陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用

陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用
陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用

陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像

处理中的应用”资料

1. 课程介绍_压缩感知方法及其在稀疏信号和图像处理中的应

用.doc

2. 陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像处理中的应用”的讲义

Lecture_Notes_CS_LWS_Final.pdf

3. 各章所涉及到的Matlab程序

Main functions

Main functions.zip(内含 ex3_1.m (for Example 3.1)

ex3_2.m (for Example 3.2)

gp_denoise.m (for Algorithm GP in Sec.3.2)

fgp_denoise.m (for Algorithm FGP in Sec.3.2)

gp_deblurr.m (for Algorithm GPB in Sec.3.3) )

Auxiliary functions

Auxiliary functions.zip(内含gen_dct.m oper_L.m oper_Lt.m

proj_bound.m proj_pair.m

gp_denoise_w.m)

Data

Data.zip(内含camera256.mat 及 lena256.mat)

4. 陆吾生“压缩感知方法及其在稀疏信号和图像处理中的应用”课程(1A-6B)上课录像

Lecture_LWS_1A.rmvb 2010.11.09.(220M)

Lecture_LWS_1B.rmvb 2010.11.09.(231M)

Lecture_LWS_2A.rmvb 2010.11.11.(252M)

Lecture_LWS_2B.rmvb 2010.11.11.(193M)

Lecture_LWS_3A.rmvb 2010.11.12.(225M)

Lecture_LWS_3B.rmvb 2010.11.12.(200M)

Lecture_LWS_4A.rmvb 2010.11.16.(239M)

Lecture_LWS_4B.rmvb 2010.11.16.(169M)

Lecture_LWS_5A.rmvb 2010.11.18.(239M)

Lecture_LWS_5B.rmvb 2010.11.18.(226M)

Lecture_LWS_6A.rmvb 2010.11.19.(256M)

Lecture_LWS_6B.rmvb 2010.11.19.(224M)

5. 陆吾生教授2010.11.17.在上海大学所做的学术报告,题为:

Reconstruction of Sparse Signals by Minimizing a Re-Weighted Approximate L_0-Norm in the Null Space of the Measurement Matrix

报告录像

报告的ppt文件

论文的全文

陆吾生教授短期课程资料(2007)

基于压缩感知的雷达成像

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程报告 课程名称:现代信号处理专题论文题目:基于压缩感知的雷达成像院系:电信学院 班级:电子一班 设计者:刘玉鑫 学号:13S005061 指导教师:张云 时间:2014.06 哈尔滨工业大学

第一章压缩感知理论基本原理 1.1 压缩感知的基本知识 压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的香农信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。 压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。 1.2 压缩感知的主要原理内容 总的说来,压缩感知方法的处理流程可简要描述为:基于待处理信号在某个基上的稀疏性或可压缩性,设计合理的测量矩阵,获得远小于信号维数但包含足够信号特征信息的采样,通过非线性优化算法重构信号。 在传统理论的指导下,信号X的编解码过程如图1-1所示。编码端首先获得X的N店采样值经变换后只保留其中K个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或者传输。 解压缩仅仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K值很小,但由于奈奎斯特采样定理的限制,采样点数N可能会非常大,采样后的压缩是造成资源浪费的根本所在。

陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用

陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像 处理中的应用”资料 1. 课程介绍_压缩感知方法及其在稀疏信号和图像处理中的应 用.doc 2. 陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像处理中的应用”的讲义 Lecture_Notes_CS_LWS_Final.pdf 3. 各章所涉及到的Matlab程序 Main functions Main functions.zip(内含 ex3_1.m (for Example 3.1) ex3_2.m (for Example 3.2) gp_denoise.m (for Algorithm GP in Sec.3.2) fgp_denoise.m (for Algorithm FGP in Sec.3.2) gp_deblurr.m (for Algorithm GPB in Sec.3.3) ) Auxiliary functions Auxiliary functions.zip(内含gen_dct.m oper_L.m oper_Lt.m proj_bound.m proj_pair.m gp_denoise_w.m) Data Data.zip(内含camera256.mat 及 lena256.mat)

