陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用
压缩感知理论与应用

阅读感受
阅读感受
《压缩感知理论与应用》:理论与应用的新领域 在信息科学快速发展的今天,新的理论和技术不断涌现,为我们的生活和工 作带来前所未有的便利。《压缩感知理论与应用》这本书,以其独特的视角和深 度的分析,为我们在信息科学领域开辟了新的视野。
阅读感受
这本书由机械工业社于2019年3月,作者约琳娜·C.埃尔达(Yonina C. Eldar)和吉(G.)为我们提供了压缩感知这一主题的全面介绍。压缩感知是一 种新兴的理论和技术,它允许我们通过少量的测量来恢复信号或图像,从而在数 据采集和处理的效率上带来了革命性的改变。
精彩摘录
精彩摘录
在科技日新月异的今天,压缩感知理论与应用这本书为我们提供了一个全新 的视角,来理解和应用信号处理和数据分析中的一些复杂问题。这本书汇集了众 多领域专家的研究成果,深入浅出地介绍了压缩感知的基本理论、算法和应用。
精彩摘录
书中一个引人注目的观点是“稀疏表示”。在信号处理中,稀疏表示是一种 重要的思想,它认为大多数信号都可以在某种变换下表示为少数非零元素的集合。 这种思想在压缩感知中得到了充分的应用,使得我们可以在远低于奈奎斯特采样 率的条件下,实现对信号的准确重建。
作者简介
作者简介
这是《压缩感知理论与应用》的读书笔记,暂无该书作者的介绍。
谢谢观看
目录分析
目录分析
《压缩感知理论与应用》是一本全面介绍压缩感知理论及其在多个领域应用 的书籍。本书深入浅出地阐述了压缩感知的基本原理、算法和应用,为读者提供 了关于这一前沿领域的一个全面的视角。以下是对本书目录的分析。
目录分析
本书的引言部分为读者提供了关于压缩感知的基本概念和历史背景。作者约 琳娜·C.埃尔达(Yonina C. Eldar)和吉尔·吉(Gill Girilot)在引言中详 细介绍了压缩感知的起源、发展以及在信号处理、图像处理、医学成像等多个领 域的应用。
压缩感知 稀疏贝叶斯算法

压缩感知稀疏贝叶斯算法
压缩感知是一种信号处理方式,其基本思想是通过采集少量的信号样本,然后通过某种算法重构出原始信号。
稀疏贝叶斯算法是压缩感知中的一种重要方法,它利用贝叶斯估计理论来恢复稀疏信号。
压缩感知的基本模型可描述为:y = Ax + v,其中y为观测到的信号,A为M×N的感知矩阵,x为N×1维的待求信号,v为M×1维的噪声向量。
稀疏贝叶斯学习则是在压缩感知的基础上引入了贝叶斯估计理论,用于恢复稀疏信号。
具体来说,稀疏贝叶斯学习将信号建模为一个稀疏的概率图模型,然后通过贝叶斯公式来求解最优的信号值。
然而,传统的稀疏贝叶斯算法在存在噪声的情况下,其恢复效果可能不佳。
为了解决这个问题,研究者们提出了结合自适应稀疏表示和稀疏贝叶斯学习的压缩感知图像重建方法。
此外,还有研究者提出基于块稀疏贝叶斯学习的多任务压缩感知重构算法,该算法利用块稀疏的单测量矢量模型求解多任务重构问题。
这些改进的方法都在一定程度上提高了压缩感知的性能。
图像压缩感知的自适应方向提升稀疏表示及重构算法

( 南京航 空航 天大学航 天学院 ,南京 2 1 0 0 1 6 )
摘
要 :为了克服传统 的压缩感知 重构 中正交小波方 向选择性差 的局 限性 , 针 对 图像信 号方 向性决 定了需要
在不 同纹理 区域 选择滤波器 以使变换后 信号能量更加稀 疏 , 提 出一 种基 于 自适 应方 向提升稀 疏表示 的重构方 法。
第3 4卷 第 1 期
2 0 1 3年 1月
宇
航
学
报
Vo 1 . 3 4 No 1
.
