等六、生存分析研究的目的1、描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函数曲线。
统计方法包括Kaplan-Meier(K-M)法、寿命表法。
2、比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的生存率,以了解哪种治疗方案较优。
统计方法log-rank检验等。
3、影响因素分析:研究某个或某些因素对生存率或生存时间的影响作用。
如为改善脑瘤病人的预后,应了解影响病人预后的主要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。
统计方法Cox比例风险回归模型等。
4、预测:建立Cox回归预测模型。
主要研究内容描述生存过程:研究人群生存状态的规律,研究生存率曲线的变动趋势,是人寿保险业的基础。
生存过程影响因素分析及结局预测:识别与反应、生存及疾病等相关风险因素,预测生存结局,在临床中应用的非常广泛。
七、主要分析方法1、参数法方法:首先要求观察的生存时间t 服从某一特定的分布,采用估计分布中参数的方法获得生存率的估计值。
生存时间的分布可能为指数分布、Weibull分布、对数正态分布等,这些分布曲线都有相应的生存率函数形式。
只需求得相应参数的估计值,即可获得生存率的估计值和生存曲线。
2、非参数方法:实际工作中,多数生存时间的分布不符合上述所指的分布,就不宜用参数法进行分析,应当用非参数法。
这类方法的检验假设与以往所学的非参数法一样,假设两组或多组的总体生存率曲线分布相同,而不论总体的分布形式和参数如何。
非参数法是随访资料的常用分析方法。
3、半参数方法:只规定了影响因素和生存状况间的关系,但是没有对时间(和风险函数)的分布情况加以限定。
这种方法主要用于分析生存率的影响因素,属多因素分析方法,其典型方法是Cox比例风险模型。
4、几种常用的统计软件:SAS,SPSS,Stata,Excel,R第二章数据类型一、完全数据(Complete data)每个个体确切的生产时间都是知道的。
这样的数据称为完全数据(Complete data)。
但在实际的生存分析中,数据在很多情况下是很难完全观察到的。
二、删失(Censoring )生存数据一个重要的特点是:在研究结束时,无法获得某些个体确切的生存时间。
例如:失去联系(病人搬走,电话号码改变),无法观察到结局(死于其他原因),研究截止,个体仍然存活……在这些情况下获得的数据就是删失数据(Censored data)。
对存在删失的个体,只知道删失时间(Censoring time)。
删失分为右删失(Right censoring)、左删失(Left censoring)和区间删失(Interval censoring)1、右删失(Right censoring)。
在进行观察或调查时,一个个体的确切生存时间不知道,而只知道其生存时间大于时间L,则称该个体的生存时间在L上是右删失的,并称L为右删失数据(Right-censored data)。
右删失有三种类型(按结束时间差别):I型删失(Type I censoring)、II型删失(Type II censoring)和III型删失(Type III censoring)。
(1)I型删失(Type I censoring):对所有个体的观察停止在一个固定的时间,这种删失即为I型删失(或定时删失)。
例如:动物研究通常是以有固定数目的动物接受一种或多种处理开始,由于时间和费用的限制,研究者常常不能等到所有动物死亡。
一种选择就是在一个固定时间周期内观察,在截止时间之后仍可能有些动物活着,但不继续观察了。
这些动物的生存时间是不知道的,只知其不小于研究周期时间。
I型删失的删失时间是固定的。
图表 1 I型删失示例(2)II型删失(Type II censoring):同时对n个个体进行观察,一直到有一固定数目(r < n)的个体死亡(失效)为止,这种删失即为II型删失。
II型删失的删失时间是随机的。
图表 2 II型删失示例(3)III型删失(Type III censoring):所有个体在不同时间进入研究,某些个体在研究结束之前死亡,他们的确切生存时间是知道的,其他个体在研究结束之前退出研究而不被跟踪观察或在研究结束时仍然活着。
进入研究的时间可能不同,删失时间也可能不同,这种删失叫做III型删失,又称为随机删失(Random censoring)。
图表 3 III型删失示例2、左删失(Left censoring)C开始接受观察,而在此之前我们感兴趣的时间已经发生,这就是左删失。
研究对象在时刻l例如:“您初次吸食大麻是在什么时候?” 有一种回答:“我吸食过,但我不记得吸食的具体时间了。
”这些回答的吸食时间数据就是左删失。
通过测试确定儿童学会完成特定任务的年龄,有些儿童在进入研究前就已经可以完成某项特定任务,这些儿童的事件发生时间也是左删失。
出现左删失同时,也可能出现右删失,称为双删失(Double censoring)。
例如:对吸食大麻的问卷还有一种回答:“我从来没有吸食过”,这样的数据就是右删失。