4. 陆吾生“压缩感知方法及其在稀疏信号和图像处理中的应用”课程(1A-6B)上课录像 Lecture_LWS_1A.rmvb 2010.11.09.(220M) Lecture_LWS_1B.rmvb 2010.11.09.(231M) Lecture_LWS_2A.rmvb 2010.11.11.(252M) Lecture_LWS_2B.rmvb 2010.11.11.(193M) Lecture_LWS_3A.rmvb 2010.11.12.(225M) Lecture_LWS_3B.rmvb 2010.11.12.(200M) Lecture_LWS_4A.rmvb 2010.11.16.(239M) Lecture_LWS_4B.rmvb 2010.11.16.(169M) Lecture_LWS_5A.rmvb 2010.11.18.(239M) Lecture_LWS_5B.rmvb 2010.11.18.(226M) Lecture_LWS_6A.rmvb 2010.11.19.(256M) Lecture_LWS_6B.rmvb 2010.11.19.(224M) 5. 陆吾生教授2010.11.17.在上海大学所做的学术报告,题为:

压缩感知理论综述(原创)

压缩感知理论综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 关键词:压缩感知;稀疏表示;观测矩阵;编码;解码 一、引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。 简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架

压缩感知在高速(雷达)信号采集中的应用

2013雷达对抗原理期末报告 题目:压缩感知在高速(雷达)信号采 集中的应用 院(系)信息与电气工程学院 专业电子信息工程 学生 班级1002503 学号100250311 教师 报告日期2013-11-15 1研究背景 信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是着名的Nyquist采样定理。定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用[1],信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。为了

缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩,如基于小波变换的JPEG2000 标准。但是,信号压缩实际上是一种严重的资源浪费,因为大量的采样数据在压缩过程中被丢弃了,而它们对于信号来说是不重要的或者只是冗余信息。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist 采样机制是冗余的或者说是非信息的。下图是一个传统方法采样压缩过程[2]。 图1.1 传统的信号压缩过程 2国内外在该方向的研究现状及分析 压缩感知(Compressed Sensing or Compressive Sampling)理论由Donoho, Candes和Tao等人提出,它的出现是充分利用了信号在某变换域的稀疏性或者可压缩的性质,将较长的接收信号随机投影到一个较短的矢量上面,经过求解一个非线性最优化问题,将一组远低于奈奎斯特采样率得到的信号实现精确的重构,这样在一定程度上就减轻了采样系统硬件的负担。雷达成像的原理是利用雷达接收端获得回波信号的反射特性在空间上分布的特点,因此根据雷达回波的信息来重建目标信息的过程就是雷达成像的最根本的体现。雷达目标的电磁散射特性研究结果表明:在高频区域,雷达目标的回波可以认为是由较为重要的散射中心回波的合成,发射宽带信号的雷达可以获得的对分析有用的目标数量远小于组成这些散射中心的原始的数据样本数。由以上分析可知,雷达目标的这种电磁特性达到了压缩感知理论对待压缩信号稀疏性的要求,为将CS理论运用于雷达成像的应用研究中提供了可能。以上结论说明雷达回波与信号的稀疏理论相匹配,可以将压缩感知的相关理论成果与雷达成像的相关技术相结合。 近几年来,国内外的专家与研究机构对基于压缩感知的雷达成像技术陆续展开研究工作,在某些领域已经有了一定程度的进展。为雷达接收端降低采样率,解决系统中的超大数据采集以及存储与传输的问题带来了巨大的变革。 3主要研究内容和研究方案 3.1主要研究内容 压缩感知(Compressive Sensing, or Compressed Sampling,简称CS),