J o u ua r l o f A s t r o n a u t i c s
J a n u a r y 2 0 1 3
图像 压 缩 感 知 的 自适 应 方 向提 升 稀 疏 表 示及 重 构 算 法
I ma g e S pa r s e Re p r e s e nt a l t i 0 n a nd Re c 0 n s t r uc t i 0 n Al g o r i t hm f o r Co m pr e s s e d S e n s i n g b y Ad a p t i v e Di r e c t i o na l Li f t i n g
Ab s t r a c t : T o o v e r c o me t h e p o o r d i r e c t i o n a l s e l e c t i v i t y o f o r t h o g o n a l w a v e l e t b a s e s ,s i g n a l e n e r g y i s ma d e mo r e s p a r s e b y s e l e c t i n g t h e i f l t e r s i n d i f f e r e n t t e x t u r e r e g i o n s f o r i ma g e s i g n a l d i r e c t i o n,a n i ma g e c o mp r e s s e d s e n s i n g r e c o n s t r u c t i o n a l g o i r t h m b a s e d o n a n a d a p t i v e d i r e c t i o n a l l i t f i n g s p a r s e r e p r e s e n t a t i o n i s p r e s e n t e d . Af t e r e a c h i t e r a t i v e r e i f n e me n t i n t h e r e c o n s t r u c t i o n,t h e s i g n l a e n e r y g d i s t r i b u t i o n i s mo r e c o n c e n t r a t e d b y s e l e c t i n g wa v e l e t b a s e s w i t h d i f f e r e n t i n t e n s i t i e s o f t h e d i r e c t i o n a n d s i g n l a s mo o t h n e s s a c c o r d i n g t o t h e t e x t u r e c h a r a c t e r i s t i c s o f t h e i ma g e s i na g l ,a n d a wa v e l e t t h r e s h o l d i n g me t h o d i s u s e d t o r e a l i z e s i g n a l r e c o n s t r u c t i o n d e n o i s i n g .E x p e ime r n t a l r e s u l t s s h o w t h a t t h e p r o p o s e d lg a o r i t h m i mp r o v e s t h e p e a k s i na g l— t o - n o i s e r a t i o a n d v i s u a l q u a l i t y,a n d p r o t e c t s i ma g e d e t a i l s . Ke y wo r d s : C o mp r e s s e d s e n s i n g; S i na g l r e c o n s t uc r t i o n; D i r e c t i o n a l wa v e l e t ; h e r a t i v e t h r e s h o l d i n g ; S p a r s e
陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用

陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像处理中的应用”资料1. 课程介绍_压缩感知方法及其在稀疏信号和图像处理中的应用.doc2. 陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像处理中的应用”的讲义Lecture_Notes_CS_LWS_Final.pdf3. 各章所涉及到的Matlab程序Main functionsMain functions.zip(内含 ex3_1.m (for Example 3.1)ex3_2.m (for Example 3.2)gp_denoise.m (for Algorithm GP in Sec.3.2)fgp_denoise.m (for Algorithm FGP in Sec.3.2)gp_deblurr.m (for Algorithm GPB in Sec.3.3) )Auxiliary functionsAuxiliary functions.zip(内含gen_dct.m oper_L.m oper_Lt.mproj_bound.m proj_pair.mgp_denoise_w.m)DataData.zip(内含camera256.mat 及 lena256.mat)4. 