3、区间删失(Interval censoring ):若个体的确切生存时间不知道,只知道其生存时间在两个观察时间 L 和R 之间(L<R ),则称该个体的生存时间在[L,R]上是区间删失的。
实际工作中,凡是不能或者不愿作连续监测时就会遇到这样的区间删失。
区间删失分两种:第一类区间删失(Case I Interval censoring )和第二类区间删失(Case II Interval censoring )。
当对个体只进行一次观察,且个体的确切生存时间不知道,只知道其生存时间是否大于观察时间(即0=L 或∞=R ),这种删失称为第一类区间删失,也称为现实状况数据(Current data )。
当对个体进行次观察,其观察时间L 和R 满足∞<<<R L 0时,这种删失称为第二类区间删失,也称为一般区间删失。
如果初始时间(如艾滋病感染时间)和发生时间均为区间删失,则称生存时间为双重区间删失(Double interval censoring )。
三、截断(Truncation )在研究或者观测中,淘汰了一些对象(样本),使得研究者“意识不到他们的存在”。
对截断数据的分析构造似然采用条件分布。
截断包括两种:左截断(Left truncation )和右截断(Right truncation )。
1、左截断(Left Truncation ):只有个体经历某种初始事件以后才能观察到其生存时间,称为左截断(Left truncation ),此时获得的数据称为左截断数据(Left-truncated data ) 例如:暴露于某疾病、发生死亡前的中间事件等。
退休中心老年居民死亡时间(没到年龄没有进入观测)左截断与左删失的区别:在左截断的研究中,根本没有考虑那些在进入研究之前已经经历了感兴趣时间的个体,而在左删失的研究中,我们能获得这些个体的部分信息。
即有左截断又存在右删失的情况,称为左截断右删失(Left-truncation and right-censoring ) 2、右截断(Right Truncation )只有经历了某种终止事件才能观察到生存时间(将要经历该事件的个体不包含在实验样本中),称为右截断(Right truncation ),此时获得的数据称为右截断数据(Right-truncated data )。
例如:对艾滋病感染和发病时间观测数据,有些个体感染病毒但尚未发病,这样的个体不在样本范围之内。
3、截断的数学表示设Y 是一个非负的表示生存时间的随机变量;T 是另外一个表示截断时间的随机变量。
在左截断下,只有当T Y ≥时,才能观察到T 和Y ;在左截断下,只有当T Y ≤时,才能观察到T 和Y 。
第三章 基本函数和模型一、生存函数(Survival Function)描述生存时间统计特征的基本函数,也叫生存率(Survival Rate) :设T 表示生存时间,F(t)为T 分布函数,生存函数定义为:∞<<-=>=T t F t T P t S 0)(1)()(, 生存函数性质:非增函数。
满足)(lim )(1)(lim )0(0==+∞==∞→→++x S S x S S x x当生存时间为连续型随机变量时:dtt dS t S t f duu f t F t T P t S t)()(')()()(1)()(-=-==-=>=⎰∞生存函数)(t S 的图像叫做生存曲线(Survival Curve),如下图:陡峭的生存曲线表示较低的生产率或较短的生存时间;平缓的生存曲线表示较高的生存率或较长的生存时间。
离散生存时间产生于舍入操作将失效(或死亡)时间分组从区间和寿命用整数计量等。
离散时间生存函数是非增的阶梯函数,当T 取值为 <<21a a ,且,2,1)()(===i a T P a f i i ,,∑∑>>====ta ta i i i i i a f a T P t S ,2,1,)()()(离散时间生存函数是非增的阶梯函数二、危险率函数(Hazard Function):危险率函数:描述观察个体在某时刻存活条件下,在以后的单位时间内死亡的(条件)概率:htT h t T P t h ≥+<=+→(lim)(0λ当T 连续 dtt S d t S t f t )](ln[)()()(-==λ; 当T 离散,取值为 <<21a a , ,2,1)()(===i a T P a f i i ,,则i a 处的危险率为()∏∏≤≤------===-=-==≥==t a i t a i i i i i i i i i i i i i i a S a S t S i a S a S a S a S a S a S a f a T a T P )1()()()(,2,1,)()(1)()()()()(11111λλ危险率函数在工程上叫做失效率函数或损坏函数,在生存分析和医学统计中又称为风险率函数或瞬时死亡率(Simultaneous death rate)、或死亡强度(Death intensity)、或条件死亡率(Conditional death rate)、或年龄死亡率(Age death rate )等。