基于压缩感知的图像重构模型的设计

基于压缩感知的图像重构模型的设计 压缩感知打破了传统的奈奎斯特采样定律,可以用远小于奈奎斯特采样定律所要求的采样率从较少的测量值中高精度的重构出原始信号。文章利用MATLAB GUI对基于压缩感知理论的图像压缩重构模型进行设计,该模型界面友好,操作简单方便。 标签:压缩感知;小波变换;图像重构;模型设计 引言 压缩感知理论为信号采集带来了革命性的突破,在信号具有可压缩性或稀疏性的前提下,压缩感知理论能以远低于奈奎斯特频率的采样率对信号进行采样,通过数值最优化准确重构原始信号[1-4]。压缩感知理论是编解码思想的一个突破,减轻了信号采样、传输和存储遇到的巨大压力,是一种信息获取及处理的全新的理论框架。 本文将利用MATLAB GUI进行基于压缩感知理论的图像重构模型的设计,使模型使用者方便操作界面。MATLAB是Math Works公司用C语言开发的集编程、数据结构和图形用户界面于一身的广泛被大家使用并具备矩阵及科学计算功能的一款较完备的软件,在该软件平台下进行的仿真以及系统模型的设计,在界面和性能上面远远超过很多软件,其专业性更是使其在很多领域有广泛的应用,其中能快速的利用图形用户界面(GUI)方式进行程序设计,这给设计者带来了极大的便利[5]。 1 基于小波变换的压缩感知 本节通过对原始图像采用小波变换,从而获得稀疏的小波系数矩阵,并利用高斯随机测量矩阵对稀疏变换后的小波系数进行测量,得到M个测量值,再通过OMP算法重构小波变换域下的稀疏矩阵,最后通过稀疏逆变换就可以得到重构后的图像。 本节选取大小为256×256的图像X,采样率为0.5对图像进行变化重构。本文实验仿真所得的PSNR值均经过10次仿真测量求平均值所得。 2 模型设计的主要步骤 根据上述基于小波变换的压缩感知进行模型设计[6],主要步骤包括: (1)根据需求制定模型的重点功能,继而根据功能设计各个功能子模块。 (2)根据初始需求以及大致目标设计出最原始的软件界

压缩感知在雷达成像中的应用

2014雷达对抗原理期末报告 题目:压缩感知在雷达成像中的应用 院(系)信息与电气工程学院 专业电子信息工程 学生 班级 学号 教师 报告日期2014-11-25 1.课题来源 1.1摘要 以 ISAR 和 InISAR 为代表的高分辨率雷达成像技术在军事和民用领域有着广泛的需求。通常情况下,高分辨率雷达图像的获得需要宽带雷达信号,而宽带雷达信号则又会导致雷达数据率的增加。近年来在雷达技术领域得到高度关注的压缩感知理论,其非相关测量过程能够有效地降低高分辨率雷达成像系统的数据率,有望解决雷达系统中超大数据量的采集、存储与传输问题。因此压缩感知理论和技术在雷达成像领域的应用,有可能会为高分辨率雷达成像技术带来巨大变革。压缩感知在高分辨率雷达成像中的应用研究工作虽然取得了一定的进展,但还没有针对压缩感知雷达成像理论进行系统性研究,也没能在此基础上给出实用化的成像算法。论文以基于压缩感知的雷达成像理论与算法作为研究内容,将压缩感知理论应用到高分辨率雷达成像算法中。论文围绕着成像数据获取方法、