陆吾生“压缩感知方法及其在稀疏信号和图像处理中的应用”课程(1A-6B)上课录像Lecture_LWS_1A.rmvb 2010.11.09.(220M)Lecture_LWS_1B.rmvb 2010.11.09.(231M)Lecture_LWS_2A.rmvb 2010.11.11.(252M)Lecture_LWS_2B.rmvb 2010.11.11.(193M)Lecture_LWS_3A.rmvb 2010.11.12.(225M)Lecture_LWS_3B.rmvb 2010.11.12.(200M)Lecture_LWS_4A.rmvb 2010.11.16.(239M)Lecture_LWS_4B.rmvb 2010.11.16.(169M)Lecture_LWS_5A.rmvb 2010.11.18.(239M)Lecture_LWS_5B.rmvb 2010.11.18.(226M)Lecture_LWS_6A.rmvb 2010.11.19.(256M)Lecture_LWS_6B.rmvb 2010.11.19.(224M)5. 陆吾生教授2010.11.17.在上海大学所做的学术报告,题为:Reconstruction of Sparse Signals by Minimizing a Re-Weighted Approximate L_0-Norm in the Null Space of the Measurement Matrix报告录像报告的ppt文件论文的全文陆吾生教授短期课程资料(2007)。
第3讲压缩感知技术中的信号稀疏表示方法压缩感知新技术专题讲座_二_

压缩感知新技术专题讲座(二)第3讲 压缩感知技术中的信号稀疏表示方法X周 彬1,朱 涛2,张雄伟3(1.解放军理工大学指挥自动化学院研究生2队,江苏南京210007;2.中国人民解放军66242部队,内蒙古锡林郭勒026000;3.解放军理工大学指挥自动化学院信息作战系)摘 要:信号的稀疏表示是信号分析领域的基本问题,也是近几年兴起的压缩感知理论的基础。
文章首先分析了信号稀疏表示的基本原理,然后介绍了当前信号稀疏表示的主要方法,并重点阐述了基于过完备字典的稀疏表示方法及其在压缩感知中的应用,最后总结了稀疏表示所面临的问题和未来发展方向。
关键词:稀疏表示;压缩感知;字典学习中图分类号:T N 911.7文献标识码:A 文章编号:CN 32-1289(2012)01-0085-05Sparse Representation of Signals in Compressive SensingZH OU Bin 1,ZH U T ao 2,ZH A N G X iong -w ei 3(1.Postg r aduate T eam 2ICA ,PL A U ST ,Nanjing 210007,China ; 2.U nit 66242of P LA ,Xiling uole 026000,China; 3.Depar tment of I nfo rm atio n O peration Studies ICA ,PL A U ST )Abstract :T he sparse representation is a basic problem in signal analy sis field and also thebasis o f the new emerging compressiv e sensing theory .The definitio n and principles of the sparserepresentation w ere firstly reviewed.And then some m ain m ethods o f the sparse representation,especially those based on the overco mplete dictionary w er e inv estig ated .The applications of thesparse repr esentation in CS w er e discussed.Some problem s to so lve were given and further devel-opm ent w as pointed out .Key words :sparse representation;com pressive sensing ;ov ercomplete dictionary 随着现代传感器技术的发展,许多领域面临着日益膨胀的海量数据,如地球物理数据、视频数据、天文数据、基因数据等。
基于压缩感知的遥感成像稀疏重构性能分析

计 算 机 测 量 与 控 制 .2019.27(2) 犆狅犿狆狌狋犲狉 犕犲犪狊狌狉犲犿犲狀狋 牔 犆狅狀狋狉狅犾
Hale Waihona Puke · 237 ·文章编号:1671 4598(2019)02 0237 04 DOI:10.16526/j.cnki.11-4762/tp.2019.02.052 中图分类号:O236,TP751 文献标识码:A