成像信号处理方法和压缩感知在宽带雷达成像中的应用等紧密联系而侧重不同的三个方面展开了研究,建立了匹配滤波体制和去斜体制下的基带回波信号稀疏表示模型,提出了压缩感知测量器应用到雷达接收机的数字方案与模拟方案,构建了具有保相性的压缩感知距离压缩算法,通过距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和 InISAR 三维成像算法相结合,形成了压缩感知雷达成像算法,并将其应用到调频步进宽带雷达成像中。论文通过对仿真和实测数据的处理,证明了所提出的方法的有效性。 1.2研究的目的和意义 在压缩感知雷达成像算法研究中,首先在常用的稀疏信号重建算法中筛选出适合雷达成像的算法,然后与雷达回波信号稀疏表示模型以及非相干测量矩阵一起构建了具有保相性的压缩感知距离压缩算法。在此基础上利用距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和 InISAR 三维成像算法相结合,形成了压缩感知雷达成像算法。 在压缩感知宽带雷达成像算法研究中,结合调频步进信号的子脉冲合成方法,提出了针对调频步进信号的压缩感知测量方法,实现了压缩感知宽带雷达成像。 2.国内外在该方向的研究现状及分析 雷达成像的历史可以追溯到 20 世纪 50 年代。1951 年 6 月,美国Goodyear Aircraft 公司的 Carl Wiley 首先提出利用频率分析方法改善雷达的角分辨率,并设计了实验装置进行验证,这是合成孔径雷达思想的最初体现。1957 年 8 月,Michigan 大学雷达和光学实验室的 Cutrona 和 Leith 等人研制的机载合成孔径雷达进行了飞行试验,得到了第一张大面积的聚焦型合成孔径雷达图像。70 年代,Kirk 等人研制了第一台 SAR 数字处理系统。1978年 5 月,星载 SAR SeaSat 升空,标志着 SAR 技术已进入空间领域。目前,美国、欧空局、加拿大、日本等都有自己的实用化机载和星载合成孔径雷达系统,机载 SAR 系统有美国的 AN/APY-6,德国的 AER-Ⅱ,英国的 DERA ‘ESR’,以及瑞士的 DO-SAR 等;星载SAR 系统有美国的 SIR-A 和 SIR-B 卫星,欧空局的 ERS-1 和 ERS-2 卫星,日本的 JERS-1和 ALOS 卫星,加拿大的 Radarsat-1 和 Radarsat-2 卫星,意大利航天局的 COSMO-SkyMed高分辨雷达卫星星座系统,美国航天局、德国空间局和意大利空间局联合发射的SIR-C/X-SAR 以及德国空间中心和欧洲EADS Astrium 公司合作开发的 TerraSAR-X 卫星等。在国内,从七十年代开始大力研究 SAR 相关技术,中国科学院电子学研究所在 1979年成功研制了机载合成孔径雷达原理样机,并获得首批 SAR 成像数据。从“八五”开始,对SAR 系统的研究就一直是遥感技术中的重点研究方向之一。目前,中科院电子所、信息产业部 14 所、38 所、航空工业总公司 607 所,以及航科集团等单位都已对 SAR 技术开展了研究,许多单位已经有了机载 SAR 的实验系统,并获得了大量实际成像数据。bZ0YfRP。 逆合成孔径雷达是在合成孔径雷达的基础上发展起来的又一种高分辨成像雷达,其历史可以追溯到二十世纪六十年代。六十年代,在 Brown 领导下的Willow Run 实验室就开展了对旋转目标的成像。Walker 从 1970 年起开展对旋转目标成像的研究,他的研究工作对距离-多普勒成像理论做了更明确的阐述,并且由于引入了极坐标存储技术(光学处理),解决了运动穿越分辨单元的处理

基于MATLAB的图像压缩感知算法的实现(含源文件)

毕业设计(论文) 课题名称基于MATLAB的图像压缩感知 算法的实现 目录 目录......................................................... I

第1章绪论 (6) 1.1 研究背景和意义 (6) 1.2 数据压缩技术 (7) 1.2.1 传统数据压缩技术 (7) 1.2.2 压缩感知理论(Compressed/Compressive Sensing/Sampling, CS) (8) 1.3 无线传感器网络 (10) 1.3.1 无线传感器网络概述 (10) 1.3.2 无线传感器网络数据压缩的必要性 (12) 1.4 本文主要工作和内容安排 (13) 第2章压缩感知理论 (14) 2.1压缩感知的前提条件—稀疏性和不相干性 (14) 2.2 三个关键技术 (17) 2.3信号的稀疏表示 (18) 2.4 观测矩阵设计 (20) 2.5 稀疏信号的重构 (22) 2.6 重构算法 (23) 2.7 压缩感知优势及不足 (24) 2.8 压缩感知在传感网中的观测方式 (25) 第3章压缩感知理论应用概述 (27) 3.1 压缩成像 (27) 3.2 模拟信息转换 (27) 3.3 生物传感 (28) 3.4 本章小结 (28) 第4章 CS在无线传感网中的应用 (29) 4.1 研究背景 (29) 4.1.1 基于感知数据相关性的压缩 (29) 4.1.2传统压缩重构方法 (29)

4.1.3 图像压缩重构质量的评价 (30) 4.2 压缩感知理论算法对一维信号的实现 (32) 4.2.1 CS用于WSN的优势 (32) 4.2.2 观测重构模型 (33) 4.2.2 正交匹配追踪算法(OMP) (33) 4.2.3 算法的实现及结果分析 (34) 4.3 压缩感知理论算法对二维图像重构的实现 (38) 4.3.1 基于小波变换的分块压缩感知理论 (38) 4.3.2 实现步骤 (39) 4.3.3 重构结果及分析 (42) 4.4 本章小结 (45) 第5章总结与展望 (46) 5.1 工作总结 (46) 5.2 后续展望 (46) 参考文献 (47) 致谢 (49) 附录 (50) 摘要 数据压缩技术是提高无线数据传输速度的有效措施之一。传统的数据压缩技术是基于奈奎斯特采样定律进行采样,并根据数据本身的特性降低其冗余度,从而达到压

压缩感知磁共振成像技术综述

https://www.360docs.net/doc/2b13496785.html, 压缩感知磁共振成像技术综述 王水花,张煜东 南京师范大学计算机科学与技术学院,江苏南京210023 【摘 要】目的:综述近年来压缩感知磁共振成像技术的研究进展。方法:磁共振成像是目前临床医学影像中最重 要的非侵入式检查方法之一,然而其成像速度较低,限制其发展。压缩感知是一种新的信号采集与获取理论,它利用信号在特定域上的稀疏性或可压缩性,可通过少量测量重建整个原始信号。压缩感知磁共振成像技术将压缩感知应用到磁共振成像中,可在相同的扫描时间内获得更精细的空间组织结构,也可在相同的空间分辨率下加速成像。结果:本文概述了压缩感知磁共振成像的理论基础,分别从稀疏变换、不相干欠采样、非线性重建三个方面具体阐述,最后讨论了其研究展望与应用现状。结论:压缩感知磁共振成像具有较好的发展潜力,有逐渐增长的医用与商用价值。 【关键词】磁共振成像;压缩感知;稀疏变换;不相干欠采样;非线性重建【DOI 编码】doi:10.3969/j.issn.1005-202X.2015.02.002【中图分类号】R312;R445.2 【文献标识码】A 【文章编号】1005-202X (2015)02-0158-05 Survey on Compressed Sensing Magnetic Resonance Imaging Technique WANG Shui-hua,ZHANG Yu-dong School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China Abstract:Objective This paper focuses on the survey of compressed sensing in magnetic resonance imaging (CSMRI ).Meth -ods Magnetic resonance imaging is one of the most crucial non-invasive diagnostic implements in routine clinical examination.However,it is often limited by long scan https://www.360docs.net/doc/2b13496785.html,pressed sensing is a novel theory of signal acquisition and processing.It capitalizes on the signal's sparseness or compressibility in specific domain,allowing the entire original signal to be reconstruct-ed from relatively few measurements.CSMRI is proposed by integrating compressed sensing into MRI,providing more precise spatial tissue structure than normal technique in the same scan time,and accelerating imaging in the same spatial resolution.Results In this study we discussed in depth three components as sparse transform,incoherent subsampling,and nonlinear re-construction.We conclude the paper by discussing the research prospects and applications of CSMRI.Conclusion CSMRI has good development potential,and has increasing values for medical and commercial applications. Key words:magnetic resonance imaging;compressed sensing;sparse transform;incoherent subsampling;nonlinear recon-struction 前言 1971年,纽约州立大学的Paul https://www.360docs.net/doc/2b13496785.html,uterbur 教授提出磁共振成像(MRI),并于2003年获得诺贝尔生理医学奖。MRI 利用核磁共振原理,由于能量在不同物 质结构中有不同的衰减[1],通过外加梯度磁场检测电 磁波,可知构成物体原子核的位置和种类,从而绘制物体内部影像[2-3]。 MRI 是目前少有的对人体无伤害的安全、快速、准确的临床诊断方法,具有多方位、多参数、多模态等优点,不仅可显示人体组织的解剖信息,而且可显示功能信息。MRI 在临床上有广泛的应用,如今每年至少有6000万病例利用MRI 技术进行检查。但MRI 扫描时间过长、成像较慢[4],造成以下几个问题[5]:(1)给病人造成额外的痛苦;(2)由于器官运动(例如呼吸、眨眼、吞咽等非自主运动)造成图像模糊,增加伪影;(3)无法满足动态实时成像与导航的需要;(4)限制功能成像的推广,如波谱成像、磁敏感加权成像等。 2006年Candes 等[6]在前人的基础上,系统性地 【收稿日期】2014-12-21 【基金项目】国家自然科学基金(610011024);南京师范大学高层次人才 科研启动基金(2013119XGQ0061,2014119XGQ0080) 【作者简介】王水花,女,助教,研究方向:生物图像处理。【通信作者】张煜东,男,博士,教授,研究方向:医学图像处理。 158--