收 稿 日 期 :2018 08 19; 修 回 日 期 :2018 08 30。 基 金 项 目 :国 家 自 然 科 学 基 金 (61503405);航 空 科 学 基 金 (20160896007),航 空 科 学 基 金(20160896008)。 作 者 简 介 :张 建 业(1971 ),男 ,山 西 定 襄 人 ,博 士 ,教 授 ,主 要 从 事飞行器导航制导与控制方向的研究。
关键词:遥感成像;压缩感知;稀疏性;稀疏重构
犃狀犪犾狔狊犻狊狅狀犛狆犪狉狊犲犚犲犮狅狀狊狋狉狌犮狋犻狅狀犘犲狉犳狅狉犿犪狀犮犲狅犳犚犲犿狅狋犲犛犲狀狊犻狀犵 犐犿犪犵犻狀犵犅犪狊犲犱狅狀犆狅犿狆狉犲狊狊犻狏犲犛犲狀狊犻狀犵
ZhangJianye1,ZhaoXiaolin1,ZhaoBoxin1,GaoGuangen2,ChenXiaolong2
(1.AirForceEngineering University,Xian 710051,China;2.KeyLab.ofScienceand TechnologyonAircraftControl,FACRI,Xian 710065,China)
犃犫狊狋狉犪犮狋:CompressivesensingisanewinformationtheorywhichbreaksthetraditionalShannon-Nyquistsamplingtheoremand canperformsignalsamplingwithasmallamountofdata.Sparsereconstructionisthekeyfactorofcompressivesensingfromtheoryto practice.Inordertoapplycompressivesensingeffectivelytoremotesensingimaging,theeffectofsparsereconstructiononremote sensingimagingisstudied.Basedonthesparsereconstructionmodel,thecausesofreconstructionerrorareanalyzed.Meanwhile,ac cordingtothetypicalconvexoptimizationalgorithmsandgreedyalgorithms,thereconstructionerrorsofremotesensingimagearee valuatedbypeaksignal-to-noiseratio(PSNR).Inthesimulation,thesparsereconstructionperformanceofremotesensingimageis quantitativelyinvestigatedwithregardtodifferentcompressionsamplingratesandreconstructionalgorithms.Theresultshowsthat sparsereconstructionalgorithmcansuccessfullyreconstructremotesensingimage.Thealgorithmsgivegoodreconstructionquality withdifferentcompressionsamplingrates,whichcan meettherequirementsofremotesensingimaging.Theconclusionprovesthe feasibilityofapplyingcompressivesensingsparsereconstruction methodinremotesensingimaging.
基于压缩感知理论的重构算法

2023-11-11contents •压缩感知理论概述•基于压缩感知的重构算法基础•基于压缩感知的信号重构算法•基于压缩感知的图像重构算法•基于压缩感知的重构算法优化•基于压缩感知的重构算法展望目录01压缩感知理论概述在某个基或字典下,稀疏信号的表示只包含很少的非零元素。
稀疏信号通过测量矩阵将稀疏信号转换为测量值,然后利用优化算法重构出原始信号。
压缩感知压缩感知基本原理压缩感知理论提出。
2004年基于稀疏基的重构算法被提出。
2006年压缩感知技术被应用于图像处理和无线通信等领域。
2008年压缩感知在雷达成像和医学成像等领域取得重要突破。
2010年压缩感知发展历程压缩感知应用领域压缩感知可用于高分辨率雷达成像,提高雷达系统的性能和抗干扰能力。
雷达成像医学成像无线通信图像处理压缩感知可用于核磁共振成像、超声成像和光学成像等领域,提高成像速度和分辨率。
压缩感知可用于频谱感知和频谱管理,提高无线通信系统的频谱利用率和传输速率。
压缩感知可用于图像压缩和图像加密等领域,实现图像的高效存储和传输。
02基于压缩感知的重构算法基础重构算法的基本概念基于压缩感知的重构算法是一种利用稀疏性原理对信号进行重构的方法。
重构算法的主要目标是恢复原始信号,尽可能地保留原始信号的信息。
重构算法的性能受到多种因素的影响,如信号的稀疏性、观测矩阵的设计、噪声水平等。
重构算法的数学模型基于压缩感知的重构算法通常采用稀疏基变换方法,将信号投影到稀疏基上,得到稀疏表示系数。
通过求解一个优化问题,得到重构信号的估计值。
重构算法的数学模型包括观测模型和重构模型两个部分。