压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。 图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

压缩感知新技术专题讲座_二_第3讲压缩感知技术中的信号稀疏表示方法

压缩感知新技术专题讲座(二) 第3讲 压缩感知技术中的信号稀疏表示方法 X 周 彬1,朱 涛2,张雄伟3 (1.解放军理工大学指挥自动化学院研究生2队,江苏南京210007; 2.中国人民解放军66242部队,内蒙古锡林郭勒026000; 3.解放军理工大学指挥自动化学院信息作战系)摘 要:信号的稀疏表示是信号分析领域的基本问题,也是近几年兴起的压缩感知理论的基础。文章首先 分析了信号稀疏表示的基本原理,然后介绍了当前信号稀疏表示的主要方法,并重点阐述了基于过完备字典的稀 疏表示方法及其在压缩感知中的应用,最后总结了稀疏表示所面临的问题和未来发展方向。 关键词:稀疏表示;压缩感知;字典学习 中图分类号:T N 911.7文献标识码:A 文章编号:CN 32-1289(2012)01-0085-05 Sparse Representation of Signals in Compressive Sensing ZH OU Bin 1,ZH U T ao 2,ZH A N G X iong -w ei 3 (1.Postg r aduate T eam 2ICA ,PL A U ST ,Nanjing 210007,China ; 2.U nit 66242of P LA , Xiling uole 026000,China; 3.Depar tment of I nfo rm atio n O peration Studies ICA ,PL A U ST ) Abstract :T he sparse representation is a basic problem in signal analy sis field and also the basis o f the new emerging compressiv e sensing theory .The definitio n and principles of the sparse representation w ere firstly reviewed.And then some m ain m ethods o f the sparse representation, especially those based on the overco mplete dictionary w er e inv estig ated .The applications of the sparse repr esentation in CS w er e discussed.Some problem s to so lve were given and further devel- opm ent w as pointed out . Key words :sparse representation;com pressive sensing ;ov ercomplete dictionary 随着现代传感器技术的发展,许多领域面临着日益膨胀的海量数据,如地球物理数据、视频数据、天文数据、基因数据等。如何实现对这些数据更为灵活、简洁的表达已成为一个倍受关注的问题。传统的信号表示方法通常是基于正交基(如傅里叶基,小波基)的展开。为了实现信号的灵活、简洁和自适应的表示,一种更好的信号分解方式是根据信号本身的特点,自适应地选择合适的基函数,来完成信号的分解,从而得到信号的一个非常简洁的表达,即稀疏表示。由于信号的稀疏表示能在一定程度上自然地贴近信号的本质特征,因而对稀疏分解的研究有极其重要而深远的理论意义和广泛的应用价值。 目前,稀疏表示被广泛应用于信号处理和图像处理的各个领域,如图像压缩、音频压缩、噪声抑制、盲信号分离、地震数据处理、系统辨识、雷达成像处理等等。尤其是近年来新兴起的压缩感知(com pressed sensing)理论[1,2],其优点就是针对可稀疏表示的信号,将传统的数据采集与数据压缩合二为一,在获取信号同时对数据进行压缩。压缩感知理论的一个重要基础和前提就是选择信号的稀疏域,只有选择合适的基矩阵才能保证信号的稀疏度,从而保证信号的恢复精度。由于压缩感知理论的提出和蓬勃发展,稀疏表示越来 第33卷第1期  2012年3月军 事 通 信 技 术Jour na l o f M ilitar y Co mmunicatio ns T echnolog y V ol.33N o.1M ar.2012X 收稿日期:2011-10-18;修回日期:2011-12-12 作者简介:周 彬(1986-),男,博士生.

压缩感知原理

压缩感知原理 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量 的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图 2.1。 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基上具有紧凑的表示。即这些信号 是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。 对于一个实值的有限长一维离散时间信号 X ,可以看作为一个R N空间N X 1的 维的列向量,元素为n, n,=1 , 2,…N。R N空间的任何信号都可以用N X1维

基于压缩感知的图像重构技术研究

基于压缩感知的图像重构技术研究 压缩感知理论表明,若信号在某变换域具有稀疏表示,且采样矩阵与稀疏矩阵不相关,则可从远低于信号维度的少量非自适应测量值中精确恢复原信号。目前,压缩感知理论已被广泛用于各类磁共振成像中,以便在不降低成像质量的情况下减少采样点数,提高系统扫描速度。 本文即研究从亚采样的磁共振数据中,怎样快速而有效地恢复目标图像。主要研究内容包括:(1)为消除亚采样的磁共振成像重构时可能出现的过光滑(over-smoothed)和混叠伪影现象,将重构问题转化成含复合正则项的约束最小化问题,并提出一种高效的算法来求解。 该算法首先利用Bregman迭代技术,将约束问题转化成一系列无约束问题。然后利用算子分裂技术,将各无约束问题分解成一个梯度问题和一个能使用修改的SBD(Splitting Bregman Denoising)算法来求解的复合正则项的去噪问题。 最后再用加速方案对无约束问题的求解予以加速。本文将该算法称作BFSA (Bregman based Fast SBD Algorithm)。 对非笛卡尔轨迹采样的重构,本文还提出了一种动态更新L的方法。实验结果表明,新算法能够获得比其他算法更好的重构质量。 (2)为了克服现有动态磁共振成像重构速度较慢的问题,本文基于BFSA 算法框架,提出一种高效的动态磁共振成像重构算法ktBFSA。该算法利用SBD3D (Splitting Bregman Denoising for3D images)来求解含复合正则项的3D去噪问题。 实验结果表明,ktBFSA在重构速度和重构质量上都有优势。(3)SENSE (Sensitivity encoding)是常用的并行磁共振成像技术,引入压缩感知后重构

(完整word版)压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量 的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图 2.1 o > 重构信号 图2.1传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Can des和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基上具有紧凑的表示。即这些信号 是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压

基于压缩感知的雷达目标检测研究硕士学位

基于压缩感知的雷达目标检测研究硕士学位

中图分类号:TN957 论文编号:1028704 15-S051 学科分类号:081001 硕士学位论文 基于压缩感知的 雷达目标检测研究 研究生姓名 学科、专业通信与信息系统 研究方向雷达信号处理 指导教师 XIII

Nanjing University of Aeronautics and Astronautics The Graduate School College of Electronic and Information Engineering Study of Radar Target Detection Based on Compressed Sensing A Thesis in Radar Signal Processing By Advised by Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering December, 2014 XIII