重构算法的性能评估重构算法的性能评估通常采用重构误差、重构时间和计算复杂度等指标进行衡量。
重构误差越小,说明重构算法越能准确地恢复原始信号。
重构时间越短,说明重构算法的效率越高。
计算复杂度越低,说明重构算法的运算速度越快。
03基于压缩感知的信号重构算法基于稀疏基的重构算法需要选择合适的稀疏基,使得信号能够稀疏表示,同时需要解决稀疏基选择不当可能导致的过拟合或欠拟合问题。
基于压缩感知技术的稀疏信号恢复算法

基于压缩感知技术的稀疏信号恢复算法引言:稀疏信号恢复是当今信号处理领域中一个重要的研究方向。
在许多实际应用中,信号通常以高维度的形式存在,并且只有很少的部分是真正有用的。
传统的信号处理方法通常会面临到诸如维数灾难等问题。
为了从这样的信号中提取有用的信息,压缩感知技术被提出。
本文将重点讨论基于压缩感知技术的稀疏信号恢复算法以及其应用。
一、压缩感知技术概述压缩感知是一种从高维度信号中采集和恢复稀疏表示的技术。
它通过将信号压缩为远远低于原始信号维度的测量,然后利用稀疏性进行恢复。
压缩感知技术的核心思想是通过非常少的线性测量,即使在高维度信号的情况下,也能准确地恢复出信号的原始表示。
该技术不仅在信号处理领域有着广泛的应用,还被应用于图像恢复、图形模型和机器学习等领域。
二、基于压缩感知技术的稀疏信号恢复算法1. 稀疏表示稀疏表示是压缩感知技术的基础。
通过选择适当的基向量,信号可以以较少的非零元素进行表示。
基于稀疏表示的信号恢复算法的目标是找到使得测量结果最佳的稀疏表示。
2. l1-Minimizationl1-Minimization是一种经典的稀疏信号恢复算法,通过将恢复问题转化为一个最小化l1范数的问题来实现。
该算法的目标是最小化误差项和l1范数的和,从而实现信号的稀疏恢复。
l1-Minimization算法简单、高效,并且能够保证信号恢复的准确性。
3. Orthogonal Matching Pursuit (OMP)OMP算法是一种迭代算法,通过不断地选择与残差最匹配的基向量来逐步重建稀疏信号。
该算法在每一步都选择最具代表性的基向量,并更新残差,直到满足停止准则。
OMP算法的优势在于它能够在较短的时间内实现准确的信号恢复,并且对噪声有较强的鲁棒性。
4. Compressive Sampling Matching Pursuit (CoSaMP)CoSaMP算法是对OMP算法的改进和扩展,可以更好地恢复具有大规模稀疏度的信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像
处理中的应用”资料
1. 课程介绍_压缩感知方法及其在稀疏信号和图像处理中的应
用.doc
2. 陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像处理中的应用”的讲义
Lecture_Notes_CS_LWS_Final.pdf
3. 各章所涉及到的Matlab程序
Main functions
Main functions.zip(内含 ex3_1.m (for Example 3.1)
ex3_2.m (for Example 3.2)
gp_denoise.m (for Algorithm GP in Sec.3.2)
fgp_denoise.m (for Algorithm FGP in Sec.3.2)
gp_deblurr.m (for Algorithm GPB in Sec.3.3) )
Auxiliary functions
Auxiliary functions.zip(内含gen_dct.m oper_L.m oper_Lt.m
proj_bound.m proj_pair.m
gp_denoise_w.m)
Data
Data.zip(内含camera256.mat 及 lena256.mat)
4. 陆吾生“压缩感知方法及其在稀疏信号和图像处理中的应用”课程(1A-6B)上课录像
Lecture_LWS_1A.rmvb 2010.11.09.(220M)
Lecture_LWS_1B.rmvb 2010.11.09.(231M)
Lecture_LWS_2A.rmvb 2010.11.11.(252M)
Lecture_LWS_2B.rmvb 2010.11.11.(193M)
Lecture_LWS_3A.rmvb 2010.11.12.(225M)
Lecture_LWS_3B.rmvb 2010.11.12.(200M)
Lecture_LWS_4A.rmvb 2010.11.16.(239M)
Lecture_LWS_4B.rmvb 2010.11.16.(169M)
Lecture_LWS_5A.rmvb 2010.11.18.(239M)
Lecture_LWS_5B.rmvb 2010.11.18.(226M)
Lecture_LWS_6A.rmvb 2010.11.19.(256M)
Lecture_LWS_6B.rmvb 2010.11.19.(224M)
5. 陆吾生教授2010.11.17.在上海大学所做的学术报告,题为:
Reconstruction of Sparse Signals by Minimizing a Re-Weighted Approximate L_0-Norm in the Null Space of the Measurement Matrix
报告录像
报告的ppt文件
论文的全文
陆吾生教授短期课程资料(2007)。