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期: XIII

P张量压缩感知图像处理技术研究与实现

P张量压缩感知图像处理技术研究与实现 目前,通信技术和互联网进步飞快,对于信息传输效率的要求也 逐渐提升,如何更好更快地传输海量数据成为目前研究的热点问题之一。在传统的奈奎斯特采样定理中,信号的精确恢复对于信号采样频率的要求较高,而压缩感知技术则突破了该限制,一经提出,便引起了广泛的关注。压缩感知包含三部分,即信号的稀疏化、观测和信号重构。信号通常维数较大,因此,在传统的半张量压缩感知模型中,为了能够匹配图像的大小进行矩阵乘法运算,观测矩阵通常利用张量积运算。在保证观测效果的基础上,如何减少观测矩阵需要的内存空间, 是设计观测矩阵时需要重点关注的问题。在传统的向量和矩阵运算中,维数匹配一直是一个难以解决的问题。对于传统的向量或矩阵乘法而言,参与运算的两个向量必须满足维数匹配才能进行相关操作;若二 者的维数没有相互匹配,则需要通过相应的转换才能进行相关运算操作。例如,对于直线和平面而言,无法进行传统的乘积操作,因此,也无法计算二者之间的夹角。常用的解决思路是借助垂直投影,将直线在平面上的影线表示平面,将平面和直线的夹角用投影线与直线的夹角代替。然而事实上,平面上的直线有无数条,只用一条直线代表平面未免过于局限。针对上述问题,本文提出了基于P半张量压缩感知的图像处理技术。本文主要的研究成果与创新点如下:(1)提出P张量积模型,对传统向量和矩阵运算定义进行扩展。具体为,提出了P张量积(P-Tensor Product,PTP)的数学模型,对传统向量的夹角、内积定义进行了扩展,定义了在P变换下,两个不匹配向量之间的内积和夹角。

同时,将P张量积运用到矩阵的乘积运算中,突破了传统矩阵相乘的维数限制问题,对传统半张量积模型进行了推广,使得矩阵乘积更加灵活。(2)提出P张量压缩感知(P-Tensor Product Compressed Sensing,PTP-CS)的定义,将P张量积运用到压缩感知领域,具有更好的普适性及更低的存储需求。运用P张量积进行观测矩阵的设计,能够将低维矩阵扩展为高维矩阵,不仅能够减少观测矩阵所需的存储空间,同时也对观测矩阵进行了优化。从观测矩阵的三大性质Spark、Coherence、RIP入手,进行定性分析,证明P张量积运用到压缩感知模型中,对观测矩阵具有更好的优化效果。(3)提出适合P张量积压缩感知的恢复模型,用实验仿真验证恢复效果。将所提模型同传统压缩感知、半张量压缩感知恢复模型进行对比分析,证明所提出的P张量积压缩感知恢复模型进行图像处理时的良好性能。不仅是二维图像,对于其他维数的信号,如一维信号、高维视频信号,P张量积压缩感知仍能保持较好的压缩恢复效果。

浅谈压缩感知方法及其在雷达领域的应用

浅谈压缩感知方法及其在雷达领域的应用 摘要:传统信号处理的采样率必须满足香农定理。随着携带信息量和系统分辨率的提高,系统带宽不断增大,这对系统传输和存储等带来巨大压力。压缩感知理论利用信号内在的稀疏性,以低于奈奎斯特采样率对其进行采样,显著降低信号处理的成本。文章介绍了压缩感知方法的基本理论和几类典型稀疏重构方法,并通过仿真实验分析了它们的性能。最后结合几个典型实例,概述了采用压缩感知方法解决雷达信号处理领域某些特定工程问题的优势。 Abstract:Conventional signal processing approaches must follow Shannon's celebrated theorem. As the promotion of information and resolution,the band of system will also increase. The transmission and storage of system is greatly challenged. While compressive sensing theory can sample signal at the rate below Nyquist Sampling frequency to lessen the system cost in signal processing. This paper introduces the basic theory of compressive sensing and several typical sparse recovery methods. The performance of different methods was illustrated through simulation. Via several typical applications in radar,we showed the advantage in dealing with some special

相关文档
最新文档